Устройство жидкостных манометров принцип работы. Жидкостные манометры, принцип действия, преимущества

Жидкостный термометр - это прибор для измерения температуры технологических процессов при помощи жидкости, которая реагирует на изменение температуры. Жидкостные термометры хорошо всем известны в быту: для измерения комнатной температуры или температуры человеческого тела.

Жидкостные термометры состоят из пяти принципиальных частей, это: шарик термометра, жидкость, капиллярная трубка, перепускная камера, и шкала.

Шарик термометра - это часть, где помещается жидкость. Жидкость реагирует на изменение температуры поднимаясь или опускаясь по капиллярной трубке. Капиллярная трубка представляет собой узкий цилиндр по которому перемещается жидкость. Часто капиллярная трубка снабжена перепускной камерой, которая представляет собой полость, куда поступает избыток жидкости. Если не будет перепускной камеры, то после того, как капиллярная трубка наполнится, создастся достаточное давление для того, чтобы разрушить трубку, если температура будет и дальше повышаться. Шкала - это часть жидкостного термометра, с помощью которой снимаются показания. Шкала откалибрована в градусах. Шкала может быть закреплена на капиллярной трубке, либо она может быть подвижной. Подвижная шкала дает возможность ее регулировать.

Принцип работы жидкостного термометра


Принцип работы жидкостных термометров основан на свойстве жидкостей сжиматься и расширяться. Когда жидкость нагревается, то обычно она расширяется; жидкость в шарике термометра расширяется и двигается вверх по капиллярной трубке, тем самым показывая повышение температуры. И, наоборот, когда жидкость охлаждается, она обычно сжимается; жидкость в капиллярной трубке жидкостного термометра понижается и тем самым показывает понижение температуры. В случае, когда имеется изменение измеряемой температуры вещества, то происходит перенос теплоты: сначала от вещества, чья температура измеряется, к шарику термометра, а затем от шарика к жидкости. Жидкость реагирует на изменение температуры двигаясь вверх или вниз по капиллярной трубке.

Тип используемой жидкости в жидкостном термометре зависит от диапазона измеряемых термометром температур.

Ртуть , -39-600 °C (-38-1100 °F);
Сплавы ртути , -60-120 °C (-76-250 °F);
Спирт , -80-100 °C (-112-212 °F).

Жидкостные термометры с частичным погружением

Конструкция многих жидкостных термометров предполагает, что они будут висеть на стене, и вся поверхность термометра входит в соприкосновение с веществом, температура которого измеряется. Однако, некоторые виды промышленных и лабораторных жидкостных термометров сконструированы и откалиброваны таким образом, что предполагают их погружение в жидкость.

Из термометров, используемых таким образом наиболее широко применяются термометры с частичным погружением. Для того, чтобы получить точные показания с помощью термометра с частичным погружением, погружают его шарик и капиллярную трубку только до этой линии.

Термометры с частичным погружением погружаются до отметки для того, чтобы компенсировать изменения температуры окружающего воздуха, которые могут на жидкость, находящуюся внутри капиллярной трубки. Если изменения температуры окружающего воздуха (изменения температуры воздуха вокруг термометра) вероятны, то они могут вызвать расширение или сжатие жидкости внутри капиллярной трубки. В результате на показания будет влиять не только температура вещества, которая измеряется, но и температура окружающего воздуха. Погружение капиллярной трубки до отмеченной линии снимает воздействие температуры окружающего воздуха на точность показаний.

В условиях промышленного производства часто необходимо измерять температуры веществ, проходящих по трубам или находящихся в емкостях. Измерение температуры в этих условиях создает две проблемы для прибористов: как измерить температуру вещества, если нет непосредственного доступа к этому веществу или жидкости, и как вынимать жидкостный термометр для осмотра, проверки или замены не останавливая технологического процесса. Обе эти проблемы устраняются, если применять измерительные каналы для ввода термометров.

