Конспект урока "теория систем массового обслуживания".

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивно­стью λ,. Интенсивность потока обслуживания равна μ, (т. е. в сред­нем непрерывно занятый канал будет выдавать μ обслуженных за­явок). Длительность обслуживания - случайная величина, подчи­ненная показательному закону распределения. Поток обслужива­нии является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 2


Рисунок 5.2 – Граф состояний одноканальной СМО с ожиданием (схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S0 - «канал свободен»;

S1 - «канал занят» (очереди нет);

S2 - «канал занят» (одна заявка стоит в очереди);

Sn - «канал занят» (п - 1 заявок стоит в очереди);

SN - «канал занят» (N - 1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

(10)


п - номер состояния.

Решение приведенной выше системы уравнений (10) для на­шей модели СМО имеет вид


(11)

(12)

Следует отметить, что выполнение условия стационарности

для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N - 1), а не соотношением между интенсивностями входного потока, т. е. не отношением λ/μ=ρ

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N - 1):

вероятность отказа в обслуживании заявки:

(13)

относительная пропускная способность системы:

(14)

абсолютная пропускная способность:

среднее число находящихся в системе заявок:

(16)

среднее время пребывания заявки в системе:

(17)

средняя продолжительность пребывания клиента (заявки) в очереди:

(18)

среднее число заявок (клиентов) в очереди (длина очереди):

(19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 2. Специализированный пост диагностики представ­ляет собой одноканальную СМО. Число стоянок для автомоби­лей, ожидающих проведения диагностики, ограниченно и равно 3[(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность λ = 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.



Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживаний автомобилей:

2. Приведенная интенсивность потока автомобилей определя­ется как отношение интенсивностей λ, и μ, т. е.

3. Вычислим финальные вероятности системы

4. Вероятность отказа в обслуживании автомобиля:

5. Относительная пропускная способность поста диагностики:

6. Абсолютная пропускная способность поста диагностики

(автомобиля в час).

7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

8. Среднее время пребывания автомобиля в системе:

9. Средняя продолжительность пребывания заявки в очереди на обслуживание:

10. Среднее число заявок в очереди (длина очереди):

Работу рассмотренного поста диагностики можно считать удов­летворительной, так как пост диагностики не обслуживает автомо­били в среднем в 15,8% случаев (Р отк = 0,158).

Перейдем теперь к рассмотрению одноканальной СМО с ожида­нием без ограничения на вместимость блока ожидания (т. е. N →∞). Остальные условия функционирования СМО остаются без изме­нений.

Стационарный режим функционирования данной СМО суще­ствует при t →∞ оо для любого n = 0, 1, 2, ... и когда λ < μ. Система алгебраических уравнений, описывающих работу СМО при t →∞ для любого n = 0, 1, 2, ... , имеет вид


(20)


Решение данной системы уравнений имеет вид

где ρ = λ/μ < 1.


Характеристики одноканальной СМО с ожиданием, без огра­ничения на длину очереди, следующие:

Среднее число находящихся в системе клиентов (заявок) на обслуживание:

(22)

средняя продолжительность пребывания клиента в системе:

(23)

среднее число клиентов в очереди на обслуживании:

(24)

средняя продолжительность пребывания клиента в очереди:

(25)

Пример 3. Вспомним о ситуации, рассмотренной в примере 2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслужива­ние автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероят­ностных характеристик:

вероятности состояний системы (поста диагностики);

Среднее число автомобилей, находящихся в системе (на обслу­живании и в очереди);

Среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

Среднее число автомобилей в очереди на обслуживании;

Среднюю продолжительность пребывания автомобиля в очереди.

1. Параметр потока обслуживания μ и приведенная интенсив­ность потока автомобилей ρ определены в примере 2:

μ= 0,952; ρ = 0,893.

2. Вычислим предельные вероятности системы по формулам

Р 0 = 1 - ρ = 1 - 0,893 = 0,107;

Р 1 = (1 - ρ) . ρ = (1 - 0,893)*0,893 = 0,096;

Р 2 = (1 - ρ) . ρ 2 = (1 - 0,893)*0,8932 = 0,085;

Р з = (1 - ρ) . ρ 3 = (1 - 0,893)*0,8933 = 0,076;

Р 4 = (1 - ρ) . ρ 4 = (1 - 0,893)* 0,8934 = 0,068;

Р 5 = (1 - ρ) . ρ 5 = (1 - 0,893)*0,8935 = 0,061 и т. д.

