4 поворотная ось. Конструкция портала и вертикальной оси Z гравировально-фрезерного станка с ЧПУ

Основы эффективного программирования

Работа с осью вращения (4-ой координатой)

Нередки случаи, когда на трехкоординатный станок с ЧПУ дополнительно монтируют управляемый поворотный стол (делительную головку). Управляемый поворотный стол – это устройство, которое способно поворачивать закрепленную в нем деталь на требуемый угол по определенной команде. Обычно 4-ая ось управляется при помощи адресов А или В, а числовое значение определяет угол поворота в градусах.

Рис. 10.4. Управляемые поворотные столы HAAS

Существуют два варианта работы с управляемым поворотным столом. Первый вариант – нам просто необходимо повернуть его на определенный угол и затем выполнить какую-либо технологическую операцию (индексация). Второй вариант – нужно выполнить фрезерование одновременно с поворотом стола. В этом случае мы имеем синхронное линейное перемещение исполнительного органа станка по трем (или менее) координатам с вращением стола. При этом СЧПУ станка должна поддерживать данный вид интерполяции.

Для управления поворотным столом достаточно в кадр с линейной интерполяцией, позиционированием или постоянным циклом добавить адрес А (В):

  • G00 X_Y_Z_A_ – позиционирование;
  • G01 X_Y_Z_A_F_ – линейная интерполяция.

Типичный формат для работы с постоянным циклом:

G81 Х0 Y0 Z-5 А0 F45 R0.5
А15
А30
А45
G80

Программирование 4-ой оси не должно вызвать у вас особых трудностей. Прос то нужно учесть несколько технических особенностей при работе с управляемым поворотным столом. Во-первых, поворотный стол может вращаться как в положительном, так и в отрицательном направлении. Направление вращения и соответствующий знак определяются по правилу правой руки. Во-вторых, поворот стола может быть запрограммирован как в абсолютных, так и в относительных координатах. В-третьих, у многих станков существует ограничение на числовое значение угла поворота. Например, вам нужно повернуть стол на 400°, а СЧПУ позволяет указывать угол не более 360°. Придется запрограммировать дополнительный кадр с углом в 40° относительно предыдущего положения стола. Ну и напоследок учтите, что чем дальше мы удалимся от центра вращения, тем большей будет ошибка линейного перемещения.

Следующие примеры помогут вам понять, как программируется дополнительная ось вращения. В первом случае необходимо просверлить отверстия на периферии диска. Во втором случае нужно получить винтовую канавку на поверхности вала, используя одновременное линейное перемещение фрезы и вращение поворотного стола.

Рис. 10.5. Требуется просверлить 4 отверстия на периферии диска, закрепленного в кулачках поворотного стола. Чтобы просверлить такие отверстия, нужно поворачивать стол через 90°

Рис. 10.6. Необходимо получить винтовую канавку на поверхности вала. Вал закреплен в кулачках управляемого поворотного стола. Самый простой способ обработки такой канавки – расчет при помощи CAD/САМ-системы

% O0001 N100 G21 N102 G0 G17 G40 G49 G80 G90 N104 T1 M6 N106 G0 G90 G54 X-16.612 Y0. A-2.993 S1000 M3 N108 G43 H1 Z125.171 M8 N110 Z35.605 A-10.578 N112 G1 Z33.932 A13.459 F200. N234 G0 Z123.253 A3.674 N236 M5 N238 G91 G28 Z0. M9 N240 G28 X0. Y0. A0. N242 M30 %

После рассмотрения вариантов конструкции длинной оси - X - можно перейти к рассмотрению оси Y. Ось Y в виде портала - наиболее популярное решение в сообществе хоббийных станкостроителей, и неспроста. Это простое и вполне рабочее, хорошо себя зарекомендовавшее, решение. Однако, и в нем есть подводные камни и моменты, которые надо уяснить перед проектированием. Для портала крайне важна устойчивость и правильный баланс - это снизит износ направляющих и передач, снизит прогиб балки под нагрузкой, уменьшит вероятность подклинивания при перемещении. Для определения правильной компоновки посмотрим на силы, приложенные к порталу во время работы станка.

Рассмотрите схему хорошенько. На ней отмечены следующие размеры:

  • D1 - расстояние от области резания до цента расстояния между направляющими балки портала
  • D2 - расстояние между приводным винтом оси X до нижней направляющей балки
  • D3 - расстояние между направляющими оси Y
  • D4 - расстояние между линейными подшипниками оси X