Измерительный канал для ввода термометра представляет собой канал в виде трубы, который закрыт с одного конца и открыт с другого. Измерительный канал предназначен для того, чтобы в него помещать шарик жидкостного термометра и таким образом оградить его от веществ, которые могут вызывать коррозию, отравляющих веществ, или под высоким давлением. Когда применяются измерительные каналы для ввода термометров, то теплообмен происходит в форме непрямого контакта (через измерительный канал) вещества, чья температура измеряется, и шариком термометра. Измерительные каналы представляют собой уплотнение для повышенного давления и предотвращают выход наружу жидкости, температура, которой измеряется.

Измерительные каналы делаются стандартных размеров, так что они могут использоваться с различными типами термометров. Когда термометр устанавливается в измерительный канал, то его шарик вставляется в канал, а поверх термометра накручивается гайка, чтобы закрепить термометр.

Глава 2. ЖИДКОСТНЫЕ МАНОМЕТРЫ

Вопросы водоснабжения для человечества всегда были очень важными, а особую актуальность приобрели с развитием городов и появлением в них различного вида производств. При этом все более актуальной становилась проблема измерения давления воды, т. е. напора, необходимого не только для обеспечения подачи воды через систему водоснабжения, но и для приведения в действие различных механизмов. Честь первооткрывателя принадлежит крупнейшему итальянскому художнику и ученому Леонардо да Винчи (1452-1519 гг.), который впервые применил пьезометрическую трубку для измерения давления воды в трубопроводах. К сожалению, его труд „О движении и измерении воды” был опубликован лишь в XIX веке. Поэтому принято считать, что впервые жидкостный манометр был создан в 1643 г. итальянскими учеными Торричелли и Вивиаии, учениками Галилео Галилея, которые при исследовании свойств ртути, помещенной в трубку обнаружили существование атмосферного давления. Так появился ртутный барометр. В течение последующих 10-15 лет во Франции (Б. Паскаль и Р. Декарт) и Германии (О. Герике) были созданы различные разновидности жидкостных барометров, в том числе и с водяным заполнением. В 1652 г. О. Герике продемонстрировал весомость атмосферы эффектным опытом с откачанными полушариями, которые не могли разъединить две упряжки лошадей (знаменитые „магдебургские полушария”).



Дальнейшее развитие науки и техники привело к появлению большого количества жидкостных манометров различных типов, применяемы;: до настоящего времени во многих отраслях: метеорологии, авиационной и электровакуумной технике, геодезии и геологоразведке, физике и метрологии и пр. Однако, в силу ряда специфических особенностей принципа действия жидкостных манометров их удельный вес по сравнению с манометрами других типов относительно невелик и, вероятно, будет уменьшаться и в дальнейшем. Тем не менее при измерениях особо высокой точности в области давлений, близких к атмосферному давлению, они пока незаменимы. Не потеряли своего значения жидкостные манометры и в ряде других областей (микроманометрии, барометрии, метеорологии, при физико-технических исследованиях).

2.1. Основные типы жидкостных манометров и принципы их действия

Принцип действия жидкостных манометров можно проиллюстрировать на примере U-образного жидкостного манометра (рис. 4, а ), состоящего из двух соединенных между собой вертикальных трубок 1 и 2,

наполовину заполненных жидкостью. В соответствии с законами гидростатики при равенстве давлений р i и р 2 свободные поверхности жидкости (мениски) в обеих трубках установятся на уровне I-I. Если одно из давлений превышает другое (р\ > р 2), то разность давлений вызовет опускание уровня жидкости в трубке 1 и, соответственно, подъем в трубке 2, вплоть до достижения состояния равновесия. При этом на уровне

II-П уравнение равновесия примет вид

Ap=pi -р 2 =Н Р " g, (2.1)



т. е. разность давлений определяется давлением столба жидкости высотой Н с плотностью р.