Следует отметить, что Р 0 определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаива­ет). В нашем примере она составляет 10,7%, так как Р 0 = 0,107.

3. Среднее число автомобилей, находящихся в системе (на об­служивании и в очереди):

4. Средняя продолжительность пребывания клиента в системе:

5. Среднее число автомобилей в очереди на обслуживание:

6. Средняя продолжительность пребывания автомобиля в очереди:

7. Относительная пропускная способность системы:

т. е. каждая заявка, пришедшая в систему, будет обслужена.

8. Абсолютная пропускная способность:

А = λ* q = 0,85 * 1 = 0,85.

Следует отметить, что предприятие, осуществляющее диагнос­тику автомобилей, прежде всего интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для сто­янки прибывающих автомобилей было равно трем (см. пример 2). Частота m возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

m=λ*P N

В нашем примере при N = 3 + 1 = 4 и ρ = 0,893

m=λ*P 0 *ρ 4 =0.85*0.248*0.8934=0.134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквива­лентно тому, что пост диагностики в среднем за смену (день) будет терять 12 * 0,134 = 1,6 автомобиля. Снятие ограничения на длину очереди позволяет увеличить ко­личество обслуженных клиентов в нашем при мере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что ре­шение относительно расширения площади для стоянки автомоби­лей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей кли­ентов при наличии всего трех мест для стоянки этих автомобилей.

4.4 Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания

В подавляющем большинстве случаев на практике системы мас­сового обслуживания являются многоканальными, и, следователь­но, модели с n обслуживающими каналами (где n > 1) представляют несомненный интерес.

Процесс массового обслуживания, описываемый данной моде­лью, характеризуется интенсивностью входного потока λ, при этом параллельно может обслуживаться не более n клиентов (заявок). Средняя продолжительность обслуживания одной заявки равняет­ся l/μ. Входной и выходной потоки являются пуассоновскими. Ре­жим функционирования того или иного обслуживающего канала не влияет на режим функционирования других обслуживающих ка­налов системы, причем длительность процедуры обслуживания каждым из каналов является случайной величиной, подчиненной экспоненциальному закону распределения. Конечная цель исполь­зования n параллельно включенных обслуживающих каналов за­ключается в повышении (по сравнению с одноканальной систе­мой) скорости обслуживания требований за счет обслуживания од­новременно n клиентов.

Граф состояний многоканальной системы массового обслужи­вания с отказами имеет вид, показанный на рис. 4.3.

Состояния данной СМО имеют следующую интерпретацию:

S 0 - все каналы свободны;

S 1 - занят один канал, остальные свободны;

……………………….

S k - заняты ровно k каналов, остальные свободны;

……………………….

S n - заняты все n каналов, заявка получает отказ в обслужива­нии.

Уравнения Колмогорова для вероятностей состояний системы Р 0 , …, P k ,…, Р n будут иметь следующий вид:

(26)

Начальные условия решения системы таковы:

P 0 (0)=1, P 1 (0)=P 2 (0)=…=P k (0)=…=P n (0)=0.

Стационарное решение системы имеет вид:

(27)

Формулы для вычисления вероятностей P k называются форму­лами Эрланга.

Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме:

Вероятность отказа:

(28)

так как заявка получает отказ, если приходит в момент, когда все n каналов заняты. Величина Р отк характеризует полноту обслужива­ния входящего потока;

Вероятность того, что заявка будет принята к обслуживанию (она же - относительная пропускная способность системы q) допол­няет Р отк до единицы:

(29)

Абсолютная пропускная способность

A=λ*q=λ*(1-P отк); (30)

Среднее число каналов, занятых обслуживанием следующее:

(31)

Оно характеризует степень загрузки системы.

Пример 4. Пусть n-канальная СМО представляет собой вы­числительный центр (ВЦ) с тремя (n = 3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач, поступаю­щих на ВЦ, имеет интенсивность λ = 1 задаче в час. Средняя про­должительность обслуживания t обсл = 1,8 час. Поток заявок на ре­шение задач и поток обслуживания этих заявок являются простей­шими.

