Продольные и поперечные деформации закон гука. Продольные и поперечные деформации

Рассмотрим прямой стержень постоянного поперечного сечения, жестко закрепленный сверху. Пусть стержень имеет длину и нагружен растягивающей силой F . От действия этой силы длина стержня увеличивается на некоторую величину Δ (рис.9.7,а).

При сжатии стержня такой же силой F длина стержня сократится на такую же величину Δ (рис.9.7,б).

Величина Δ , равная разности между длинами стержня после деформации и до деформации, называется абсолютной линейной деформацией (удлинением или укорочением) стержня при его растяжении или сжатии.

Отношение абсолютной линейной деформации Δ к первоначальной длине стержня называется относительной линейной деформацией и обозначается буквой ε илиε x ( где индекс x указывает направление деформации). При растяжении или сжатии стержня величину ε просто называют относительной продольной деформацией стержня. Она определяется по формуле:

Многократные исследования процесса деформирования растянутого или сжатого стержня в упругой стадии, подтвердили существование прямой пропорциональной зависимости между нормальным напряжением и относительной продольной деформацией. Эта зависимость называется законом Гука и имеет вид:

Величина E называется модулем продольной упругости или модулем первого рода. Она является физической постоянной (константой) для каждого вида материала стержня и характеризует его жесткость. Чем больше величина E , тем меньше будет продольная деформация стержня. Величина E измеряется в тех же единицах, что и напряжение, то есть в Па , МПа , и тому подобное. Величины модуля упругости содержатся в таблицах справочной и учебной литературы. Например, величина модуля продольной упругости стали принимается равной E = 2∙10 5 МПа , а древесины

E = 0,8∙10 5 МПа.

При расчете стержней на растяжение или сжатие, часто возникает необходимость определения величины абсолютной продольной деформации , если известна величина продольной силы, площадь поперечного сечения и материал стержня. Из формулы (9.8) найдем: . Заменим в этом выражении ε его значением из формулы (9.9). В результате получим = . Если использовать формулу нормального напряжения , тополучим окончательную формулу для определения абсолютной продольной деформации:

Произведение модуля продольной упругости на площадь поперечного сечения стержня называется его жесткостью при растяжении или сжатии.

Анализируя формулу (9.10) сделаем существенный вывод: абсолютная продольная деформация стержня при растяжении (сжатия) прямо пропорциональная произведению продольной силы на длину стержня и обратно пропорциональная его жесткости .

Заметим, что формула (9.10) может быть использована в том случае, когда поперечное сечение стержня и продольная сила имеют постоянные значения по всей его длине. В общем случае, когда стержень имеет ступенчато переменную жесткость и загружен по длине несколькими силами, нужно разделить его на участки и определить абсолютные деформации каждого из них по формуле (9.10).

Алгебраическая сумма абсолютных деформаций каждого участка будет равняться абсолютной деформации всего стержня, то есть:

Продольные деформации стержня от действия равномерно распределенной нагрузки вдоль его оси (например, от действия собственного веса), определяется следующей формулой, которую приводим без доказательства:

В случае растяжения или сжатия стержня, кроме продольных деформаций возникают также поперечные деформации, как абсолютные, так и относительные. Обозначим через b размер поперечного сечения стержня до деформации. При растяжении стержня силой F этот размер уменьшится на величину Δb , которая является абсолютной поперечной деформацией стержня. Эта величина имеет отрицательный знак.При сжатии, напротив, абсолютная поперечная деформация будет иметь положительный знак (рис. 9.8).

9. Абсолютная и относительная деформация при растяжении (сжатии). Коэффициент Пуассона.

Если под действием силы брус длиной изменил свою продольную величину на , то эта величина называется абсолютной продольной деформацией (абсолютное удлинение или укорочение). При этом наблюдается и поперечная абсолютная деформация .

Отношение называется относительной продольной деформацией, а отношение - относительной поперечной деформацией.

Отношение называется коэффициентом Пуассона, который характеризует упругие свойства материала.