Уравнение (1.6) с точки зрения измерения давления является фундаментальным, так как давление, в конечном итоге, определяется основными физическими величинами - массой, длиной и временем. Это уравнение справедливо для всех без исключения типов жидкостных манометров. Отсюда следует определение, что жидкостный манометр - манометр, в котором измеряемое давление уравновешивается давлением столба жидкости, образующегося под действием этого давления. Важно подчеркнуть, что мерой давления в жидкостных манометрах является

высота стол а жидкости, менно это обстоятельство привело к появлению единиц измерений давления мм вод. ст., мм рт. ст. и других которые естественным образом вытекают из принципа действия жидкостных манометров.

Чашечный жидкостный манометр (рис. 4, б) состоит из соединенных между собой чашки 1 и вертикальной трубки 2, причем площадь поперечного сечения чашки существенно больше, чем трубки. Поэтому под воздействием разности давлений Ар изменение уровня жидкости в чашке гораздо меньше, чем подъем уровня жидкости в трубке: Н\ = Н г f/F, где Н ! - изменение уровня жидкости в чашке; Н 2 - изменение уровня жидкости в трубке; / - площадь сечения трубки; F - площадь сечения чашки.

Отсюда высота столба жидкости, уравновешивающей измеряемое давление Н - Н х + Н 2 = # 2 (1 + f/F), а измеряемая разность давлений

Pi - Рг = Н 2 р ?-(1 + f/F ). (2.2)

Поэтому при известном коэффициенте к= 1 + f/F разность давлений может быть определена по изменению уровня жидкости в одной трубке, что упрощает процесс измерений.

Двухчашечный манометр (рис. 4, в) состоит из двух соединенных при помощи гибкого шланга чашек 1 и 2, одна из которых жестко закреплена, а вторая может перемещаться в вертикальном направлении. При равенстве давлений Р\ и р 2 чашки, а следовательно, свободные поверхности жидкости находятся на одном уровне I-I. Если Р\ > р 2 , то чашка 2 поднимается вплоть до достижения равновесия в соответствии с уравнением (2.1).

Единство принципа действия жидкостных манометров всех типов обусловливает их универсальность с точки зрения возможности измерения давления любого вида - абсолютного и избыточного и разности давлений.

Абсолютное давление будет измерено, если р 2 = 0, т. е. когда пространство над уровнем жидкости в трубке 2 откачано. Тогда столб жидкости в манометре будет уравновешивать абсолютное давление в трубке

i,T.e.p a6c =tf р g.

При измерении избыточного давления одна из трубок сообщается с атмосферным давлением, например, р 2 = р тш. Если при этом абсолютное давление в трубке 1 больше чем атмосферное давление i >р аТ м)> то в соответствии с (1.6) столб жидкости в трубке 2 уравновесит избыточное давление в трубке 1 } т. е. р и = Н р g: Если, наоборот, р х < р атм, то столб жидкости в трубке 1 будет мерой отрицательного избыточного давления р и = р g.

При измерении разности двух давлений, каждое из которых не равно атмосферному давлению, уравнение измерений имеет вид Ар=р\ - р 2 - = Н - р " g. Так же, как и в предыдущем случае, разность может принимать как положительные, так и отрицательные значения.

К важной метрологической характеристике средств измерения давления относится чувствительность измерительной системы, которая во многом определяет точность отсчета при измерениях и инерционность. Для манометрических приборов под чувствительностью понимается отношение изменения показаний прибора к вызвавшему его изменению давления (и = АН/Ар) . В общем случае, когда чувствительность непостоянна в диапазоне измерений

п = lim при Ар -*¦ 0, (2.3)

где АН - изменение показаний жидкостного манометра; Ар - соответствующее изменение давления.

Принимая во внимание уравнения измерений, получим: чувствительность U- образного или двухчашечного манометра (см. рис. 4, а и 4, в)

п = (2A ’ a ~>

чувствительность чашечного манометра (см. рис. 4, б)

Р-гй\llF) ¦ (2 " 4 ’ 6)

Как правило, для чащечных манометров F »/, поэтому уменьшение их чувствительности по сравнению с U- образными манометрами незначительно.

