I. Биосфера, ее структура и функции

Благодаря способности трансформировать солнечную энергию в энергию химических связей, растения и другие организмы выполняют ряд фундаментальных биологических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в формировании состава современной атмосферы. Они строго контролируют концентрации кислорода и углекислого газа, оптимальные для современной биоты.

Концентрационная функция. В процессе эволюции организмы научились извлекать из разбавленного водного раствора и других компонентов природной среды необходимые для них вещества, многократно увеличивая их концентрацию в своем теле.

Таким образом, пропуская через свое тело большие объемы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию и концентрирование химических элементов и их соединений.

Окислительно-восстановительная функция. Многие вещества в природе крайне устойчивы и не подвергаются окислению при обычных условиях. Живые клетки обладают настолько эффективным катализатором - ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может происходить в абиотической среде. Благодаря этому живые организмы существенно ускоряют процессы миграции химических элементов в биосфере.

Информационная функция. С появлением первых живых существ на планете появилась и активная ("живая") информация, отличающаяся от той "мертвой" информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путем соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и передавать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором.

Перечисленные функции живого вещества образуют мощную средообразующую функцию биосферы. Деятельность живых организмов обусловила современный состав атмосферы. Растительный покров существенно определяет водный баланс, распределение влаги и климатические особенности больших пространств. Живые организмы играют ведущую роль в самоочищении воздушной и водной сред. Благодаря растениям, животным и микроорганизмам создается почва и поддерживается ее плодородие. Таким образом, биота биосферы формирует и контролирует состояние окружающей среды.

Следует четко представлять, что окружающая нас среда - это не возникшая когда-то фиксированная и непреходящая физическая должность, а живое дыхание природы, каждое мгновение создаваемое работой множества живых существ.

3. Биогеохимические круговороты веществ в биосфере

Круговорот веществ - закономерный процесс многократного участия веществ в явлениях, протекающих в биосфере планеты. Вещество, вовлеченное в круговорот, не только перемещается, но и испытывает трансформацию и нередко меняет свое физическое и химическое состояния. Особенно активную роль в ускорении круговорота и трансформации играют живые организмы.

Солнечная энергия на Земле вызывает два вида круговоротов веществ:

большой (биогеохимический) - в пределах биосферы;

малый (биотический) - в пределах элементарных экологических систем.

Большой круговорот веществ - это безостановочный планетарный процесс закономерного циклического, неравномерного во времени и пространстве перераспределения вещества, энергии и информации, многократно входящих в непрерывно обновляющиеся экологические системы биосферы.

Малый круговорот веществ развивается на основе большого и заключается в круговой циркуляции веществ между почвой, растениями, микроорганизмами и животными.

Оба круговорота взаимосвязаны и представляют собой единый процесс, который обеспечивает воспроизводство живого вещества и оказывает активное влияние на облик биосферы.

На нашей планете всегда существовал геохимический круговорот веществ, но с появлением жизни на Земле геохимические связи стали биогеохимическими - более сложными и разнообразными. Поэтому говорят о биогеохимическом круговороте веществ или биогеохимическом цикле.

Различают три основных типа биогеохимических круговоротов: круговорот воды;

круговорот элементов преимущественно в газовой фазе (кислорода, углерода, азота и др.);

круговорот элементов преимущественно в твердой и жидкой фазах (фосфора и др.).

Круговорот углерода на суше начинается с фиксации углекислого газа растениями в процессе фотосинтеза.

Из СО2 и НзО образуются углеводы и высвобождается кислород, Фиксированный в растениях углерод в некоторой степени потребляется животными. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу. Кроме того, углерод частично выделяется на всех стадиях круговорота в составе CO2 во время дыхания растений и животных. Подобный круговорот углерода совершается и в океане.

Круговорот азота (рис.1). Азот, которого очень много в атмосфере, усваивается растениями лишь после соединения его с водородом или кислородом. Это, как правило, происходит в результате различных физических явлений, протекающих в атмосфере (атмосферная фиксация) и производстве (промышленная фиксация), а также в результате действия азотфиксирующих бактерий или водорослей (биофиксация). Соединения азота используются растениями и через них по пищевым цепям попадают к животным. Растительные и животные отходы, мертвые организмы разлагаются, и с помощью денитрифицирующих бактерий происходит восстановление азота и возвращение его в атмосферу.