Требуется вычислить финальные значения:

Вероятности состояний ВЦ;

Вероятности отказа в обслуживании заявки;

Относительной пропускной способности ВЦ;

Абсолютной пропускной способности ВЦ;

Среднего числа занятых ПЭВМ на ВЦ.

Определите, сколько дополнительно надо приобрести ПЭВМ, чтобы увеличить пропускную способность ВЦ в 2 раза.

1. Определим параметр μ потока обслуживании:

ρ=λ/μ=1/0.555=1.8

3. Предельные вероятности состояний найдем по формулам Эр-
ланга (27):

P 1 =1.8*0.186=0.334;

P 2 =1.62*0.186=0.301;

P 3 =0.97*0.186=0.180.

4. Вероятность отказа в обслуживании заявки

P отк =P 3 =0.180

5. Относительная пропускная способность ВЦ

q = 1 - P отк = 1 - 0.180 = 0,820.

6. Абсолютная пропускная способность ВЦ

А = λ q = 1 0,820 = 0,820.

7. Среднее число занятых каналов - ПЭВМ

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех - остальные полтора будут простаивать. Работу рассмотренного ВЦ вряд ли можно счи­тать удовлетворительной, так как центр не обслуживает заявки в среднем в 18% случаев (P 3 =0,180). Очевидно, что пропускную способность ВЦ при данных λ и μ можно увеличить только за счет увеличения числа ПЭВМ.

Определим, сколько нужно использовать ПЭВМ, чтобы сокра­тить число не обслуженных заявок, поступающих на ВЦ, в 10 раз, т.е. чтобы вероятность отказа в решении задач не превосходила 0,0180. Для этого используем формулу (28):

Составим следующую таблицу:

n
P 0 0,357 0,226 0,186 0,172 0,167 0,166
P отк 0,643 0,367 0,18 0,075 0,026 0,0078

Анализируя данные таблицы, следует отметить, что расшире­ние числа каналов ВЦ при данных значениях λ и μ до 6 единиц ПЭВМ позволит обеспечить удовлетворение заявок на решение за­дач на 99,22%, так как при п = 6 вероятность отказа в обслужива­нии (Р отк) составляет 0,0078.

4.5 Многоканальная система массового обслуживания с ожиданием

Процесс массового обслуживания при этом характери­зуется следующим: входной и выходной потоки являются пуассоновскими с интенсивностями λ и μ соответственно; параллельно обслуживаться могут не более С клиентов. Система имеет С кана­лов обслуживания. Средняя продолжительность обслуживания одного клиента равна

В установившемся режиме функционирование многоканальной СМО с ожиданием и неограниченной очередью может быть описа­но с помощью системы алгебраических уравнений:


(32)


Решение системы уравнений (32) имеет вид

(33) (34)


(35)


Решение будет действительным, если выполняется следующее условие:

Вероятностные характеристики функционирования в стационар­ном режиме многоканальной СМО с ожиданием и неограниченной оче­редью определяются по следующим формулам:

Вероятность того, что в системе находится n клиентов на обслу­живании, определяется по формулам (33) и (34);

Среднее число клиентов в очереди на обслуживание

(36)

Среднее число находящихся в системе клиентов (заявок на обслуживание и в очереди)

Средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди

Средняя продолжительность пребывания клиента в системе

Рассмотрим примеры многоканальной системы массового об­служивания с ожиданием.

Пример 5. Механическая мастерская завода с тремя постами (каналами) выполняет ремонт малой механизации. Поток неис­правных механизмов, прибывающих в мастерскую, - пуассоновский и имеет интенсивность λ= 2,5 механизма в сутки, среднее время ремонта одного механизма распределено по показательному закону и равно t = 0,5 сут. Предположим, что другой мастерской на заводе нет, и, значит, очередь механизмов перед мастерской мо­жет расти практически неограниченно.

Требуется вычислить следующие предельные значения вероят­ностных характеристик системы:

Вероятности состояний системы;

Среднее число заявок в очереди на обслуживание;

Среднее число находящихся в системе заявок;

Среднюю продолжительность пребывания заявки в очереди;

Среднюю продолжительность пребывания заявки в системе.

