Линейный и множественный коэффициенты корреляции. Сущность и экономическая интерпретация

Коэффициент корреляции - это мера линейной зависимости двух случайных величин в теории вероятностей и статистике. Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными. В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором - также и её направление.

Случайная величина в теории вероятности

Коэффициент корреляции - это статистический показатель, показывающий, насколько связаны между собой колебания значений двух других показателей. Например, насколько движение доходности ПИФа связано, перекликается (коррелирует) с движением индекса, выбранного для расчета коэффициента бета для этого ПИФа. Чем ближе значение коэффициента корреляции к 1, тем больше коррелируют ПИФ и индекс, а значит коэффициент бета и, следовательно, коэффициент альфа можно принимать к рассмотрению. Если значение этого коэффициента корреляции меньше 0,75, то указанные показатели бессмысленны.


Круговорот случайных величин

Корреляционный анализ занимается степенью связи между двумя случайными величинами Х и Y.

Корреляционный анализ экспериментальных данных для двух случайных величин заключает в себе следующие основные приемы:
1. Вычисление выборочных коэффициентов корреляции.
2. Составление корреляционной таблицы.
3. Проверка статистической гипотезы значимости связи.

ОПРЕДЕЛЕНИЕ. Корреляционная зависимость между случайными величинами Х и Y называется линейной корреляцией, если обе функции регрессии f(x) и φ(x) являются линейными. В этом случае обе линии регрессии являются прямыми; они называется прямыми регрессии.

Для достаточно полного описания особенностей корреляционной зависимости между величинами недостаточно определить форму этой зависимости и в случае линейной зависимости оценить ее силу по величине коэффициента регрессии. Например, ясно, что корреляционная зависимость возраста Y учеников средней школы от года Х их обучения в школе является, как правило, более тесной, чем аналогичная зависимость возраста студентов высшего учебного заведения от года обучения, поскольку среди студентов одного и того же года обучения в вузе обычно наблюдается больший разброс в возраcте, чем у школьников одного и того же класса.

Для оценки тесноты линейных корреляционных зависимостей между величинами Х и Y по результатам выборочных наблюдений вводится понятие выборочного коэффициента линейной корреляции, определяемого формулой:



где σ X и σ Y выборочные средние квадратические отклонения величин Х и Y, которые вычисляются по формулам:

Следует отметить, что основной смысл выборочного коэффициента линейной корреляции r B состоит в том, что он представляет собой эмпирическую (т.е. найденную по результатам наблюдений над величинами Х и Y) оценку соответствующего генерального коэффициента линейной корреляции r: r=r B (9)

Принимая во внимание формулы:

видим, что выборочное уравнение линейной регрессии Y на Х имеет вид:

(10)

где . То же можно сказать о выборочном уравнений линейной регрессии Х на Y:

(11)

Основные свойства выборочного коэффициента линейной корреляции:

1. Коэффициент корреляции двух величин, не связанных линейной корреляционной зависимостью, равен нулю.
2. Коэффициент корреляции двух величин, связанных линейной корреляционной зависимостью, равен 1 в случае возрастающей зависимости и -1 в случае убывающей зависимости.
3. Абсолютная величина коэффициента корреляции двух величин, связанных линейной корреляционной зависимостью, удовлетворяет неравенству 0<|r|<1. При этом коэффициент корреляции положителен, если корреляционная зависимость возрастающая, и отрицателен, если корреляционная зависимость убывающая.
4. Чем ближе |r| к 1, тем теснее прямолинейная корреляция между величинами Y, X.

По своему характеру корреляционная связь может быть прямой и обратной, а по силе – сильной, средней, слабой. Кроме того, связь может отсутствовать или быть полной.

Сила и характер связи между параметрами

Пример 4. Изучалась зависимость между двумя величинами Y и Х. Результаты наблюдений приведены в таблице в виде двумерной выборки объема 11:



X
Y

Требуется:
1) Вычислить выборочный коэффициент корреляции;
2) Оценить характер и силу корреляционной зависимости;
3) Написать уравнение линейной регрессии Y на Х.