Из уравнений (2.4, а ) и (2.4, б) следует, что чувствительность целиком определяется плотностью жидкости р, заполняющей измерительную систему прибора. Но, с другой стороны, значение плотности жидкости согласно (1.6) определяет диапазон измерений манометра: чем она больше, тем больше верхний предел измерений. Таким образом, относительное значение погрешности отсчета от значения плотности не зависит. Поэтому для увеличения чувствительности, а следовательно, и точности, разработано большое количество отсчетных устройств, основанных на различных принципах действия, начиная от фиксации положения уровня жидкости относительно шкалы манометра на глаз (погрешность отсчета около 1 мм) и кончая применением точнейших интерференционных методов (погрешность отсчета 0,1-0,2 мкм). С некоторыми из этих методов можно познакомиться ниже.

Диапазоны измерений жидкостных манометров в соответствии с (1.6) определяются высотой столба жидкости, т. е. размерами манометра и плотностью жидкости. Наиболее тяжелой жидкостью в настоящее время является ртуть, плотность--которой р = 1,35951 10 4 кг/м 3 . Столб ртути высотой 1 м развивает давление около 136 кПа, т. е. давление, не на много превышающее атмосферное давление. Поэтому при измерении давлений порядка 1 МПа размеры манометра по высоте соизмеримы с высотой трехэтажного дома, что представляет существенные эксплуатационные неудобства, не говоря о чрезмерной громоздкости конструкции. Тем не менее, попытки создания сверхвысоких ртутных манометров предпринимались. Мировой рекорд был установлен в Париже, где на базе конструкций знаменитой Эйфелевой башни был смонтирован манометр высотой ртутного столба около 250 м, что соответствует 34 МПа. В настоящее время этот манометр разобран в связи с его бесперспективностью. Однако в строю действующих продолжает оставаться уникальный по своим метрологическим характеристикам ртутный манометр Физико-технического института ФРГ. Этот манометр, смонтированный в iO-этажной башне, имеет верхний предел измерений 10 МПа с погрешностью менее 0,005 %. Подавляющее большинство ртутных манометров имеют верхние пределы порядка 120 кПа и лишь изредка до 350 кПа. При измерении относительно небольших давлений (до 10-20 кПа) измерительная система жидкостных манометров заполняется водой, спиртом и другими легкими жидкостями. При этом диапазоны измерений обычно составляют до 1-2,5 кПа (микроманометры). Для еще более низких давлений разработаны способы увеличения чувствительности без применения сложных отсчетных устройств.

Микроманометр (рис. 5), состоит из чашки I, которая соединена с трубкой 2, установленной под углом а к горизонтальному уровню

I-I. Если при равенстве давлений pi и р 2 поверхности жидкости в чашке и трубке находились на уровне I-I, то увеличение давления в чашке 1 > Рг) вызовет опускание уровня жидкости в чашке и ее подъем в трубке. При этом высота столба жидкости Н 2 и его длина по оси трубки L 2 будут связаны соотношением Н 2 =L 2 sin а.

Учитывая уравнение неразрывности жидкости Н, F = Ь 2 /, нетрудно получить уравнение измерений микроманометра

p t -р 2 =Н р "g = L 2 р ч (sina + -), (2.5)

где Ь 2 - перемещение уровня жидкости в трубке вдоль ее оси; а - угол наклона трубки к горизонтали; остальные обозначения прежние.

Из уравнения (2.5) следует, что при sin а « 1 и f/F « 1 перемещение уровня жидкости в трубке во много раз превысит высоту столба жидкости, необходимую для уравновешивания измеряемого давления.

Чувствительность микроманометра с наклонной трубкой в соответствии с (2.5)

Как видно из (2.6), максимальная чувствительность микроманометра при горизонтальном расположении трубки (а = О)

т. е. в отношении площадей чашки и трубки больше, чем у U- образного манометра.