1. Определим параметр потока обслуживаний

μ = 1/t=1/0,5 = 2.

2. Приведенная интенсивность потока заявок

ρ = λ/μ = 2,5/2,0 = 1,25,

при этом λ/μ *с= 2,5/2 * 3 = 0,41.

Поскольку λ/μ * с <1 , то очередь не растет безгранично и в сис­теме наступает предельный стационарный режим работы.

3. Вычислим вероятности состояний системы:

4. Вероятность отсутствия очереди у мастерской

5. Среднее число заявок в очереди на обслуживание

6. Среднее число находящихся в системе заявок

L s = L q + ρ = 0,111 + 1,25 = 1,361.

7. Средняя продолжительность пребывания механизма в очереди на обслуживание

8. Средняя продолжительность пребывания механизма в мас­терской (в системе)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

3. Контрольная задача

1. Одноканальная СМО с отказами

Простейшей из всех задач теории массового обслуживания является модель одноканальной СМО с отказами (потерями).

При этом система массового обслуживания состоит только из одного канала (n = 1) и на нее поступает пуассоновский поток заявок с интенсивностью, зависящей, в общем случае, от времени:

Заявка, заставшая канал занятым, получает отказ и покидает систему. Обслуживание заявки продолжается в течение случайного времени, распределенного по показательному закону с параметром:

Из этого следует, что «поток обслуживания» -- простейший, с интенсивностьюЧтобы представить себе этот поток, вообразим один непрерывно занятый канал, который будет выдавать обслуженные заявки потоком с интенсивностью

Требуется найти:

1) абсолютную пропускную способность СМО (А);

2) относительную пропускную способность СМО (q).

Рассмотрим единственный канал обслуживания как физическую систему S, которая может находиться в одном из двух состояний:-- свободен,-- занят.

ГСП системы показан на рис. 5.6, а.

Рис. 5.6 ГСП для одноканальной СМО с отказами (а); график решения уравнения (5.38) (б)

Из состояниявсистему, очевидно, переводит поток заявок с интенсивностью; изв-- «поток обслуживания» с интенсивностью.

Вероятности состояний: и. Очевидно, для любого момента t:

Составим дифференциальные уравнения Колмогорова для вероятностей состояний согласно правилу, данному выше:

Из двух уравнений (5.37) одно является лишним, так каки связаны соотношением (5.36). Учитывая это, отбросим второе уравнение, а в первое подставим вместовыражение:

Поскольку в начальный момент канал свободен, уравнение следует решать при начальных условиях:= 1,=0.

Линейное дифференциальное уравнение (5.38) с одной неизвестной функциейлегко может быть решено не только для простейшего потока заявок, но и для случая, когда интенсивность этого потока со временем меняется.

Для первого случая решение есть:

Зависимость величиныот времени имеет вид, изображенный на рис. 5.6, б. В начальный момент (при t = 0) канал заведомо свободен ((0) = 1). С увеличением t вероятностьуменьшается и в пределе (при) равна. Величина, дополняющаядо единицы, изменяется так, как показано на том же рисунке.

Нетрудно убедиться, что для одноканальной СМО с отказами вероятностьесть не что иное, как относительная пропускная способность q. Действительно,есть вероятность того, что в момент t канал свободен, или вероятность того, что заявка, пришедшая в момент t, будет обслужена. Следовательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно

В пределе, при, когда процесс обслуживания уже установится, предельное значение относительной пропускной способности будет равно:

Зная относительную пропускную способность q, легко найти абсолютную А. Они связаны очевидным соотношением:

В пределе, при, абсолютная пропускная способность тоже установится и будет равна

Зная относительную пропускную способность системы q (вероятность того, что пришедшая в момент t заявка будет обслужена), легко найти вероятность отказа:

или среднюю часть необслуженных заявок среди поданных. При

2. Многоканальная СМО с отказами

Рассмотрим n-канальную СМО с отказами. Будем нумеровать состояния системы по числу занятых каналов (или, что в данном случае то же, по числу заявок, находящихся в системе или связанных с системой). Состояния системы:

Все каналы свободны;

Занят ровно один канал, остальные свободны;

Заняты ровно к каналов, остальные свободны;

Заняты все п каналов.