Теперь рассмотрим действующие усилия. На картинке портал перемещается слева направо за счет вращения приводного винта оси X(расположен внизу), который приводит в движение гайку, зафиксированную снизу на портале. Шпиндель опущен и фрезерует заготовку, при этом появляется сила противодействия, направленная навстречу движению портала. Эта сила зависит от ускорения портала, скорости подачи, вращения шпинделя и силы отдачи с фрезы. Последняя зависит от собственно фрезы(типа, остроты, наличия смазки и т.п.), скорости вращения, материала и прочих факторов. Определению величины отдачи с фрезы посвящено множество литературы по подбору режимов резания, в настоящее время нам достаточно знать, что при движении портала возникает сложносоставная сила противодействия F. Сила F, приложенная к зафиксированному шпинделю, по конструктивным элементам прикладывается к балке портала в виде момента A = D1 * F. Данный момент может быть разложен на пару равных по модулю, но разнонаправленных сил A и B, приложенных к направляющим #1 и #2 балки портала. По модулю Сила А = Сила B = Момент А / D3. Как отсюда видно, силы, действующие на направляющие балки уменьшаются, если увеличивать D3 - расстояние между ними. Уменьшение сил снижает износ направляющих и крутильную деформацию балки. Также, с уменьшением силы А, уменьшается и момент B, приложенный к боковинам портала: Момент B = D2 * Сила A. Из-за большого момента B боковины, будучи не способными согнуться строго в плоскости, начнут виться и изгибаться. Момент B необходимо уменьшать также потому, что необходимо стремиться к тому, чтобы нагрузка всегда распределялась по всем линейным подшипникам равномерно - это снизит упругие деформации и вибрации станка,а, значит, повысит точность.

Момент B, как уже было сказано, можно уменьшить несколькими путями -

  1. уменьшить силу A.
  2. уменьшить плечо D3

Задача - сделать силы D и C сделать как можно более равными. Эти силы складываются из пары сил момента B и веса портала. Для правильного распределения веса надо рассчитать центр масс портала и разместить его точно между линейными подшипниками. Именно этим объясняется распространенная зигзагообразная конструкция боковин портала - это сделано для того, чтобы сместить направляющие назад и приблизить тяжелый шпиндель к подшипникам оси X.

Итого, при проектировании оси Y учитывайте следующие принципы:

  • Старайтесь минимизировать расстояние от приводного винта/рельсов оси X до направляющих оси Y - т.е. минимизируйте D2.
  • Снижайте по возможности вылет шпинделя относительно балки, минимизируйте расстояние D1 от области реза до направляющих. Оптимальным ходом по Z обычно считается 80-150 мм.
  • Снижайте по возможности высоту всего портала - высокий портал склонен к резонансу.
  • Рассчитывайте заранее центр масс всего портала, включая шпиндель и разрабатывайте стойки портала таким образом, чтобы центр масс располагался точно между каретками направляющих оси X и как можно ближе к ходовому винту оси X.
  • Разносите направляющие балки портала подальше - максимизируйте D3 для снижения момента, приложенного к балке.

КОНСТРУКЦИЯ ОСИ Z

Следующим шагом является выбор структуры наиболее важной части станка - оси Z. Ниже приведены 2 примера конструктивного исполнения.


Как было уже упомянуто, при строительстве станка с ЧПУ необходимо учитывать силы, возникающие при работе. И первым шагом на этом пути является отчетливое понимание природа, величины и направления этих сил. Рассмотрим схему ниже:

Силы, действующие на ось Z



На схеме отмечены следующие размеры:

  • D1 = расстояние между направляющими оси Y
  • D2 = расстояние вдоль направляющих между линейными подшипниками оси Z
  • D3 = длина подвижной платформы(базовой пластины), на которую собственно монтируется шпиндель
  • D4 = ширина всей конструкции
  • D5 = расстояние между направляющими оси Z
  • D6 = толщина базовой пластины
  • D7 = вертикальное расстояние от точки приложение сил реза до середины между каретками по оси Z

Посмотрим на вид спереди и отметим, что все конструкция перемещается вправо по направляющим оси Y. Базовая пластина выдвинута максимально вниз, фреза заглублена в материал и и при фрезеровке возникает сила противодействия F, направленная, естественно, противоположно направлению движения. Величина этой силы зависит от оборотов шпинделя, числа заходов фрезы, скорости подачи, материала, остроты фрезы и т.п.(напоминаем, что некоторые предварительные расчеты того, какие материалы будут фрезероваться, а значит, и оценка сил реза, должна быть сделана перед началом проектирования станка). Как влияет данная сила на ось Z? Будучи приложена на расстоянии от места, где закреплена базовая пластина, эта сила создает крутящий момент А = D7 * F. Момент, приложенный к базовой пластине, через линейные подшипники оси Z передается в виде пар поперечных сил на направляющие. Силы, преобразованная из момента, обратно пропорциональная расстоянию между точками приложения - следовательно, для снижения усилий, изгибающих направляющие, необходимо увеличивать расстояния D5 и D2.

Расстояние D2 также участвует в случае фрезерования вдоль оси X - при этом возникает аналогичная картина, только возникающий момент приложен на заметно большем рычаге. Этот момент старается провернуть шпиндель и базовую пластину, а возникающие силы перпендикулярны плоскости пластины. При этом момент равен силе реза F, умноженной на расстояние от точки реза до первой каретки - т.е. чем больше D2, тем меньше момент(при неизменной длине оси Z).