Второй способ увеличения чувствительности состоит в уравновешивании давления столбом двух несмешивающихся жидкостей. Двухчашечный манометр (рис. 6) заполняется жидкостями так, чтобы граница их

Рис. 6. Двухчашечный микроманометр с двумя жидкостями (р, > р 2)

раздела находилась в пределах вертикального участка трубки, примыкающей к чашке 2. При pi = р 2 давление на уровне I-I

Hi Pi 2 Р 2 (Pi >Р2)

Тогда при повышении давления в чашке 1 уравнение равновесия будет иметь вид

Ap=pt -р 2 =Д#[(Р1 -р 2) +f/F(Pi + Рг)] g, (2.7)

где рх - плотность жидкости в чашке 7; р 2 - плотность жидкости в чашке 2.

Кажущаяся плотность столба двух жидкостей

Рк = (Pi - Р2) + f/F (Pi + Рг) (2.8)

Если плотности Pi и р 2 имеют близкие друг другу значения, a f/F«. 1, то кажущаяся или эффективная плотность может быть снижена до величины p min = f/F i + р 2) = 2р х f/F.

ьр р к * %

где р к - кажущаяся плотность в соответствии с (2.8).

Так же, как и ранее, увеличение чувствительности указанными способами автоматически уменьшает диапазоны измерений жидкостного манометра, что ограничивает их применение областью микроманометр™. Учитывая также большую чувствительность рассматриваемых способов к влиянию температуры при точных измерениях, как правило, находят применение способы, основанные на точных измерениях высоты столба жидкости, хотя это и усложняет конструкции жидкостных манометров.

2.2. Поправки к показаниям и погрешности жидкостных манометров

В уравнения измерений жидкостных манометров в зависимости от их точности необходимо вводить поправки, учитывающие отклонения условий эксплуатации от условий градуировки, вид измеряемого давления и особенности принципиальной схемы конкретных манометров.

Условия эксплуатации определяются температурой и ускорением свободного падения в месте измерений. Под влиянием температуры изменяются как плотность жидкости, применяемой при уравновешивании давления, так и длина шкалы. Ускорение свободного падения в месте измерений, как правило, не соответствует его нормальному значению, принятому при градуировке. Поэтому давление

Р=Рп Две нити накаливания

Одна проволочная катушка используется в качестве нагревателя, другая же используется для измерения температуры через конвекцию.

Манометр Пирани (oдна нить)

Манометр Пирани состоит из металлической проволоки, открытой к измеряемому давлению. Проволока нагревается протекающим через нее током и охлаждается окружающим газом. При уменьшении давления газа, охлаждающий эффект тоже уменьшается и равновесная температура проволоки увеличивается. Сопротивление проволоки является функцией температуры: измеряя напряжение через проволоку и текущий через неё ток, сопротивление (и таким образом давление газа) может быть определено. Этот тип манометра был впервые сконструирован Марчелло Пирани.

Термопарный и термисторный манометры работают похожим образом. Отличие же в том, что термопара и термистор используются для измерения температуры нити накаливания.

Измерительный диапазон: 10−3 - 10 мм рт. ст. (грубо 10−1 - 1000 Па)

Ионизационный манометр

Ионизационные манометры - наиболее чувствительные измерительные приборы для очень низких давлений. Они измеряют давление косвенно через измерение ионов образующихся при бомбардировке газа электронами. Чем меньше плотность газа, тем меньше ионов будет образовано. Калибрирование ионного манометра - нестабильно и зависит от природы измеряемых газов, которая не всегда известна. Они могут быть откалибрированы через сравнение с показаниями манометра Мак Леода, которые значительно более стабильны и независимы от химии.

Термоэлектроны соударяются с атомами газа и генерируют ионы. Ионы притягиваются к электроду под подходящим напряжением, известным как коллектор. Ток в коллекторе пропорционален скорости ионизации, которая является функцией давления в системе. Таким образом, измерение тока коллектора позволяет определить давление газа. Имеется несколько подтипов ионизационных манометров.