Рис. 1 - Круговорот азота

В настоящее время сельское хозяйство и промышленность дают почти на 60% больше фиксированного азота, чем естественные наземные экосистемы, что приводит к накоплению нитратов в почве и далее в трофических цепях.

Биогеохимические круговороты веществ и связанные с ними превращения энергии являются основой динамического равновесия и устойчивости биосферы. Нормальные, ненарушенные биогеохимические циклы имеют почти круговой, почти замкнутый характер. Этим поддерживается известное постоянство и равновесие состава, количества и концентрации компонентов в биосфере, например состава атмосферного воздуха, концентрации солей в воде океанов и т.п. В свою очередь, подобное постоянство обусловливает генетическую и физиологическую приспособленность живых организмов к существованию на Земле,

Понятие биосферы

Земля сформировалась примерно $5-7$ млрд лет назад. Первоначально она была безжизненным объектом, возникшим из газопылевой туманности. Под воздействием распада радиоактивных элементов ее вещество разогрелось и расплавилось. По мере остывания вещества произошло разделение «смеси» на отдельные оболочки:

  • гидросферу,
  • атмосферу.

Их химический состав несколько отличался от современного.

Примерно $3,5$ млрд лет назад возникла на нашей планете жизнь. О ее происхождении идут споры по сей день. Но за это время Земля оказалась заселенной разнообразными формами и видами живых организмов. По аналогии с литосферой, атмосферой и гидросферой это образование назвали биосферой.

Определение 1

Биосфера – это часть географической оболочки Земли, которая населенна живыми организмами.

Впервые термин «биосфера» был предложен Э. Зюссом в $1875$ году. А учение о биосфере, как особой части Земли, области распространения живых организмов, создал выдающийся отечественный ученый В.И. Вернадский.

Границы биосферы

По мнению Вернадского, впервые к понятию «биосфера» приблизился в своих идеях знаменитый французский ученый Ж.-Б. Ламарк. В отличии от остальных оболочек нашей планеты - литосферы, атмосферы и гидросферы, биосфера не образует отдельную сплошную оболочку. Она являет собой совокупность всех биогеоценозов Земли, единую экосистему высшего порядка.

Границами биосферы служат границы распространения живых организмов. Поэтому считается, что биосфера занимает практически всю гидросферу , верхние слои литосферы и нижние слои атмосферы.

Точно границы не определены. Известно, что некоторые группы бактерий обитают в толще литосферы на глубине около $4$ км. Проникновению в более глубокие слои литосферы препятствует высокая температура (более $100$°С) горных пород и подземных вод на больших глубинах.

Распространение живых организмов в атмосфере ограничено озоновым экраном. Именно озоновый экран защищает все живое от воздействия космического излучения (особенно – ультрафиолетовых лучей). Споры бактерий и грибов были обнаружены на высоте около $22$ км. Но наличие бактерий на остатках метеоритов подтверждает гипотезы некоторых ученых, что споры некоторых живых организмов могут некоторое время выдерживать влияние открытого космического пространства. Поэтому границы биосферы определены лишь условно. Самая высокая плотность организмов наблюдается там, где самые благоприятные и самые разнообразные условия существования организмов – на стыке земных оболочек.

Свойства биосферы

Всю совокупность живых организмов нашей Земли академик Вернадский назвал живым веществом. Основными характеристиками этого живого вещества он назвал суммарную биомассу, химический состав и энергию.

Энергия живого вещества проявляется в способности всех живых организмов к размножению и распространению. Живым организмам для реакций жизнедеятельности необходимы вещество и энергия. Поэтому главным свойством биосферы является постоянный обмен между организмами и окружающей средой. Из нее живые организмы получают все необходимые вещества. В окружающую среду поступают и продукты обмена веществ. Эти процессы обеспечивают функционирование биосферы как целостной системы.

Замечание 1

В процессе своей деятельности продуценты накапливают солнечную световую энергию, затем превращают ее в энергию химических связей. Именно суммарная первичная продукция автотрофов определяет суммарную биомассу биосферы в целом.

Функции биосферы

Живое вещество биосферы выполняет несколько важных функций:

  1. Газовая функция состоит в том, что живые организмы способны влиять на газовый состав атмосферы, Мирового океана и почвы. Все аэробные организмы поглощают во время дыхания кислород, а выделяют углекислый газ. В процессе фотосинтеза растениями и некоторыми бактериями происходит поглощение углекислого газа и выделение кислорода.
  2. Окислительно-восстановительная функция заключается в том, что с помощью живых организмов происходят окислительно-восстановительные реакции в почве, воде, воздухе.
  3. Концентрационная функция состоит в том, что живые организмы поглощают определенные вещества из окружающей среды и постепенно накапливают их в своих организмах. Например, фораминиферы, моллюски, десятиногие раки накапливают в своих организмах соединения кальция и фосфора, бурые водоросли – йода.

