Поверхностное натяжение жидкости. Давление Лапласа

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Курсовая работа

По курсу «Подземная гидромеханика»

Тема: «Вывод уравнения Лапласа. Плоские задачи теории фильтрации»


Введение

1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа.

2.1 Приток к совершенной скважине

2.1.1 Фильтрационный поток от нагнетательной скважины к эксплуатационной

2.1.2 Приток к группе скважин с удаленным контуром питания

2.1.3 Приток к скважине в пласте с прямолинейным контуром питания

2.1.4 Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы

2.1.5 Приток к скважине в пласте с произвольным контуром питания

2.1.6 Приток к бесконечным цепочкам и кольцевым батареям скважин

2.1.6.1 Приток к скважинам кольцевой батареи

2.1.6.2 Приток к прямолинейной батареи скважин

2.1.7 Метод эквивалентных фильтрационных сопротивлений

Литература


Введение

Подземная гидромеханика - наука о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах - теоретическая основа разработки нефтяных и газовых месторождений, одна из профилирующих дисциплин в учебном плане промыслового и геологического факультетов нефтяных вузов.

В основе подземной гидравлики лежит представление о том, что нефть, газ и вода, заключенные в пористой среде, составляют единую гидравлическую систему.

Теоретической основой ПГД является теория фильтрации - наука, описывающая данное движение флюида с позиций механики сплошной среды, т.е. гипотезы сплошности (неразрывности) течения.

Особенностью теории фильтрации нефти и газа в природных пластах является одновременное рассмотрение процессов в областях, характерные размеры которых различаются на порядки: размер пор (до десятков микрометров), диаметр скважин (до десятков сантиметров), толщины пластов (до десятков метров), расстояния между скважинами (сотни метров), протяженность месторождений (до сотен километров).

В данной курсовой работе выводится основное уравнение Лапласа и рассматриваются плоские задачи теории фильтрации, а так же их решение.


1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа

При выводе дифференциального уравнения движения сжимаемой жидкости исходными уравнениями являются следующие:

закон фильтрации жидкости; в качестве закона фильтрации принимаем линейный закон фильтрации, выражающийся формулами (3.1)

, (3.1)

уравнение неразрывности (3.2)

, (3.2)

уравнение состояния. Для капельной сжимаемой жидкости уравнение состояния может быть представлено в виде (3.3)

, (3.3) - плотность жидкости при атмосферном давлении .

Подставляя в уравнение неразрывности (3.2) вместо проекций скорости фильтрации vx, vy и vz их значения из линейного закона, выражающегося формулой (3.1), получим:

, (3.4)

уравнения состояния (3.3) имеем:

, (3.5) , , . (3.6)

Подставляя эти значения частных производных

, и в уравнение (3.4), получим:

Вводя оператор Лапласа


уравнение (3.7) более кратко можно написать в виде

, (3.8)

Учитывая, что

, (3.9)

уравнение (3.7) можно приближенно представить в виде:

,(3.10)

Уравнение (3.7) или приближенное заменяющее его уравнение (3.10) есть искомое дифференциальное уравнение неустановившегося движения сжимаемой жидкости в пористой среде. Упомянутые уравнения имеют вид «уравнения теплопроводности», интегрирование которого при различных начальных и граничных условиях рассматривается в каждом курсе математической физики.

Решение различных задач о неустановившемся движении однородной сжимаемой жидкости в пористой среде, основанное на интегрировании уравнения (3.7) при различных начальных и граничных условиях, дается в книгах В. Н. Щелкачева, И. А. Чарного и М.Маскета. При установившемся движении сжимаемой жидкости

и вместо уравнения (3.7) имеем: , (3.11)

Уравнение (3.11) называется уравнением Лапласа.

При установившейся и неустановившейся фильтрации несжимаемой жидкости плотность жидкости постоянна следовательно, величина, стоящая в правой части уравнения (3.4), равна нулю. Сокращая левую часть этого уравнения на постоянную

и выполнив дифференцирование, получим: , (3.12)

Таким образом, установившаяся и неустановившаяся фильтрация несжимаемой жидкости описывается уравнением Лапласа (3.12).


2. Плоские задачи теории фильтрации

При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:

1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Последнее означает, например, невозможность установления нулевого или отрицательного забойного давления.

2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.

Замечено, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.4.1). Увеличение дебита при этом требует понижения забойного давления.