Измерительный диапазон: 10−10 - 10−3 мм рт. ст. (грубо 10−8 - 10−1 Па)

Большинство ионных манометров делятся на два вида: горячий катод и холодный катод. Третий вид - это манометр с вращающимся ротором более чувствителен и дорог, чем первые два и здесь не обсуждается. В случае горячего катода электрически нагреваемая нить накала создаёт электронный луч. Электроны проходят через манометр и ионизуют молекулы газа вокруг себя. Образующиеся ионы собираются на отрицательно заряженном электроде. Ток зависит от числа ионов, которое, в свою очередь, зависит от давления газа. Манометры с горячим катодом аккуратно измеряют давление в диапазоне 10−3 мм рт. ст. до 10−10 мм рт. ст. Принцип манометра с холодным катодом тот же, исключая, что электроны образуются в разряде созданным высоковольтным электрическим разрядом. Манометры с холодным катодом аккуратно измеряют давление в диапазоне 10−2 мм рт. ст. до 10−9 мм рт. ст. Калибрирование ионизационных манометров очень чувствительно к конструкционной геометрии, химическому составу измеряемых газов, коррозии и поверхностным напылениям. Их калибровка может стать непригодной при включении при атмосферном и очень низком давлении. Состав вакуума при низких давлениях обычно непредсказуем, поэтому масс-спектрометр должен быть использован одновременно с ионизационным манометром для точных измерений.

Горячий катод

Ионизационный манометр с горячим катодом Баярда-Алперта обычно состоит из трёх электродов работающих в режиме триода, где катодом является нить накала. Три электрода - это коллектор, нить накала и сетка. Ток коллектора измеряется в пикоамперах электрометром. Разность потенциалов между нитью накала и землёй обычно составляет 30 В, в то время как напряжение сетки под постоянным напражением - 180-210 вольт, если нет опционоальной электронной бомбардировки, через нагрев сетки, которая может иметь высокий потенциал приблизительно 565 Вольт. Наиболее распространенный ионный манометр - это горячим катодом Баярда-Алперта с маленьким ионным коллектором внутри сетки. Стеклянный кожух с отверстием к вакууму может окружать электроды, но обычно он не используется и манометр встраивается в вакуумный прибор напрямую и контакты выводятся через керамическую плату в стене ваккумного устройства. Ионизационные манометры с горячим катодом могут быть повреждены или потерять калибровку если они включаются при атмосферном давлении или даже при низком вакууме. Измерения ионизационных манометров с горячим катодом всегда логарифмичны.

Электроны испущенные нитью накала движутся несколько раз в прямом и обратном направлении вокруг сетки пока не попадут на неё. При этих движениях, часть электронов сталкивается с молекулами газа и формирует электрон-ионные пары (электронная ионизация). Число таких ионов пропорционально плотности молекул газа умноженной на термоэлектронный ток, и эти ионы летят на коллектор, формируя ионный ток. Так как плотность молекул газа пропорциональна давлению, давление оценивается через измерение ионного тока.

Чувствительность к низкому давлению манометров с горячим катодом ограничена фотоэлектрическим эффектом. Электроны, ударяющие в сетку, производят рентгеновские лучи, которые производят фотоэлектрический шум в ионном коллекторе. Это ограничивает диапазон старых манометров с горячим катодом до 10−8 мм рт. ст. и Баярда-Алперта приблизительно к 10−10 мм рт. ст. Дополнительные провода под потенциалом катода в луче обзора между ионным коллектором и сеткой предотвращают этот эффект. В типе извлечения ионы притягиваются не проводом, а открытым конусом. Поскольку ионы не могут решить, какую часть конуса ударить, они проходят через отверстие и формируют ионный луч. Этот луч иона может быть передан нa кружку Фарадея.