Решение. По известным формулам:

Отсюда, по (7) и (8):

Таким образом, следует сделать вывод, что рассматриваемая корреляционная зависимость между величинами Х и Y является по характеру – обратной, по силе – средней.

3) Уравнение линейной регрессии Y на Х:

Пример 5. Изучалась зависимость между качеством Y (%) и количеством Х (шт). Результаты наблюдений приведены в виде корреляционной таблицы:

Y\X n y
90
n x

Требуется вычислить выборочный коэффициент линейной корреляции зависимости Y от Х.

Решение. Для упрощения вычислений перейдем к новым переменным – условным вариантам (u i , v i), воспользовавшись формулами (*) (§3) при h 1 =4, h 2 =5, x 0 =26, y 0 =80. Для удобства перепишем данную таблицу в новых обозначениях:

u\v -2 -1 n v
-2
-1
n u

Имеем при x i =u i и y j =v j:

Таким образом:

Отсюда,

Вывод: Корреляционная зависимость между величинами Х и Y - прямая и сильная.

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной и совокупностью других рассматриваемых переменных.

Особое значение имеет расчет множественного коэффициента корреляции результативного признака y с факторными x1, x2,…, xm, формула для определения которого в общем случае имеет вид

где ∆r – определитель корреляционной матрицы; ∆11 – алгебраическое дополнение элемента ryy корреляционной матрицы.

Если рассматриваются лишь два факторных признака, то для вычисления множественного коэффициента корреляции можно использовать следующую формулу:

Построение множественного коэффициента корреляции целесообразно только в том случае, когда частные коэффициенты корреляции оказались значимыми, и связь между результативным признаком и факторами, включенными в модель, действительно существует.

Различные экономические явления как на микро-, так и на макроуровне не являются независимыми, а связаны между собой (цена товара и спрос на него, объём производства и прибыль фирмы и.т.д.).

Эта зависимость может быть строго функциональной (детермированной) и статистической.

Зависимость между и
называетсяфункциональной, когда каждому значению одного признака соответствует одно единственное значение другого признака. (Примером такой однозначной зависимости может служить зависимость площади круга от радиуса).

В реальной действительности чаще встречается иная связь между явлениями, когда каждому значению одного признака могут соответствовать несколько значений другого (например, связь между возрастом детей и их ростом).

Форма связи, при которой один или несколько взаимосвязанных показателей (факторов) оказывают влияние на другой показатель (результат) не однозначно, а с определенной долей вероятности, называется статистической . В частности, если при изменении одной из величин изменяется среднее значение другой, то в этом случае статистическую зависимость называют корреляционной .

В зависимости от числа факторов, включаемых в модель, различают парную корреляцию (связь двух переменных) и множественную (зависимость результата от нескольких факторов).

Корреляционный анализ состоит в определении направления, формы и степени связи (тесноты) между двумя (несколькими) случайными признаками
и.

По направлению корреляция бывает положительной (прямой) , если при увеличении значений одной переменной увеличивается значение другой, и отрицательной (обратной) , если при увеличении значений одной переменной, уменьшается значение другой.

По форме корреляционная связь может быть линейной (прямолинейной) , когда изменение значений одного признака приводит к равномерному изменению другого (математически описывается уравнением прямой
), икриволинейной , когда изменение значений одного признака приводит к неодинаковым изменениям другого (математически она описывается уравнениями кривых линий, например гиперболы
, параболы
и т.д.).

Простейшей формой зависимости между переменными является линейная зависимость. И проверка наличия такой зависимости, оценивание её индикаторов и параметров является одним из важнейших направлений эконометрики.

Существуют специальные статистические методы и, соответственно, показатели, значения которых определённым образом свидетельствуют о наличии или отсутствии линейной связи между переменными.