Для решения поставленных задач решим задачу плоской интерференции (наложения) скважин. Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.

Решение задач будем строить на принципе суперпозиции (наложения) потоков. Основанный на этом принципе метод суперпозиции заключается в следующем.

При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.4.2b).

Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 4.2a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал

,(4.1)

Локальная теорема Муавра -Лапласа. 0 и 1, то вероятность Р т п того , что событие А произойдет т раз в п независимых испытаниях при достаточно большом числе п, приближенно равна

- функция Гаусса и

Чем больше и, тем точнее приближенная формула (2.7), называемая локальной формулой Муавра-Лапласа. Приближенные значения вероятности Р тпУ даваемые локальной формулой (2.7), на практике используются как точные при пру порядка двух и более десятков, т.е. при условии пру > 20.

Для упрощения расчетов, связанных с применением формулы (2.7), составлена таблица значений функции /(х) (табл. I, приведенная в приложениях). Пользуясь этой таблицей, необходимо иметь в виду очевидные свойства функции /(х) (2.8).

  • 1. Функция /(х) является четной , т.е. /(-х) = /(х).
  • 2. Функция /(х) - монотонно убывающая при положительных значениях х, причем при х -> со /(х) -» 0.
  • (Практически можно считать, что уже при х > 4 /(х) « 0.)

[> Пример 2.5. В некоторой местности из каждых 100 семей 80 имеют холодильники. Найти вероятность того, что из 400 семей 300 имеют холодильники.

Решение. Вероятность того, что семья имеет холодильник, равна р = 80/100 = 0,8. Так как п = 100 достаточно велико (условие пру = = 100 0,8(1-0,8) = 64 > 20 выполнено), то применяем локальную формулу Муавра - Лапласа.

Вначале определим по формуле (2.9)

Тогда по формуле (2.7)

(значение /(2,50) найдено по табл. I приложений). Весьма малое значение вероятности /300,400 не должно вызывать сомнения, так как кроме события

«ровно 300 семей из 400 имеют холодильники» возможно еще 400 событий: «0 из 400», «1 из 400»,..., «400 из 400» со своими вероятностями. Все вместе эти события образуют полную группу, а значит, сумма их вероятностей равна единице. ?

Пусть в условиях примера 2.5 необходимо найти вероятность того, что от 300 до 360 семей (включительно) имеют холодильники. В этом случае по теореме сложения вероятность искомого события

В принципе вычислить каждое слагаемое можно по локальной формуле Муавра - Лапласа, но большое количество слагаемых делает расчет весьма громоздким. В таких случаях используется следующая теорема.

Интегральная теорема Муавра - Лапласа. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того , что число т наступления события А в п независимых испытаниях заключено в пределах от а до Ь (включительно ), при достаточно большом числе п приближенно равна

- функция (или интеграл вероятностей) Лапласа",

(Доказательство теоремы приведено в параграфе 6.5.)

Формула (2.10) называется интегральной формулой Муавра-Лапласа. Чем больше п, тем точнее эта формула. При выполнении условия пру > > 20 интегральная формула (2.10), так же как и локальная, дает, как правило, удовлетворительную для практики погрешность вычисления вероятностей.

Функция Ф(дг) табулирована (см. табл. II приложений). Для применения этой таблицы нужно знать свойства функции Ф(х).

1. Функция ф(х) нечетная, т.е. Ф(-х) = -Ф(х).

? Сделаем замену переменной? = -г. Тогда (к =

= -(12. Пределами интегрирования но переменной 2 будут 0 и х. Получим

поскольку величина определенного интеграла не зависит от обозначения переменной интегрирования. ?

2. Функция Ф(х)монотонно возрастающая , причем при х -> +со ф(.г) -> 1 (практически можно считать, что уже при х > 4 Ф(х)~ 1).

Так как производная интеграла по переменному верхнему пределу равна подынтегральной функции при значении верхнего предела, г.с.

, и всегда положительна, то Ф(х) монотонно возрастает

на всей числовой прямой.

Сделаем замену переменнойтогда пределы интегрирования не меняются и

(так как интеграл от четной функции

Учитывая, что (интеграл Эйлера - Пуассона), получим

?

О Пример 2.6. По данным примера 2.5 вычислить вероятность того, что от 300 до 360 (включительно) семей из 400 имеют холодильники.