ГСП СМО представлен на рис. 5.7. Около стрелок поставлены интенсивности соответствующих потоков событий. По стрелкам слева направо систему переводит один и тот же поток -- поток заявок с интенсивностью. Если система находится в состоянии(занято к каналов) и пришла новая заявка, то система переходит в состояние

Рис. 5.7 ГСП для многоканальной СМО с отказами

Определим интенсивности потоков событий, переводящих систему по стрелкам справа налево. Пусть система находится в состоянии(занят один канал). Тогда, как только закончится обслуживание заявки, занимающей этот канал, система перейдет в; значит, поток событий, переводящий систему по стрелке, имеет интенсивность. Очевидно, если обслуживанием занято два канала, а не один, поток обслуживания, переводящий систему по стрелкебудет вдвое интенсивнее; если занято k каналов -- в к раз интенсивнее. Соответствующие интенсивности указаны у стрелок, ведущих справа налево.

Из рис. 5.7 видно, что процесс, протекающий в СМО, представляет собой частный случай процесса размножения и гибели, рассмотренного выше.

Пользуясь общими правилами, можно составить уравнения Колмогорова для вероятностей состояний:

Уравнения (5.39) называют уравнениями Эрланга. Поскольку при t = 0 система свободна, начальными условиями для их решения являются:

Интегрирование системы уравнений (5.39) в аналитическом виде довольно сложно; на практике такие системы дифференциальных уравнений обычно решаются численно и такое решение дает все вероятности состояний как функции времени.

Наибольший интерес представляют предельные вероятности состоянийхарактеризующие установившийся режим СМО (при). Для нахождения предельных вероятностей воспользуемся ранее полученными соотношениями (5.32)--(5.34), полученными для модели размножения и гибели. Согласно этим соотношениям,

В этих формулах интенсивность потока заявоки интенсивность потока обслуживании (для одного канала)не фигурируют по отдельности, а входят только своим отношением. Это отношение обозначается:

и называется приведенной интенсивностью потока заявок. Величинапредставляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом этого обозначения, соотношения (5.40) принимают вид:

Соотношения (5.41) называются формулами Эрланга. Они выражают предельные вероятности всех состояний системы в зависимости от параметрови n.

Имея вероятности состоянийможно найти характеристики эффективности СМО: относительную пропускную способность q, абсолютную пропускную способность А и вероятность отказа.

Вероятность отказа. Заявка получает отказ, если приходит в момент, когда все и каналов заняты. Вероятность этого равна

Относительная пропускная способность. Вероятность того, что заявка будет принята к обслуживанию (относительная пропускная способность а), дополняетдо единицы:

Абсолютная пропускная способность:

Среднее число заявок в системе. Одной из важных характеристик СМО с отказами является среднее число занятых каналов (в данном случае оно совпадает со средним числом заявок, находящихся в системе). Обозначим это среднее число. Величинуможно вычислить через вероятности по формуле

как математическое ожидание дискретной случайной величины, однако проще выразить среднее число занятых каналов через абсолютную пропускную способность А, которая уже известна. Действительно, А есть не что иное, как среднее число заявок, обслуживаемых в единицу времени; один занятый канал обслуживает в среднем за единицу временизаявок; среднее число занятых каналов получится делением А на:

или, переходя к обозначению,

пропускной вероятность максимизация доход

Контрольная задача 3. Игра с природой.

Швейная фабрика выпускает детские платья и костюмы, сбыт которых зависит от состояния погоды.

Задача заключается в максимизации средней величины дохода от реализации выпущенной продукции, учитывая капризы погоды.

1) AC:1910*(13-6)+590*(44-23)=13370+12390=25760

2) AD:590*(13-6)+880*(44-23)-(1910-590)*6=(22610-1320)*6=127740

3) BC:590*(13-6)+880*(44-23)-(880-590)*23=(22610-290)*23=513360

4) BD:590*(13-6)+880*(44-23)=4130+18480=22610

Доход при теплой и при холодной погоде

25760*x+127740*(1-x)=513360*x+22610*(1-x)

25760*x+127740-127740*x=513360*x+22610-22610*x

25760*x-127740-513360*x+22610*x=22610-127740=0

592730*x=-105130/*(-1)

Рассчитаем ассортимент фабрики:

(1910+590)*0,177+(880+590)*0,823=(1910*0,177+590*0,823)+(880*0,177+590*0,823)=(338,07+485,57)+(155,76+485,57)=824платьев+641костюмов

Рассчитаем доход:

1) При теплой погоде

25760*0,177+127740*0,823=4559,52+105130,02=109689,54

2) При холодной погоде

513360*0,177+22610*0,823=90864,72+18608,03=109472,75

Ответ: 824 платьев и 641 костюмов, доход равен 109689,54 д.ед.