Коэффициент Пуассона имеет значение . (для стали он равен )

10. Сформулировать закон Гука при растяжении (сжатии).

I форма. В поперечных сечениях бруса при центральном растяжении (сжатии) нормальные напряжения равны отношению продольной силы к площади поперечного сечения:

II форма. Относительная продольная деформация прямо пропорциональна нормальному напряжению , откуда .

11. Как определяются напряжения в поперечных и наклонных сечениях бруса?

– сила, равная произведению напряжения на площадь наклонного сечения :

12. По какой формуле можно определить абсолютное удлинение (укорочение) бруса?

Абсолютное удлинение (укорочение) бруса (стержня) выражается формулой:

, т.е.

Учитывая, что величина представляет собой жесткость поперечного сечения бруса длиной можно сделать вывод: абсолютная продольная деформация прямо пропорциональна продольной силе и обратно пропорциональна жесткости поперечного сечения. Этот закон впервые сформулировал Гук в 1660 году.

13. Как определяются температурные деформации и напряжения?

При повышении температуры у большинства материалов механические характеристики прочности уменьшаются, а при понижении температуры – увеличиваются. Например, у стали марки Ст3 при и ;

при и , т.е. .

Удлинение стержня при нагревании определяется по формуле , где - коэффициент линейного расширения материала стержня, - длина стержня.

Возникающее в поперечном сечении нормальное напряжение . При понижении температуры происходит укорочение стержня и возникают напряжения сжатия.

14. Дать характеристику диаграммы растяжения (сжатия).

Механические характеристики материалов определяются путем испытаний образцов и построением соответствующих графиков, диаграмм. Наиболее распространенным является статическое испытание на растяжение (сжатие).

Предел пропорциональности (до этого предела справедлив закон Гука);

Предел текучести материала;

Предел прочности материала;

Разрушающее (условное) напряжение;

Точка 5 соответствует истинному разрушающему напряжению.

1-2 площадка текучести материала;

2-3 зона упрочнения материала;

и - величина пластической и упругой деформации.

Модуль упругости при растяжении (сжатии), определяемый как: , т.е. .

15. Какие параметры характеризуют степень пластичности материала?

Степень пластичности материала может быть охарактеризовано величинами:

Остаточным относительным удлинением – как отношение остаточной деформации образца к первоначальной его длине:

где - длина образца после разрыва. Величина для различных марок стали находится в пределах от 8 до 28 %;

Остаточным относительным сужением – как отношение площади поперечного сечения образца в месте разрыва к первоначальной площади:

где - площадь поперечного сечения разорванного образца в наиболее тонком месте шейки. Величина находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до 60 % для малоуглеродистой стали.

16. Задачи, решаемые при расчете на прочность при растяжении (сжатии).

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений.

Уметь проводить расчеты на прочность и жесткость ста­тически определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 4.13).

Начальные размеры бруса: - начальная длина, - начальная ширина. Брус удлиняется на величину Δl; Δ1 - абсолютное удлинение. При растя­жении поперечные размеры уменьшают­ся, Δ а - абсолютное сужение; Δ1 > 0; Δ а <0.

При сжатии выполняется соотноше­ние Δl < 0; Δ а > 0.

В сопротивлении материалов приня­то рассчитывать деформации в относи­тельных единицах: рис.4.13

Относительное удлинение;

Относительное сужение.

Между продольной и поперечной деформациями существует зависимость ε′=με, где μ – коэффициент поперечной деформации, или коэффициент Пуассона, - характеристика пластичности материала.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. введение.. любое явление в ок ружающем нас макромире связано с движением следовательно не может не иметь того или иного..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аксиомы статики
Условия, при которых тело может находиться в равновесии, выводиться из нескольких основных положений, применяемых без доказательств, но подтвержденных опытом и называемых аксиомами статики.

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободным называется тело, которое не испыты

Определение равнодействующей геометрическим способом
Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (рис. 1.13).

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 1.15).