Решение. Применяем интегральную теорему Муавра - Лапласа {пру = 64 > 20). Вначале определим по формулам (2.12)

Теперь по формуле (2.10), учитывая свойства Ф(.т), получим

(по табл. II приложений ?

Рассмотрим следствие интегральной теоремы Муавра - Лапласа. Следствие. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и I, то при достаточно большом числе п независимых испытаний вероятность того, что:

а) число т наступлений события А отличается от произведения пр не более чем на величину е > 0 {по абсолютной величине), т.е.

б) частость т/п события А заключена в пределах от а до р (вклю - чительноУ , т.е.

в) частость события А отличается от его вероятности р не более чем на величину А > 0 {по абсолютной величине ), т.е.

А) Неравенство |/?7-7?/?| равносильно двойному неравенству пр-е Поэтому по интегральной формуле (2.10)

  • б) Неравенство а равносильно неравенству а при а = па и Ь = /?р. Заменяя в формулах (2.10), (2.12) величины а и Ь полученными выражениями, получим доказываемые формулы (2.14) и (2.15).
  • в) Неравенство mjn- р равносильно неравенству т-пр Заменяя в формуле (2.13) г = Ап, получим доказываемую формулу (2.16). ?

[> Пример 2.7. По данным примера 2.5 вычислить вероятность того, что от 280 до 360 семей из 400 имеют холодильники.

Решение. Вычислить вероятность Р 400 (280 т пр = 320. Тогда по формуле (2.13)

[> Пример 2.8. По статистическим данным, в среднем 87% новорожденных доживают до 50 лет.

  • 1. Найти вероятность того, что из 1000 новорожденных доля (частость) доживших до 50 лет будет: а) заключена в пределах от 0,9 до 0,95; б) будет отличаться от вероятности этого события не более чем на 0,04 (но абсолютной величине).
  • 2. При каком числе новорожденных с надежностью 0,95 доля доживших до 50 лет будет заключена в границах от 0,86 до 0,88?

Решение. 1, а) Вероятность р того, что новорожденный доживет до 50 лет, равна 0,87. Так как п = 1000 велико (условие прд =1000 0,87 0,13 = = 113,1 > 20 выполнено), то используем следствие интегральной теоремы Муавра - Лапласа. Вначале определим по формулам (2.15)

Теперь по формуле (2.14)

1, б) По формуле (2.16)

Таккак неравенство равносильно неравенству

полученный результат означает, что практически достоверно, что от 0,83 до 0,91 числа новорожденных из 1000 доживут до 50 лет. ?

2. По условию или

По формуле (2.16) при А = 0,01

По табл. II приложений Ф(Г) = 0,95 при Г = 1,96, следовательно,

откуда

т.е. условие (*) может быть гарантировано при существенном увеличении числа рассма триваемых новорожденных до п = 4345. ?

  • Доказательство теоремы приведено в параграфе 6.5. Вероятностный смысл величинпр, прс{ устанавливается в параграфе 4.1 (см. замечание на с. 130).
  • Вероятностный смысл величины рч/п устанавливается в параграфе 4.1.

В этой главе мы изучим явления, происходящие вблизи поверхности раздела между двумя сплошными средами (в действительности, конечно, соприкасающиеся тела разделены узким переходным слоем, который вследствие его весьма малой толщины можно рассматривать как поверхность).

Если поверхность раздела двух сред искривлена, то вблизи нее давления в обеих средах различны. Для определения этой разности давлений (называемой поверхностным давлением) напишем условие термодинамического равновесия обоих тел друг с другом с учетом свойств поверхности их раздела.

Пусть поверхность раздела подвергается бесконечно малому смещению. В каждой точке несмещенной поверхности проведем нормаль к ней. Отрезок нормали, заключенный между ее пересечениями с несмещенной и смещенной поверхностями, обозначим посредством Тогда объем каждого элемента пространства, заключенного между поверхностями, есть где элемент поверхности. Пусть - давления в первой и второй средах и будем считать положительным, если смещение поверхности раздела производится, скажем, в сторону второй среды. Тогда работа, которую надо произвести для описанного изменения объема, равна

Полная работа смещения поверхности получится путем прибавления сюда еще работы, связанной с изменением площади самой этой поверхности. Эта часть работы пропорциональна, как известно, изменению площади поверхности и равна , где а - поверхностное натяжение. Таким образом, полная работа равна

Условие термодинамического равновесия определяется, как известно, обращением в нуль.

