Найти вероятность случайной величины заданной законом распределения. Дискретная случайная величина и ее числовые характеристики

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

Определение 1

Случайная величина $Х$ называется дискретной (прерывной), если множество ее значений бесконечное или конечное, но счетное.

Другими словами, величина называется дискретной, если ее значения можно занумеровать.

Описать случайную величину можно с используя закона распределения.

Закон распределения дискретной случайной величины $Х$ может быть задан в виде таблицы, в первой строке которой указаны все возможные значения случайной величины в порядке возрастания, а во второй строке соответствующие вероятности этих значений:

Рисунок 1.

где $р1+ р2+ ... + рn = 1$.

Даная таблица является рядом распределения дискретной случайной величины .

Если множество возможных значений случайной величины бесконечно, то ряд $р1+ р2+ ... + рn+ ...$ сходится и его сумма будет равна $1$.

Закон распределения дискретной случайной величины $Х$ можно представить графически, для чего в системе координат (прямоугольной) строят ломаную линию, которая последовательно соединяет точки с координатами $(xi;pi), i=1,2, ... n$. Линию, которую получили называют многоугольником распределения .

Рисунок 2.

Закон распределения дискретной случайной величины $Х$ может быть также представлен аналитически (с помощью формулы):

$P(X=xi)= \varphi (xi),i =1,2,3 ... n$.

Действия над дискретными вероятностями

При решении многих задач теории вероятности необходимо проводить операции умножения дискретной случайной величины на константу , сложения двух случайных величин, их умножения, поднесения к степени. В этих случаях необходимо придерживаться таких правил над случайными дискретными величинами:

Определение 3

Умножением дискретной случайной величины $X$ на константу $K$ называется дискретная случайная величина $Y=KX,$ которая обусловлена равенствами: $y_i=Kx_i,\ \ p\left(y_i\right)=p\left(x_i\right)=p_i,\ \ i=\overline{1,\ n}.$

Определение 4

Две случайные величины $x$ и $y$ называются независимыми , если закон распределения одной из них не зависит от того, какие возможные значения приобрела вторая величина.

Определение 5

Суммой двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=X+Y,$ обусловлена равенствами: $z_{ij}=x_i+y_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Определение 6

Умножением двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=XY,$ обусловлена равенствами: $z_{ij}=x_iy_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Примем во внимание, что некоторые произведения $x_{i\ \ \ \ \ }y_j$ могут быть равными между собой. В таком случае вероятность сложения произведения равна сумме соответствующих вероятностей.

Например, если $x_2\ \ y_3=x_5\ \ y_7,\ $то вероятность $x_2y_3$ (или тоже самое $x_5y_7$) будет равна $p_2\cdot p"_3+p_5\cdot p"_7.$

Сказанное выше касается также и суммы. Если $x_1+\ y_2=x_4+\ \ y_6,$ то вероятность $x_1+\ y_2$ (или тоже самое $x_4+\ y_6$) будет равняться $p_1\cdot p"_2+p_4\cdot p"_6.$

Пусnm случайные величины $X$ и $Y$ заданы законами распределения:

Рисунок 3.

Где $p_1+p_2+p_3=1,\ \ \ p"_1+p"_2=1.$ Тогда закон распределения сумы $X+Y$ будет иметь вид

Рисунок 4.

А закон распределения произведения $XY$ будет иметь вид

Рисунок 5.

Фунция распределения

Полное описание случайной величины дает также функция распределения.

Геометрически функция распределения разъясняется как вероятность того, что случайная величина $Х$ принимает значение, которое на числовой прямой изображается точкой, лежащей с левой стороны от точки $х$.

Назначение сервиса . Онлайн-калькулятор используется для построения таблицы распределения случайной величины X – числа произведенных опытов и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Пример 1 . В урне белых и черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается.
Данный тип заданий относится к задаче построения геометрического распределения .

Пример 2 . Два Три стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна , вторым – . Составить закон распределения случайной величины Х – числа попаданий в мишень.

Пример 2a . Стрелок делает по два три четыре выстрела. Вероятность попадания при соответствующем выстреле равна , . При первом промахе стрелок в дальнейших состязаниях не участвует. Составить закон распределения случайной величины Х - число попаданий в мишень.

Пример 3 . В партии из деталей бракованных стандартных. Контролер наудачу достает детали. Составить закон распределения случайной величины Х – числа бракованных годных деталей в выборке.
Аналогичное задание : В корзине m красных и n синих шаров. Наудачу вынимают k шаров. Составить закон распределения ДСВ X – появление синих шаров.
см. другие примеры решений .

Пример 4 . Вероятность появления события в одном испытании равна . Производится испытаний. Составить закон распределения случайной величины Х – числа появлений события.
Аналогичные задания для этого вида распределения :
1. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
2. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Составить таблицу распределения Х – числа появлений герба.