3.1. Коэффициент линейной корреляции

Наиболее простым, приближенным способом выявления корреляционной связи является графический .

При небольшом объеме выборки экспериментальные данные представляют в виде двух рядов связанных между собой значений и. Если каждую пару
представить точкой на плоскости
, то получится так называемоекорреляционное поле (рис.1).

Если корреляционное поле представляет собой эллипс, ось которого расположена слева направо и снизу вверх (рис.1в), то можно полагать, что между признаками существует линейная положительная связь.

Если корреляционное поле вытянуто вдоль оси слева направо и сверху вниз (рис.1г), то можно полагать наличие линейной отрицательной связи.

В случае же если точки наблюдений располагаются на плоскости хаотично, т.е корреляционное поле образует круг (рис.1а), то это свидетельствует об отсутствии связи между признаками.

На рис.1б представлена строгая линейная функциональная связь.

Под теснотой связи между двумя величинами понимают степень сопряженности между ними, которая обнаруживается с изменением изучаемых величин. Если каждому заданному значению
соответствуют близкие друг другу значения, то связь считается тесной (сильной); если же значениясильно разбросаны, то связь считается менее тесной. При тесной корреляционной связи корреляционное поле представляет собой более или менее сжатый эллипс.

Количественным критерием направления и тесноты линейной связи является коэффициент линейной корреляции .

Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции. Онвычисляется по формуле:

где , текущие значения признаков
и;и средние арифметические значения признаков;
- среднее арифметическое произведений вариант,
и
 средние квадратические отклонения этих признаков;  объём выборки.

Для вычисления коэффициента корреляции достаточно принять предположение о линейной связи между случайными признаками. Тогда вычисленный коэффициент корреляции и будет мерой этой линейной связи.

Коэффициент линейной корреляции принимает значения от −1 в случае строгой линейной отрицательной связи, до +1 в случае строгой линейной положительной связи (т.е.
). Близость коэффициента корреляции к 0 свидетельствует об отсутствиилинейной связи между признаками, но не об отсутствии связи между ними вообще.

Коэффициенту корреляции можно дать наглядную графическую интерпретацию.

Если
, то между признаками существует линейная функциональная зависимость вида
, что означаетполную корреляцию признаков. При
, прямая имеет положительный наклон по отношению к оси
, при
 отрицательный (рис. 1б).

Если
, точки
находятся в области ограниченной линией, напоминающей эллипс. Чем ближе коэффициент корреляции к
, тем уже эллипс и тем теснее точки сосредоточены вблизи прямой линии. При
говорят оположительной корреляции . В этом случае значения имеют тенденцию к возрастанию с увеличением(рис.1в). При
говорят оботрицательной корреляции ; значения имеют тенденцию к уменьшению с ростом(рис.1г).

Если
, то точки
располагаются в области, ограниченной окружностью. Это означает, что между случайными признаками
иотсутствует корреляция, и такие признаки называютсянекоррелированными (рис.1а).

При оценке тесноты связи можно использовать следующую условную таблицу:

Теснота связи

Величина коэффициента корреляции при наличии

прямой связи (+)

обратной связи (−)

Связь отсутствует

Связь слабая

Связь умеренная

Связь сильная

Полная функциональная

Заметим, что в числителе формулы для выборочного коэффициента линейной корреляции величин
ис тоит ихпоказатель ковариации :

Этот показатель, как и коэффициент корреляции характеризует степень линейной связи величин
и. Если он больше нуля, то связь между величинами положительная, если меньше нуля, то связь – отрицательная, равен нулю – линейная связь отсутствует.

В отличие от коэффициента корреляции показатель ковариации нормирован – он имеет размерность, и его величина зависит от единиц измерения
и. В статистическом анализе показатель ковариации обычно используется, как промежуточный элемент расчёта коэффициента линейной корреляции. Т.о. формула расчёта выборочного коэффициента корреляции приобретает вид:

Важнейшей целью статистики является изучение объективно существующих связей между явлениями. В ходе статистического исследования этих связей необходимо выявить причинно-следственные зависимости между показателями, т.е. насколько изменение одних показателей зависит от изменения других показателей.