Список используемой литературы

1. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем. Учебное пособие. М., Финансы и статистика, 2005.

2. Глухов В.В. Математические методы и модели для менеджмента: учебное пособие. СПБ; М.; Краснодар: Лань, 2005.

3. Грицюк С.Н. Математические методы и модели в экономике: учебник. Ростов н/Д: Феникс, 2007.

4. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник. М., Изд-во «Дело и сервис», 2004.

5. Исследование операций в экономике. Учебное пособие для вузов/Под ред. проф. Н.Ш. Кремера. М., ЮНИТИ, 2005.

Размещено на Allbest.ru

...

Подобные документы

    Моделирование процесса массового обслуживания. Разнотипные каналы массового обслуживания. Решение одноканальной модели массового обслуживания с отказами. Плотность распределения длительностей обслуживания. Определение абсолютной пропускной способности.

    контрольная работа , добавлен 15.03.2016

    Понятие случайного процесса. Задачи теории массового обслуживания. Классификация систем массового обслуживания (СМО). Вероятностная математическая модель. Влияние случайных факторов на поведение объекта. Одноканальная и многоканальная СМО с ожиданием.

    курсовая работа , добавлен 25.09.2014

    Общие понятия теории массового обслуживания. Особенности моделирования систем массового обслуживания. Графы состояний СМО, уравнения, их описывающие. Общая характеристика разновидностей моделей. Анализ системы массового обслуживания супермаркета.

    курсовая работа , добавлен 17.11.2009

    Понятие и критерии оценивания системы массового обслуживания, определение ее типа, всех возможных состояний. Построение размеченного графа состояний. Параметры, характеризующие ее работу, интерпретация полученных характеристик, эффективность работы.

    контрольная работа , добавлен 01.11.2010

    Построение модели многоканальной системы массового обслуживания с ожиданием, а также использованием блоков библиотеки SimEvents. Вероятностные характеристики аудиторской фирмы как системы массового обслуживания, работающей в стационарном режиме.

    лабораторная работа , добавлен 20.05.2013

    Функциональные характеристики системы массового обслуживания в сфере автомобильного транспорта, ее структура и основные элементы. Количественные показатели качества функционирования системы массового обслуживания, порядок и главные этапы их определения.

    лабораторная работа , добавлен 11.03.2011

    Изучение теоретических аспектов эффективного построения и функционирования системы массового обслуживания, ее основные элементы, классификация, характеристика и эффективность функционирования. Моделирование системы массового обслуживания на языке GPSS.

    курсовая работа , добавлен 24.09.2010

    Решение системы дифференциальных уравнений методом Рунге-Кутта. Исследованы возможности применения имитационного моделирования для исследования систем массового обслуживания. Результаты моделирования базового варианта системы массового обслуживания.

    лабораторная работа , добавлен 21.07.2012

    Элементы теории массового обслуживания. Математическое моделирование систем массового обслуживания, их классификация. Имитационное моделирование систем массового обслуживания. Практическое применение теории, решение задачи математическими методами.

    курсовая работа , добавлен 04.05.2011

    Система массового обслуживания типа M/M/1, ее компоненты. Коэффициент использования обслуживающего устройства. Обозначение M/D/1 для системы массового обслуживания. Параметры и результаты моделирования систем. Среднее время ожидания заявки в очереди.

Тема. Теория систем массового обслуживания.

Каждая СМО состоит из какого–то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого–то потока заявок (требований), поступающих в какие-то случайные моменты времени.

Классификация СМО по способу обработки входного потока заявок.