Пример №1 . Бросаются три монеты. Вероятность выпадения герба при одном бросании равна 0.5. Составьте закон распределения случайной величины X - числа выпавших гербов.
Решение.
Вероятность того, что не выпало ни одного герба: P(0) = 0,5*0,5*0,5= 0,125
P(1) = 0,5 *0,5*0,5 + 0,5*0,5 *0,5 + 0,5*0,5*0,5 = 3*0,125=0,375
P(2) = 0,5 *0,5 *0,5 + 0,5 *0,5*0,5 + 0,5*0,5 *0,5 = 3*0,125=0,375
Вероятность того, что выпало три герба: P(3) = 0,5*0,5*0,5 = 0,125

Закон распределения случайной величины X:

X 0 1 2 3
P 0,125 0,375 0,375 0,125
Проверка: P = P(0) + P(1) + P(2) + P(3) = 0,125 + 0,375 + 0,375 + 0,125 = 1

Пример №2 . Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

  1. Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p 1 *(1-p 2)=0.8*(1-0.85)=0.12
  2. Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p 1)*p 2 =(1-0.8)*0.85=0.17
  3. Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p 1 *p 2 =0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Дан ряд распределения дискретной случайной величины. Найти недостающую вероятность и построить график функции распределения. Вычислить математическое ожидание и дисперсию этой величины.

Случайная величина Х принимает только четыре значения: -4, -3, 1 и 2. Каждое из этих значений она принимает с определенной вероятностью. Так как сумма всех вероятностей должна быть равна 1, то недостающая вероятность равна:

0,3 + ? + 0,1 + 0,4 = 1,

Составим функцию распределения случайной величины Х. Известно, что функция распределения , тогда:


Следовательно,

Построим график функции F (x ) .

Математическое ожидание дискретной случайной величины равно сумме произведений значения случайной величины на соответствующую вероятность, т.е.

Дисперсию дискретной случайной величины найдем по формуле:

ПРИЛОЖЕНИЕ

Элементы комбинаторики


Здесь: - факториал числа

Действия над событиями

Событие – это всякий факт, который может произойти или не произойти в результате опыта.

    Объединение событий А и В – это событие С , которое состоит в появлении или события А , или события В , или обоих событий одновременно.

Обозначение:
;

    Пересечение событий А и В – это событие С , которое состоит в одновременном появлении обоих событий.

Обозначение:
;

Классическое определение вероятности

Вероятность события А – это отношение числа опытов
, благоприятствующих появлению события А , к общему числу опытов
:

Формула умножения вероятностей

Вероятность события
можно найти по формуле:

- вероятность события А,

- вероятность события В,

- вероятность события В при условии, что событие А уже произошло.

Если события А и В – независимы (появление одного не влияет на появление другого), то вероятность события равна:

Формула сложения вероятностей

Вероятность события
можно найти по формуле:

Вероятность события А,

Вероятность события В,

- вероятность совместного появления событий А и В .

Если события А и В – несовместны (не могут появиться одновременно), то вероятность события равна:

Формула полной вероятности

Пусть событие А может произойти одновременно с одним из событий
,
, …,
- назовем их гипотезами. Также известны
- вероятность выполнения i -ой гипотезы и
- вероятность появления события А при выполнении i -ой гипотезы. Тогда вероятность события А может быть найдена по формуле:

Схема Бернулли

Пусть проводится n независимых испытаний. Вероятность появления (успеха) события А в каждом из них постоянна и равна p , вероятность неудачи (т.е. не появления события А ) q = 1 - p . Тогда вероятность появления k успехов в n испытаниях можно найти по формуле Бернулли:

Наивероятнейшее число успехов в схеме Бернулли – это число появлений некоторого события, которому соответствует наибольшая вероятность. Можно найти по формуле:

Случайные величины

дискретные непрерывные

(н-р, число девочек в семье с 5 детьми) (н-р, время исправной работы чайника)

Числовые характеристики дискретных случайных величин

Пусть дискретная величина задана рядом распределения:

Х

Р

, , …, - значения случайной величины Х ;

, , …, - соответствующие им значения вероятностей.

Функция распределения

Функцией распределения случайной величины Х называется функция , заданная на всей числовой прямой и равная вероятности того, что Х будет меньше х :

Вопросы к экзамену

    Событие. Операции над случайными событиями.

    Понятие вероятности события.

    Правила сложения и умножения вероятностей. Условные вероятности.

    Формула полной вероятности. Формула Байеса.

    Схема Бернулли.

    Случайная величина, ее функция распределения и ряд распределения.

    Основные свойства функции распределения.

    Математическое ожидание. Свойства математического ожидания.

    Дисперсия. Свойства дисперсии.

    Плотность распределения вероятностей одномерной случайной величины.

    Виды распределений: равномерное, экспоненциальное, нормальное, биномиальное и распределение Пуассона.

    Локальная и интегральные теоремы Муавра-Лапласа.

    Закон и функция распределения системы двух случайных величин.

    Плотность распределения системы двух случайных величин.

    Условные законы распределения, условное математическое ожидание.

    Зависимые и независимые случайные величины. Коэффициент корреляции.

    Выборка. Обработка выборки. Полигон и гистограмма частот. Эмпирическая функция распределения.

    Понятие оценки параметров распределения. Требования к оценке. Доверительный интервал. Построение интервалов для оценки математического ожидания и среднего квадратического отклонения.

    Статистические гипотезы. Критерии согласия.