Отсюда следует правило: при прочих равных надо стараться обязательно разнести каретки оси Z подальше друг от друга, особенно по вертикали - это значительно увеличит жесткость. Возьмите за правило никогда не делать расстояние D2 меньше 1/2 длины базовой пластины. Также убедитесь, что толщина платформы D6 достаточна, чтобы обеспечить желаемую жесткость - для этого необходимо рассчитать максимальные рабочие усилия на фрезе и смоделировать прогиб пластины в САПР.

Итого , придерживайтесь следующих правил при конструировании оси Z портального станка:

  • максимизируйте D1 - это снизит момент(а следовательно, силы), действующий на стойки портала
  • максимизируйте D2 - это снизит момент, действующий на балку портала и ось Z
  • минимизируйте D3(в пределах заданного хода по Z)- это снизит момент, действующий на балку и стойки портал.
  • максимизируйте D4(расстояние между каретками оси Y) - это снизит момент, действующий на балку портала.

В привычной нам трехмерной системе координат есть три взаимно перпендикулярные оси (X, Y, Z), которые образуют базис.
Большинство станков с ЧПУ в начальной -базовой версии, производят только 3-х осевую обработку.
Однако для некоторых изделий сложной формы этого недостаточно. За счёт дополнительной модификации - установки поворотной оси, гравировально-фрезерные станки с ЧПУ способны производить 4-х осевую обработку.
Четырехосевая обработка на гравировально -фрезерном станке на станке с ЧПУ, с использованием поворотной оси- это в общем случае непрерывная обработка, как симметричных, так и несимметричных тел.
В отличие от обычной 3-х осевой обработки 3D модели, где деталь должна крепиться с одной стороны, к столу станка с ЧПУ, 4-х осевая фрезеровка даёт возможность обрабатывать изделие со всех сторон непрерывно, без дополнительных операций по перестановки детали на рабочем столе. Это позволяет получать изделия сложной формы. Изготовление балясин, капителей, колонн, столбов, ножек столов и стульев , шахматных фигур, а так -же различных статуэток, колец другой ювелирной и рекламно-сувенирной продукции это наиболее часто встречающиеся примеры такой обработки.
Многообразие форм, контуров - любой полет фантазии найдет воплощение при обработке деталей на гравировально - фрезерном станке с использованием 4-й поворотной оси.
Основной опцией модификации, как упоминалось ранее, 3-х осевого станка под 4-х осевой, является использование поворотной оси, рисунки 1 и 2.

На рисунке 1 представлена фотография поворотной оси для станка ЧПУ, которая позволяет вести многостороннюю обработку.

Рисунок 1 Поворотная ось для станка с ЧПУ.

фрезерный ЧПУ моделист3040

Видео резки сложной фигуры с использованием поворотной оси на примере шахматного коня

Установка поворотной оси на 3х осевой фрезерный ЧПУ cnc-3040al300

Рисунок 2 4-х осевой фрезерный станок с ЧПУ

Кроме этого, для непрерывной обработки по 4-м осям система ЧПУ станка должна ещё иметь возможность управлять установленной на нём повторной осью. Поэтому 4-х осевая обработка подразумевает не только наличие поворотной оси, но и использование соответствующей системы ЧПУ. Чаще всего для этого используется контроллер шаговых двигателей с 4-мя каналами управления или проще -4-х осевой контроллер. Пример контроллера приведён на рисунке 3. Канал А данного контроллера может использоваться для управления поворотной осью установленной на станке.

Рисунок 3.

Существует два типа 4-х координатной обработки: первый -непрерывная и второй - позиционная обработка (обработка с индексированием). Непрерывная обработка - в этом случае фреза одновременно перемещаются по всем степеням свободы.
Позиционная обработка - поворотная ось применяются только для изменения положения заготовки, а остальные операции производятся в режиме трехмерной обработки.

Для работы с поворотной осью необходимо произвести настройку программы управления. Ниже приведены настройки для Mach3 для поворотных осей с передаточным числом 6:1 и 4:1. На рисунке 4 приведены установки выводов LPT- порта для контроллера шаговых двигателей в алюминиевом корпусе показанного на рисунке 3.


Рисунок 4.

Рисунок 5 - настройки для поворотной оси с передаточным числом 4:1.


Рисунок 5.

Рисунок 6 — настройки для поворотной оси с передаточным числом 6:1.


Рисунок 6.


Рисунок 7.

Управляющие программы для работы с использованием многосторонней обработки возможна в программах DeskProto, PowerMill, и др.

На рисунке 8 показан результат многосторонней обработки на 4х осевом фрезерном чпу CNC-3040AL2

Рисунок 8. Многосторонняя обработка на 4х осевом настольном ЧПУ с использованием поворотной оси