Системы массового обслуживания

С отказами

(без очереди)

С очередью

Неограниченная очередь

Ограниченная очередь

С приоритетом

В порядке поступления

Относительный приоритет

Абсолютный приоритет

По времени обслуживания

По длине очереди

Классификация по способу функционирования:

    открытыми, т.е. поток заявок не зависит от внутреннего состояния СМО;

    закрытыми, т.е. входной поток зависит от состояния СМО (один ремонтный рабочий обслуживает все каналы по мере их выхода из строя).

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди. Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

- все каналы свободны;

- занят один канал, остальные свободны;

- заняты -каналов, остальные нет;

- заняты все -каналов, свободных нет;

есть очередь:

- заняты все n-каналов; одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок в очереди;

- заняты все n-каналов, r-заявок в очереди.

ГСП приведен на рис. 9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 9. Многоканальная СМО с ожиданием

Вероятность отказа.

(29)

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

(30)

Среднее число занятых каналов.

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

(31)

где .

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (23), (24) - (26)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди.

(32)

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди только множителем , т. е.

.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО .

Системы с неограниченной длиной очереди. Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более m-заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятность отказа

Среднее число заявок в очереди получим при из (31):

,

а среднее время ожидания - из (32): .

Среднее число заявок .

Пример 2. Автозаправочная станция с двумя колонками (n = 2) обслуживает поток машин с интенсивностью =0,8 (машин в минуту). Среднее время обслуживания одной машины:

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом m-заявок, одновременно находящихся в очереди). В такой СМО заявка, разраставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Пуассоновский «поток уходов» с интенсивностью:

Если этот поток пуассоновский, то процесс, протекающий в СМО, будет марковским. Найдем для него вероятности состояний. Нумерация состояний системы связывается с числом заявок в системе - как обслуживаемых, так и стоящих в очереди:

нет очереди:

- все каналы свободны;

- занят один канал;

- заняты два канала;

- заняты все n-каналов;

есть очередь:

- заняты все n-каналов, одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 10.

Рис. 10. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживания всех n-каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят r-заявок, то суммарная интенсивность потока уходов будет равна .

Среднее число заявок в очереди: (35)

На каждую из этих заявок действует «поток уходов» с интенсивностью . Значит, из среднего числа -заявок в очереди в среднем будет уходить, не дождавшись обслуживания, -заявок в единицу времени и всего в единицу времени в среднем будет обслуживаться -заявок. Относительная пропускная способность СМО будет составлять:

Среднее число занятых каналов по-прежнему получаем, деля абсолютную пропускную способность А на Замкнутые СМО

До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми. В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми. Поликлиника, обслуживающая данную территорию, бригада рабочих, закрепленная за группой станков, являются примерами замкнутых систем.

В замкнутой СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве требования на обслуживание, считается, что оно находится в блоке задержки. В момент реализации оно поступает в саму систему. Например, рабочие обслуживают группу станков. Каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта - в самой системе. Каждый рабочий является каналом обслуживания. = =P 1 + 2 P 2 +…+(n- 1 )P n- 1 +n( 1 -P На вход трехканальной СМО с отказами поступает поток заявок с интенсивностью =4 заявки в минуту, время обслуживания заявки одним каналом t обсл =1/μ =0,5 мин. Выгодно ли с точки зрения пропускной способности СМО заставить все три канала обслуживать заявки сразу, причем среднее время обслуживания уменьшается втрое? Как это скажется на среднем времени пребывания заявки в СМО?

Пример 2 . /μ=2, ρ/ n =2/3<1.

Задача 3:

Два рабочих обслуживают группу из четырех станков. Остановки работающего станка происходят в среднем через 30 мин. Среднее время наладки составляет 15 мин. Время работы и время наладки распределено по экспоненциальному закону.

Найдите среднюю долю свободного времени для каждого рабочего и среднее время работы станка.

Найдите те же характеристики для системы, в которой:

а) за каждым рабочим закреплены два станка;

б) два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью;

в) единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью l . Интенсивность потока обслуживания равна m (т. е. в среднем непрерывно занятый канал будет выдавать m обслуженных заявок). Длительность обслуживания - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 5.2.