Определение равнодействующей системы сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Условия равновесия плоской системы сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: FΣ

Методика решения задач
Решение каждой задачи можно условно разделить на три этапа. Первый этап: Отбрасываем внешние связи системы тел, равновесие которой рассматривается, и заменяем их действие реакциями. Необхо

Пара сил и момент силы относительно точки
Знать обозначение, модуль и определение моментов пары сил и силы относительно точки, условия равновесия системы пар сил. Уметь определять моменты пар сил и момент силы относитель

Эквивалентность пар
Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нару­шается его

Опоры и опорные реакции балок
Правило для определения направления реакций связей (рис.1.22). Шарнирно-подвижная опора допускает поворот вокруг оси шарнира и линейное перемещение параллельно опорной плос­кости.

Приведение силы к точке
Произвольная плоская система сил представляет собой систему сил, линии действия которых расположены в плоскости каким угодно образом (рис. 1.23). Возьмем силу

Приведение плоской системы сил к данной точке
Метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, ч

Влияние точки приведения
Точка приведения выбрана произвольно. Произвольная плоская система сил представляет собой систему сил, линия действия которых расположены в плоскости каким угодно образом. При изменении по

Теорема о моменте равнодействующей (теорема Вариньона)
В общем случае произвольная плоская система сил приводится к главному вектору F"гл и к главному моменту Мгл относительно выбранного центра приведения, причем гла

Условие равновесия произвольно плоской системы сил
1)При равновесии главный вектор системы равен нулю (=0).

Балочные системы. Определение реакций опор и моментов защемления
Иметь представление о видах опор и возникающих реакциях в опорах. Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно точки
Момент силы относительно оси характеризуется вра­щательным эффектом, создаваемым силой, стремящейся повернуть тело вокруг данной оси. Пусть к телу в про­извольной точке К приложена сила

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 1.3

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Некоторые определения теории механизмов и машин
При дальнейшем изучении предмета теоретической ме­ханики, в особенности при решении задач, мы столкнемся с но­выми понятиями, относящимися к науке, которая называется теорией механизмов и машин.

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлени

Ускорение точки при криволинейном движении
При движении точки по криволинейном траектории скорость меняет свое направление. Представим себе точку М, которая за время Δt, двигаясь по криволинейной траектории, переместилас

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 2.9, а)

Неравномерное движение
При неравномерном движении численные значения скорости и ускорения меняются. Уравнение неравномерного движения в общем виде представля­ет собой уравнение третьей S = f

Простейшие движения твердого тела
Иметь представление о поступательном движении, его особенности и параметрах, о вращательном движении тела и его параметрах. Знать формулы для определения параметров поступательно

Вращательное движение
Движение, при котором по крайнем мере точки твердого тела или неизменяемой системы остаются неподвижными, называемыми вращательным; прямая линия, соединяющая эти две точки,

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω = const. Уравнение (закон) равномерного вращения в данном случае име­ет вид: `

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки Л, расположенной на расстоянии г а от оси вращения (рис. 11.6, 11.7).

Преобразование вращательного движения
Преобразование вращательного движения осуществля­ется разнообразными механизмами, которые называются пере­дачами. Наиболее распространенными являются зубчатые и фрикционные передачи, а также

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Метод определения мгновенного центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Понятие трения
Абсолютно гладких и абсолютно твердых тел в природе не существует, и поэтому при перемещении одного тела по по­верхности другого возникает сопротивление, которое называется трением.

Трение скольжения
Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению. Трение скольжения, как и трение покоя, обуслов

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Принцип кинетостатики (принцип Даламбера)
Принцип кинетостатики используют для упрощения решения ряда технических задач. Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям). Даламбер предло

Работа постоянной силы на прямолинейном пути
Работа силы в общем случае численно равна произведению мо­дуля силы на длину пройденного мм пути и на косинус угла между направлением силы и направлением перемещения (рис. 3.8): W

Работа постоянной силы на криволинейном пути
Пусть точка М движется по дуге окружности и сила F соста­вляет некоторый угол а

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности.