Существует две категории зависимостей (функциональная и корреляционная) и две группы признаков (признаки-факторы и результативные признаки). В отличие от функциональной связи, где существует полное соответствие между факторными и результативными признаками, в корреляционной связи отсутствует это полное соответствие.

Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примерами корреляционной зависимости могут быть зависимости между размерами активов банка и суммой прибыли банка, ростом производительности труда и стажем работы сотрудников.

Наиболее простым вариантом корреляционной зависимости является парная корреляция, т.е. зависимость между двумя признаками (результативным и факторным или между двумя факторными). Математически эту зависимость можно выразить как зависимость результативного показателя у от факторного показателя х. Связи могут быть прямые и обратные. В первом случае с увеличением признака х увеличивается и признак у, при обратной связи с увеличением признака х уменьшается признак у.

Важнейшей задачей является определение формы связи с последующим расчетом параметров уравнения, или, иначе, нахождение уравнения связи (уравнения регрессии ).

Могут иметь место различные формы связи :

прямолинейная

криволинейная в виде: параболы второго порядка (или высших порядков)

гиперболы

показательной функции и т.д.

Параметры для всех этих уравнений связи, как правило, определяют из системы нормальных уравнений , которые должны отвечать требованию метода наименьших квадратов (МНК):

Если связь выражена параболой второго порядка (), то систему нормальных уравнений для отыскания параметров a0, a1, a2 (такую связь называют множественной, поскольку она предполагает зависимость более чем двух факторов) можно представить в виде

Другая важнейшая задача - измерение тесноты зависимости - для всех форм связи может быть решена при помощи вычисления эмпирического корреляционного отношения :

где - дисперсия в ряду выравненных значений результативного показателя ;

Дисперсия в ряду фактических значений у.

Для определения степени тесноты парной линейной зависимости служит линейный коэффициент корреляции r, для расчета которого можно использовать, например, две следующие формулы:

Линейный коэффициент корреляции может принимать значения в пределах от -1 до + 1 или по модулю от 0 до 1. Чем ближе он по абсолютной величине к 1, тем теснее связь. Знак указывает направление связи: «+» - прямая зависимость, «-» имеет место при обратной зависимости.

В статистической практике могут встречаться такие случаи, когда качества факторных и результативных признаков не могут быть выражены численно. Поэтому для измерения тесноты зависимости необходимо использовать другие показатели. Для этих целей используются так называемые непараметрические методы .

Наибольшее распространение имеют ранговые коэффициенты корреляции , в основу которых положен принцип нумерации значений статистического ряда. При использовании коэффициентов корреляции рангов коррелируются не сами значения показателей х и у, а только номера их мест, которые они занимают в каждом ряду значений. В этом случае номер каждой отдельной единицы будет ее рангом.

Коэффициенты корреляции, основанные на использовании ранжированного метода, были предложены К. Спирмэном и М. Кендэлом.

Коэффициент корреляции рангов Спирмэна (р) основан на рассмотрении разности рангов значений результативного и факторного признаков и может быть рассчитан по формуле

где d = Nx - Ny , т.е. разность рангов каждой пары значений х и у; n - число наблюдений.

Ранговый коэффициент корреляции Кендэла () можно определить по формуле

где S = P + Q.

К непараметрическим методам исследования можно отнести коэффициент ассоциации Кас и коэффициент контингенции Ккон, которые используются, если, например, необходимо исследовать тесноту зависимости между качественными признаками, каждый из которых представлен в виде альтернативных признаков.

Для определения этих коэффициентов создается расчетная таблица (таблица «четырех полей»), где статистическое сказуемое схематически представлено в следующем виде:

Признаки

Здесь а, b, c, d - частоты взаимного сочетания (комбинации) двух альтернативных признаков ; n - общая сумма частот.