Благодаря биоте биосферы осуществляется преобладающая часть химических превращений на планете. Отсюда суждение В.И. Вернадского об огромной преобразующей геологической роли живого вещества. На протяжении органической эволюции живые организмы тысячекратно (для разных круговоротов от 10 3 до 10 5) пропустили через себя, через свои органы, ткани, клетки, кровь всю атмосферу, весь объём Мирового океана, большую часть массы почв, огромную массу минеральных веществ. И не только пропустили, но и в соответствии со своими потребностями видоизменили земную среду.

Благодаря способности трансформировать солнечную энергию в энергию химических связей растения и другие организмы выполняют ряд фундаментальных биогеохимических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в смене восстановительной среды на окислительную в геохимической эволюции планеты и в формировании газового состава современной атмосферы. Растения строго контролируют концентрации О 2 и СО 2 , оптимальные для совокупности всех современных живых организмов.

Концентрационная функция. Пропускаячерез своётело большие объёмы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию (движение химических веществ) и концентрирование химических элементов и их соединений. Это относится к биосинтезу органики, образование коралловых островов, строительство раковин и скелетов, появление толщ осадочных известняков, месторождений, некоторых металлических руд, скопление некоторых железно – марганцевых конкреций, на дне океана т. д. Ранние этапы биологической эволюции проходили в водной среде. Организмы научились извлекать из разбавленного водного раствора необходимые для них вещества, многократно увеличивая их концентрацию в своём теле.

Окислительно – восстановительная функция живого вещества тесно связана с биогенной миграцией элементов и концентрированием веществ. Многие вещества в природе устойчивы и не подвергаются окислению при обычных условиях, например, молекулярный азот – один из важнейших биогенных элементов. Но живые клетки располагают настолько мощными катализаторами – ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может проходить в абиотической среде.

Информационная функция живого вещества биосферы. Именно с появлением первых примитивных живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мёртвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путём соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и перерабатывать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором. Суммарный запас генетической информации биоты оценивается в 10 15 бит. Общая мощность потока молекулярной информации, связанной с обменом веществ и энергии во всех клетках глобальной биоты. Достигает 10 36 бит/с (Горшков и др., 1996).


Составляющие биологического круговорота. Биологический круговорот осуществляется между всеми составляющими биосферы (т. е. между почвой, воздухом, водой, животными, микроорганизмами и т.д.). Он происходит при обязательном участии живых организмов.

Достигающее биосферы солнечное излучение несёт в себе энергию около 2,5*10 24 Дж в год. Только 0,3% её непосредственно преобразуется в процессе фотосинтеза в энергию химических связей органических веществ, т.е. вовлекается в биологический круговорот. А 0,1 – 0,2 % солнечной энергии, падающей на Землю, оказывается заключённой в чистой первичной продукции. Дальнейшая судьба этой энергии связана с передачей органического вещества пищи по каскадам трофических цепей.

Биологический круговорот условно можно разделить на взаимосвязанные составляющие: круговорот веществ и энергетический круговорот.

Введение

Биосфера (в современном понимании) - своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами. Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. Понятие «живое вещество» обозначает совокупность живых организмов биосферы. Область распространения включает нижнюю часть воздушной оболочки (атмосферы), всю водную оболочку (гидросферу), и верхнюю часть твёрдой оболочки (литосферы). Это понятие было введено В.И. Вернадским. Он отметил, что между косной, безжизненной частью биосферы, косными природными телами и живыми организмами, её населяющими идёт непрерывный обмен энергией. Живое вещество играет наиболее важную роль по сравнению с другими веществами биосферы, и выполняет рад важнейших функций.