Рис. 5.2. Граф состояний одноканальной СМО с ожиданием
(схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S 0 –­­ «канал свободен»;

S 1 ­–­­­ «канал занят» (очереди нет);

S 2 – «канал занят» (одна заявка стоит в очереди);

S k – «канал занят» (k-1 заявокстоит в очереди);

S m +1 – «канал занят» (m заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

Пользуясь уравнениями для процесса гибели и размножения получим:

(5.10)

где – приведенная интенсивность (плотность) потока;

Тогда вероятность что занят 1 канал и k-1 мест в очереди:

Следует отметить, что выполнение условия стационарности < 1 для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превышать m ), а не соотношением между интенсивностями входного потока, т. е. не отношением .

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной m :

вероятность отказа в обслуживании заявки;

; (5.11)

относительная пропускная способность системы:

; (5.12)

абсолютная пропускная способность:

А = ql ; (5.13)

среднее число заявок, находящихся в очереди:

; (5.14)

среднее число заявок, находящихся под обслуживанием:

(5.15)

среднее число заявок, находящихся в системе(связанных с СМО):

среднее время пребывания заявки в системе:

Т сист. = Т ож. + t об ; (5.17)

средняя продолжительность пребывания клиента (заявки) в очереди:


. (5.18)

Если имеется неограниченное число мест ожидания в очереди m , то вышеуказанные формулы справедливы только при ρ < 1, так как при ρ 1 нет установившегося режима (очередь неограниченно растет) и при q=1, A=λq=λ .

Рассмотрим пример одноканальной СМО с ожиданием.

Пример. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность l = 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

Решение.

Интенсивность обслуживания автомобилей:

(авто/час)

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей l и m, т. е.

Вычислим предельные вероятности системы:

Вероятность отказа в обслуживании автомобиля:

P отк = P 4 = r 4 ×P 0 » 0,158 .

Значит 15,8% автомобилей получат отказ в обслуживании так как не будет свободных постов и мест в очереди.

Относительная пропускная способность поста диагностики:

q = 1 - P отк = 1 - 0,158 = 0,842 .

Это означает что обслуживается в среднем 82,4% автомобилей.

Абсолютная пропускная способность поста диагностики

А = lq = 0,85 × 0,842 = 0,716 (автомобиля в час).

Среднее число автомобилей, находящихся в системе – среднее число заявок, находящихся в очереди плюс среднее число заявок, находящихся под обслуживанием:

Среднее время пребывания автомобиля в системе складывается из среднего времени ожидания в очереди и продолжительности обслуживания (если заявка принята к обслуживанию):

Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обслуживает автомобили в среднем в 15,8% случаев (Р отк = 0,158).

Задача 1. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой). Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно (m = 6). Если в очереди уже находится 6 машин, очередная машина, прибывшая к станции, в очередь не становится, а проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность λ = 0,95 (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин. Определить:

· вероятность отказа;

· относительную и абсолютную пропускную способности СМО;

· среднее число машин, ожидающих заправки;

· среднее число машин, находящихся на АЗС (включая и обслуживаемую);

· среднее время ожидания машины в очереди;

· среднее время пребывания машины на АЗС (включая обслуживание).

· доход АЗС за 10 часов при стоимости литра бензина равной 20 руб. и среднем объеме одной заправки автомобиля равной 7,5 литров.

Задача 2. Вспомним о ситуации, рассмотренной в задаче 1, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслуживание автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероятностных характеристик:

· вероятности состояний системы (поста диагностики);

· среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

· среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

· среднее число автомобилей в очереди на обслуживании;

· среднюю продолжительность пребывания автомобиля в очереди.

Задача 3. На железнодорожную сортировочную горку прибывают составы с интенсивностью λ = 2 (состава в час). Среднее время, в течение которого горка обрабатывает состав, равно 0,4 часа. Составы, прибывшие в момент, когда горка занята, становятся в очередь и ожидают в парке прибытия, где имеются три запасных пути, на каждом из которых может ожидать один состав. Состав, прибывший в момент, в очередь на внешний путь. Все потоки событий – простейшие. Найти:

· среднее число составов, ожидающих очереди (как в парке прибытия, так и вне его);

· среднее время ожидания состава в парке прибытия и на внешних путях;

· среднее время нахождения состава на сортировочной станции (включая ожидание и обслуживание);

· вероятность того, что прибывший состав займет место на внешних путях.