Коэффициент контингенции рассчитывается по формуле

Нужно иметь в виду, что для одних и тех же данных коэффициент контингенции (изменяется от -1 до +1) всегда меньше коэффициента ассоциации.

Если необходимо оценить тесноту связи между альтернативными признаками, которые могут принимать любое число вариантов значений, применяется коэффициент взаимной сопряженности Пирсона (КП).

Для исследования такого рода связи первичную статистическую информацию располагают в форме таблицы:

Признаки

Здесь mij - частоты взаимного сочетания двух атрибутивных признаков; П - число пар наблюдений.

Коэффициент взаимной сопряженности Пирсона определяется по формуле

где - показатель средней квадратической сопряженности:

Коэффициент взаимной сопряженности изменяется от 0 до 1.

Наконец, следует упомянуть коэффициент Фехнера , характеризующий элементарную степень тесноты связи, который целесообразно использовать для установления факта наличия связи, когда существует небольшой объем исходной информации. Данный коэффициент определяется по формуле

где na - количество совпадений знаков отклонений индивидуальных величин от их средней арифметической; nb - соответственно количество несовпадений.

Коэффициент Фехнера может изменяться в пределах -1,0 Кф +1,0.

Различные экономические явления как на микро-, так и на макроуровне не являются независимыми, а связаны между собой (цена товара и спрос на него, объём производства и прибыль фирмы и.т.д.).

Эта зависимость может быть строго функциональной (детермированной) и статистической.

Зависимость между и называется функциональной, когда каждому значению одного признака соответствует одно единственное значение другого признака. (Примером такой однозначной зависимости может служить зависимость площади круга от радиуса).

В реальной действительности чаще встречается иная связь между явлениями, когда каждому значению одного признака могут соответствовать несколько значений другого (например, связь между возрастом детей и их ростом).

Форма связи, при которой один или несколько взаимосвязанных показателей (факторов) оказывают влияние на другой показатель (результат) не однозначно, а с определенной долей вероятности, называется статистической. В частности, если при изменении одной из величин изменяется среднее значение другой, то в этом случае статистическую зависимость называют корреляционной.

В зависимости от числа факторов, включаемых в модель, различают парную корреляцию (связь двух переменных) и множественную (зависимость результата от нескольких факторов).

Корреляционный анализ состоит в определении направления, формы и степени связи (тесноты) между двумя (несколькими) случайными признаками и.

По направлению корреляция бывает положительной (прямой), если при увеличении значений одной переменной увеличивается значение другой, и отрицательной (обратной), если при увеличении значений одной переменной, уменьшается значение другой.

По форме корреляционная связь может быть линейной (прямолинейной), когда изменение значений одного признака приводит к равномерному изменению другого (математически описывается уравнением прямой), и криволинейной, когда изменение значений одного признака приводит к неодинаковым изменениям другого (математически она описывается уравнениями кривых линий, например гиперболы, параболы и т.д.).

Простейшей формой зависимости между переменными является линейная зависимость. И проверка наличия такой зависимости, оценивание её индикаторов и параметров является одним из важнейших направлений эконометрики.

Существуют специальные статистические методы и, соответственно, показатели, значения которых определённым образом свидетельствуют о наличии или отсутствии линейной связи между переменными.

Коэффициент линейной корреляции

Наиболее простым, приближенным способом выявления корреляционной связи является графический.

При небольшом объеме выборки экспериментальные данные представляют в виде двух рядов связанных между собой значений и. Если каждую пару представить точкой на плоскости, то получится так называемое корреляционное поле (рис.1).

Если корреляционное поле представляет собой эллипс, ось которого расположена слева направо и снизу вверх (рис.1в), то можно полагать, что между признаками существует линейная положительная связь.