Энергетическая функция

Энергетическая функция выполняется, прежде всего, растениями, которые в процессе фотосинтеза аккумулируют солнечную энергию в виде разнообразных органических соединений. Чтобы биосфера могла существовать и развиваться, ей необходима энергия. Собственных источников энергии она не имеет и может потреблять энергию только от внешних источников. Главным источником для биосферы является Солнце. По сравнению с Солнцем, энергетический вклад других поставщиков (внутреннее тепло Земли, энергия приливов, излучение космоса) в функционирование биосферы ничтожно мал (около 0,5% от всей энергии, поступающей в биосферу). Солнечный свет для биосферы является рассеянной лучистой энергией электромагнитной природы. Почти 99% этой энергии, поступившей в биосферу, поглощается атмосферой, гидросферой и литосферой, а также участвует в вызванных ею физических и химических процессах (движение воздуха и воды, выветривание и др.) Только около 1% накапливается на первичном звене ее поглощения и передается потребителям уже в концентрированном виде. По словам Вернадского, зеленые хлорофилльные организмы, зеленые растения, являются главным механизмом биосферы, который улавливает солнечный луч и создает фотосинтезом химические тела - своеобразные солнечные консервы, энергия которых в дальнейшем становится источником действенной химической энергии биосферы, а в значительной мере - всей земной коры. Без этого процесса накопления и передачи энергии живым веществом невозможно было бы развитие жизни на Земле и образование современной биосферы.

Каждый последующий этап развития жизни сопровождался все более интенсивным поглощением биосферой солнечной энергии. Одновременно нарастала энергоемкость жизнедеятельности организмов в изменяющейся природной среде, и всегда накопление и передачу энергии осуществляло живое вещество. Современная биосфера образовалась в результате длительной эволюции под влиянием совокупности космических, геофизических и геохимических факторов. Первоначальным источником всех процессов, протекавших на Земле, было Солнце, но главную роль в становлении и последующем развитии биосферы сыграл фотосинтез. Биологическая основа генезиса биосферы связана с появлением организмов, способных использовать внешний источник энергии, в данном случае энергию Солнца, для образования из простейших соединений органических веществ, необходимых для жизни.

Под фотосинтезом понимается превращение зелеными растениями и фотосинтезирующими микроорганизмами при участии энергии света и поглощающих свет пигментов (хлорофилл и др.) простейших соединений (воды, углекислого газа и минеральных элементов) в сложные органические вещества, необходимые для жизнедеятельности всех организмов. Процесс протекает следующим образом. Фотон солнечного света взаимодействует с молекулой хлорофилла, содержащегося в хлоропласте зеленого листа, в результате чего высвобождается электрон одного из ее атомов. Этот электрон, перемещаясь внутри хлоропласта, реагирует с молекулой АДФ, которая, получив достаточную дополнительную энергию, превращается в молекулу АТФ - вещества, являющегося энергоносителем. Возбужденная молекула АТФ в живой клетке, содержащей воду и диоксид углерода, способствует образованию молекул сахара и кислорода, а сама при этом утрачивает часть энергии и превращается вновь в молекулу АДФ.

В результате фотосинтеза растительность земного шара ежегодно усваивает около двухсот миллиардов тонн углекислого газа и выделяет в атмосферу примерно сто сорок пять миллиардов тонн свободного кислорода, при этом образуется более ста миллиардов тонн органического вещества. Если бы не жизнедеятельность растений, исключительно активные молекулы кислорода вступили бы в различные химические реакции, и свободный кислород исчез бы из атмосферы примерно за десять тысяч лет. К сожалению, варварское сокращение человеком массивов зеленого покрова планеты являет реальную угрозу уничтожения современной биосферы. В процессе фотосинтеза одновременно с накоплением органического вещества и продуцированием кислорода растения поглощают часть солнечной энергии и удерживают ее в биосфере. На фотосинтез используется около 1% солнечной энергии, падающей на Землю. Возможно, этот низкий показатель связан с малой концентрацией углекислого газа в атмосфере и гидросфере. Ежегодно фотосинтезирующие организмы суши и океана связывают около 3*1018 кДж солнечной энергии, что примерно в десять раз больше той энергии, которая используется человечеством.

В отличие от зеленых растений некоторые группы бактерий синтезируют органическое вещество за счет не солнечной энергии, а энергии, выделяющейся в процессе реакций окисления серных и азотных соединений. Этот процесс именуется хемосинтезом. В накоплении органического вещества в биосфере он, по сравнению с фотосинтезом, играет ничтожно малую роль. Внутри экосистемы энергия в виде пищи распределяется между животными. Синтезированные зелеными растениями и хемобактериями органические вещества (сахара, белки и др.), последовательно переходя от одних организмов к другим в процессе их питания, переносят заключенную в них энергию. Растения поедают растительноядные животные, которые в свою очередь становятся жертвами хищников и т. д. Этот последовательный и упорядоченный поток энергии является следствием энергетической функции живого вещества в биосфере.