Коэффициент полезного действия
Способность тела при переходе из одного состояния в другое совершать работу называется энергией. Энергия есть общая мера различных форм движения и взаимодействия матери

Закон изменения количества движения
Количеством движения материальной точки называется вектор­ная величина, равная произведению массы точки на ее скорость

Потенциальная и кинитецеская энергия
Существуют две основные формы механической энергии: потен­циальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится им

Закон изменения кинетической энергии
Пусть на материальную точку массой m действует постоянная сила. В этом случае точк

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как меха­ническая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Oz с угловой скоростью

Моменты инерции некоторых тел
Момент инерции сплошного цилиндра (рис. 3.19) Момент инерции полого тонкостен­ного цили

Сопротивление материалов
Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях. Зн

Основные положения. Гипотезы и допущения
Практика показывает, что все части конструкций под действием нагрузок деформируются, т. е. изменяет свою форму и размеры, а в некоторых случаях происходит разрушение конструкции.

Внешние силы
Всопротивлении материалов под внешними воздейст­виями подразумевается не только силовое взаимодейст­вие, но и тепловое, возникающее из-за неравномерного изменения температурного ре

Деформации линейные и угловые. Упругость материалов
В отличие от теоретической механики, где изучалось взаимодействие абсолютно жестких (недеформируемых) тел, в сопротивлении материалов исследуется поведение конструкций, материал которых способен де

Допущения и ограничения, принятые в сопротивлении материалов
Реальные строительные материалы, из которых воз­водятся различные здания и сооружения, представляют собой довольно сложные и неоднородные твердые тела, обладающие различными свойствами. Учесть это

Виды нагрузок и основных деформаций
В процессе работы машин и сооружений их узлы и детали воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменение внутренних сил и

Формы элементов конструкции
Все многообразие форм сводится к трем видам по одному при­знаку. 1. Брус - любое тело, у которого длина значительно больше других размеров. В зависимости от форм продольной

Метод сечений. Напряжение
Знать метод сечений, внутренние силовые факторы, составляющие напряжений. Уметь определять виды нагружений и внутренние силовые факторы в поперечных сечениях. Для ра

Растяжение и сжатие
Растяжением или сжатием называют вид нагружения, при ко­тором в поперечном сечении бруса возникает только один внутрен­ний силовой фактор - продольная сила. Продольные силы м

Центральное растяжение прямого бруса. Напряжения
Центральным растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечения бруса возникает только продольная (нормаль­ная) сила N, а все остальные внутренние

Напряжения при растяжении и сжатии
При растяжении и сжатии в сечении действует только нормаль­ное напряжение. Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади. Таким

Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 - 1703).

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы. Закон Гука σ=Еε. Откуда.

Механические испытания. Статические испытания на растяжение и сжатие
Это стандартные испыта­ния: оборудование - стандарт­ная разрывная машина, стан- дартный образец (круглый или плоский), стандартная методика расчета. На рис. 4.15 представлена схема

Механические характеристики
Механические характеристики материалов, т. е. величины, характеризующие их прочность, пластичность, упругость, твер­дость, а также упругие постоянные Е и υ, необходимые конструктору для

Отношение абсолютного удлинения стержня к его первоначальной длине называетсяотносительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
.
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах. Например, для пробки, для каучука, для стали, для золота.

Закон Гука
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь - сила, которой растягивают (сжимают) стержень, - абсолютное удлинение (сжатие) стержня, а - коэффициент упругости (или жёсткости).
Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.
Если ввести относительное удлинение

И нормальное напряжение в поперечном сечении

То закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Модуль Юнга
Модуль Юнга (модуль упругости) - физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации.
Модуль Юнга рассчитывается следующим образом:

Где:
E - модуль упругости,
F - сила,
S - площадь поверхности, по которой распределено действие силы,
l - длина деформируемого стержня,
x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

Где - плотность вещества.
Коэффициент Пуассона
Коэффициент Пуассона (обозначается как или) - абсолютная величина отношения поперечной к продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец.
Уравнение
,
где
- коэффициент Пуассона;
- деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии);
- продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).