Если корреляционное поле вытянуто вдоль оси слева направо и сверху вниз (рис.1г), то можно полагать наличие линейной отрицательной связи.

В случае же если точки наблюдений располагаются на плоскости хаотично, т.е корреляционное поле образует круг (рис.1а), то это свидетельствует об отсутствии связи между признаками.

На рис.1б представлена строгая линейная функциональная связь.

Под теснотой связи между двумя величинами понимают степень сопряженности между ними, которая обнаруживается с изменением изучаемых величин. Если каждому заданному значению соответствуют близкие друг другу значения, то связь считается тесной (сильной); если же значения сильно разбросаны, то связь считается менее тесной. При тесной корреляционной связи корреляционное поле представляет собой более или менее сжатый эллипс.

Количественным критерием направления и тесноты линейной связи является коэффициент линейной корреляции.

Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции. Он вычисляется по формуле:

где, текущие значения признаков и; и средние арифметические значения признаков; - среднее арифметическое произведений вариант, и средние квадратические отклонения этих признаков; объём выборки.


Для вычисления коэффициента корреляции достаточно принять предположение о линейной связи между случайными признаками. Тогда вычисленный коэффициент корреляции и будет мерой этой линейной связи.

Коэффициент линейной корреляции принимает значения от?1 в случае строгой линейной отрицательной связи, до +1 в случае строгой линейной положительной связи (т.е.). Близость коэффициента корреляции к 0 свидетельствует об отсутствии линейной связи между признаками, но не об отсутствии связи между ними вообще.

Коэффициенту корреляции можно дать наглядную графическую интерпретацию.

Если, то между признаками существует линейная функциональная зависимость вида, что означает полную корреляцию признаков. При, прямая имеет положительный наклон по отношению к оси, при отрицательный (рис. 1б).

Если, точки находятся в области ограниченной линией, напоминающей эллипс. Чем ближе коэффициент корреляции к, тем уже эллипс и тем теснее точки сосредоточены вблизи прямой линии. При говорят о положительной корреляции. В этом случае значения имеют тенденцию к возрастанию с увеличением (рис.1в). При говорят об отрицательной корреляции; значения имеют тенденцию к уменьшению с ростом (рис.1г).

Если, то точки располагаются в области, ограниченной окружностью. Это означает, что между случайными признаками и отсутствует корреляция, и такие признаки называются некоррелированными (рис.1а).

Также коэффициент линейной корреляции может быть близок (равен) нулю, когда между признаками есть связь, но она нелинейная (рис.2).

При оценке тесноты связи можно использовать следующую условную таблицу:

Заметим, что в числителе формулы для выборочного коэффициента линейной корреляции величин и с тоит их показатель ковариации:

Этот показатель, как и коэффициент корреляции характеризует степень линейной связи величин и. Если он больше нуля, то связь между величинами положительная, если меньше нуля, то связь - отрицательная, равен нулю - линейная связь отсутствует.

В отличие от коэффициента корреляции показатель ковариации нормирован - он имеет размерность, и его величина зависит от единиц измерения и. В статистическом анализе показатель ковариации обычно используется, как промежуточный элемент расчёта коэффициента линейной корреляции. Т.о. формула расчёта выборочного коэффициента корреляции приобретает вид:

Оценка значимости (достоверности) коэффициента корреляции

Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции, который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):

где - теоретический показатель ковариции, который вычисляется как математическое ожидание произведений отклонений СВ и от их математических ожиданий.

Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю не следует, что теоретический коэффициент также (т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.

Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.

Всегда существует ошибка коэффициента корреляции. Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:

при; и при.

Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.

С этой целью проверяется нулевая гипотеза о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е. в генеральной совокупности отсутствует корреляция. Альтернативной является гипотеза.

Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:

Которая имеет распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента определяется критическое значение. Если рассчитанное значение критерия, то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью.

Если же, тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.

Пример 1. В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление.

Изучить и измерить тесноту взаимосвязи между заданными показателями.