Биосфера представляет собой многоуровневую систему, включающую подсистемы различной степени сложности. Границы биосферы определяются областью распространения организмов в атмосфере, гидросфере и литосфере (рис. 24.1). Верхняя граница биосферы проходит примерно на высоте 20 км. Таким образом, живые организмы расселены в тропосфере и в нижних слоях стратосферы. Лимитирующим фактором расселения в этой среде является нарастающая с высотой интенсивность ультрафиолетовой радиации. Практически все живое, проникающее выше озонового слоя атмосферы, погибает. В гидросферу биосфера проникает на всю глубину Мирового океана, что подтверждает обнаружение живых организмов и органических отложений до глубины 10-11 км. В литосфере область распространения жизни во многом определяет уровень проникновения воды в жидком состоянии - живые организмы обнаружены до глубины примерно 7,5 км.

Атмосфера. Эта оболочка состоит в основном из азота и кислорода. В меньших концентрациях она содержит углекислый газ и озон. Состояние атмосферы оказывает большое влияние на физические, химические и особенно биологические процессы на земной поверхности и в водной среде. Наибольшее значение для биологических процессов имеют кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего органического вещества, углекислый газ, расходуемый при фотосинтезе, а также озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Вне атмосферы существование живых организмов невозможно. Это видно на примере лишенной жизни Луны, у которой нет атмосферы. Исторически развитие атмосферы связано с геохимическими процессами, а также жизнедеятельностью организмов. Так, азот, углекислый газ, пары воды образовались в процессе эволюции планеты благодаря (в значительной мере) вулканической активности, а кислород - в результате фотосинтеза.

Гидросфера. Вода является важной составной частью всех компонентов биосферы и одним из необходимых факторов существования живых организмов. Основная ее часть (95%) заключена в Мировом океане, который занимает примерно 70% поверхности Земного шара. Общая масса океанических вод составляет свыше 1300 млн. км 3 . Около 24 млн. км 3 воды содержится в ледниках, причем 90% этого объема приходится на ледяной покров Антарктиды. Столько же воды содержится под землей. Поверхностные воды озер составляют приблизительно 0,18 млн. км 3 (из них половина соленые), а рек-0,002 млн. км 3 .

Количество воды в телах живых организмов достигает примерно 0,001 млн. км 3 . Из газов, растворенных в воде, наибольшее значение имеют кислород и углекислый газ. Количество кислорода в океанических водах изменяется в широких пределах в зависимости от температуры и присутствия живых организмов. Концентрация углекислого газа также варьирует, а общее количество его в океане в 60 раз превышает его содержание в атмосфере. Гидросфера формировалась в связи с развитием литосферы, выделившей за геологическую историю Земли значительный объем водяного пара и так называемых ювенильных (подземных магматических) вод.

Рис. 24.1. Область распространения организмов в биосфере:

1 -уровень озонового слоя, задерживающего жесткое ультрафиолетовое излучение, 2- граница снегов, 3- почва, 4- животные, обитающие в пещерах, 5- бактерии в нефтяных скважинах

Литосфера. Основная масса организмов, обитающих в пределах литосферы, сосредоточена в почвенном слое, глубина которого обычно не превышает нескольких метров. Почвы, будучи, по терминологии В.И. Вернадского, биокосным веществом, представлены минеральными веществами, образующимися при разрушении горных пород, и органическими веществами - продуктами жизнедеятельности организмов.

Живые организмы (живое вещество). В настоящее время описано около 300 тыс. видов растений и более 1,5 млн. видов животных. Из этого количества 93% представлено сухопутными, а 7% - водными видами животных. Суммарная биомасса организмов сухопутных видов образована на 99,2% зелеными растениями (2,4 10 12 т) и на 0,8% животными и микроорганизмами (0,2 10 11 т). В океане, напротив, на долю растений приходится 6,3% (0,2 10 9 т), а на долю животных и микроорганизмов - 93,7% (0,3 10 10 т) совокупной биомассы. Несмотря на то что океан покрывает немногим более 70% поверхности планеты, в нем содержится лишь 0,13% биомассы всех живых существ, обитающих на Земле.

Расчеты показывают, что растения составляют около 21% всех учтенных видов. Однако на их долю приходится более 99% биомассы, тогда как вклад животных в биомассу планеты (79% видов) составляет менее 1%. Среди животных 96% видов приходится на долю беспозвоночных и только 4% на долю позвоночных, среди которых млекопитающие составляют примерно 10%.

Приведенные соотношения иллюстрируют фундаментальную закономерность организации биосферы: в количественном отношении преобладают формы, достигшие в процессе эволюции относительно низких степеней морфофизиологического прогресса.

Живое вещество по массе составляет 0,01-0,02% от косного вещества биосферы, однако играет ведущую роль в биогеохимических процессах благодаря совершающемуся в живых организмах обмену веществ. Так как субстраты и энергию, используемые в обмене веществ, организмы черпают из окружающей среды, они преобразуют ее уже тем, что в процессе своего существования используют ее компоненты.

Ежегодная продукция живого вещества в биосфере составляет 232,5 млрд. т сухого органического вещества. За это же время в масштабе планеты в процессе фотосинтеза синтезируется 46 млрд. тонн органических углеродсодержащих веществ. Для этого требуется, чтобы 170 10 9 т С0 2 прореагировало с 68 10 9 т Н 2 0.

Таким образом, в результате фотосинтеза ежегодно образуется 115х х 10 9 т сухого органического вещества и 123 10 9 т 02. В течение года в процесс фотосинтеза вовлекаются также 6 10 9 т азота, 2 10 9 т фосфора и другие элементы, например калий, кальций, сера, железо. Приведенные цифры показывают, что живое вещество является наиболее активным компонентом биосферы. Оно производит гигантскую геохимическую работу, способствуя преобразованию других оболочек Земли в геологическом масштабе времени.

Биотический круговорот. Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами - потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов.

Важная роль в глобальном круговороте веществ принадлежит циркуляции воды между океаном, атмосферой и верхними слоями литосферы. Вода испаряется и воздушными течениями переносится на многие километры. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делая их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в океаны и моря. Подсчитано, что с поверхности Земли за 1 мин испаряется около 1 млрд. т Н 2 0 (на образование 1 г водяного пара необходимо 2,248 кДж). Энергия, затрачиваемая на испарение воды, возвращается в атмосферу (рис. 24.2). Циркуляция воды между Мировым океаном и сушей представляет собой важнейшее звено в поддержании жизни на Земле и основное условие взаимодействия растений и животных с неживой природой.

Рис. 24.2. Круговорот воды в биосфере

Под влиянием этого процесса происходит постепенное разрушение литосферы, перенос ее компонентов в глубины морей и океанов.

На создание органического вещества расходуется всего 0,1-0,2% солнечной энергии, достигающей поверхности планеты. Благодаря этой энергии осуществляется значительный объем работы по перемещению химических элементов.

В качестве примеров биотического круговорота рассмотрим круговороты углерода и азота в биосфере (рис. 24.3; 24.4). Круговорот углерода начинается с фиксации атмосферного диоксида углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углеводов используют сами растения для получения энергии, часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.

Круговорот азота также охватывает все области биосферы (рис. 24.4). Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль в этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращается в атмосферу.

Показателем масштаба биотического круговорота служат темпы оборота углекислого газа, кислорода и воды. Весь кислород атмосферы проходит через организмы примерно за 2 тыс. лет, углекислый газ - за 300 лет, а вода полностью разлагается и восстанавливается в биотическом круговороте за 2 млн. лет (рис. 24.5).

Рис. 24.3. Круговорот углерода в биосфере

Рис. 24.4. Круговорот азота в биосфере

Благодаря биотическому круговороту биосфере присущи определенные геохимические функции: газовая - биогенная миграция газов в результате фотосинтеза и азотфиксации; концентрационная - аккумуляция в своих телах живыми организмами химических элементов, рассеянных во внешней среде; окислительно-восстановительная - превращение веществ, содержащих атомы с переменной валентностью (например, Fе, Mn); биохимическая - процессы протекающие в живых организмах.

Стабильность биосферы. Биосфера представляет собой сложную экологическую систему, работающую в стационарном режиме. Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте,- продуцентов (автотрофы), потребителей (гетеротрофы) и деструкторов (минерализующие органические остатки) - взаимоуравновешиваются. То, что в биосфере поддерживается постоянство ее главных характеристик (гомеостаз), не исключает способности ее к эволюции.

Рис. 24.5. Темпы циркуляции веществ в биосфере