Тогда элементы длины на поверхности, проведенные в плоскостях ее главных сечений, получают при бесконечно малом смещении поверхности приращения, равные соответственно надо рассматривать как элементы дуги окружностей с радиусами . Поэтому элемент поверхности будет равен после смещения

т. е. изменится на величину

Отсюда видно, что полное изменение площади поверхности раздела есть

Подставляя полученные выражения в (61,1) и приравнивая нулю, получим условие равновесия в виде

Это условие должно выполняться при произвольном бесконечно малом смещении поверхности, т. е. при произвольном Поэтому необходимо, чтобы стоящее под интегралом в скобках выражение тождественно обращалось в нуль, т. е.

Это и есть формула (формула Лапласа), определяющая поверхностное давление. Мы видим, что если положительны, то . Это значит, что из двух тел давление больше в том, поверхность которого выпукла. Если т. е. поверхность раздела плоская, то давления в обоих телах, как и должно было быть, одинаковы.

Применим формулу (61,3) для исследования механического равновесия соприкасающихся тел. Предположим, что ни на поверхность раздела, ни на сами тела не действуют никакие внешние силы. Тогда вдоль каждого из тел давление постоянно. Имея в виду формулу (61,3), мы можем поэтому написать условие равновесия в виде

(61,4)

Таким образом, сумма обратных радиусов кривизны должна быть постоянной вдоль всей свободной поверхности раздела. Если вся поверхность свободна, то условие (60,4) означает, что поверхность должна иметь шарообразную форму (например, поверхность маленькой капли, влиянием силы тяжести на которую можно пренебречь). Если же поверхность закреплена вдоль какой-нибудь линии (например, у жидкой пленки на твердой рамке), то ее форма является более сложной.

В применении к равновесию тонких пленок жидкости, закрепленных на твердой рамке, в условии (61,4) справа должен стоять нуль. Действительно, сумма должна быть одинаковой вдоль всей свободной поверхности пленки и в то же время на двух своих сторонах она должна иметь противоположный знак, поскольку если одна сторона выпукла, то другая вогнута с теми же радиусами кривизны, которые, однако, должны считаться теперь отрицательными. Отсюда следует, что условие равновесия тонкой пленки есть

Рассмотрим теперь условие равновесия на поверхности тела, находящегося в поле тяжести. Предположим для простоты, что второй средой является просто атмосфера, давление которой на протяжении размеров тела можно считать постоянным. В качестве самого тела рассмотрим несжимаемую жидкость. Тогда имеем , а давление в жидкости равно согласно (координата z отсчитывается вертикально вверх). Таким образом, условие равновесия приобретает вид

(61,6)

Надо, впрочем, отметить, что для определения равновесной формы поверхности жидкости в конкретных случаях обычно бывает удобным пользоваться условием равновесия не в виде (61,6), а непосредственно решая вариационную задачу о минимуме нолной свободной энергии. Внутренняя свободная энергия жидкости зависит только от объема, но не от формы поверхности. От формы зависит, во-первых, поверхностная свободная энергия

и, во-вторых, энергия во внешнем поле (поле тяжести), равная

Таким образом, условие равновесия можно написать в виде

Определение минимума должно производиться при дополнительном условии

(61,8)

выражающем неизменность полного объема жидкости.

Постоянные входят в условия равновесия (61,6-7) только в виде отношения . Это отношение имеет размерность квадрата длины. Длину

называют капиллярной постоянной. Форма поверхности жидкости определяется только этой величиной. Если капиллярная постоянная велика (по сравнению с размерами тела), то при определении формы поверхности можно пренебречь полем тяжести.

Для того чтобы определить из условия (61,4) или (61,6) форму поверхности, надо иметь формулы, определяющие радиусы кривизны по форме поверхности. Эти формулы известны из дифференциальной геометрии, но имеют в общем случае довольно сложный вид. Они значительно упрощаются в том случае, когда форма поверхности лишь слабо отклоняется от плоской. Мы выведем здесь соответствующую приближенную формулу непосредственно, не пользуясь общей формулой дифференциальной геометрии.

Пусть - уравнение поверхности; мы предполагаем, что везде мало, т. е. что поверхность слабо отклоняется от плоскости Как известно, площадь f поверхности определяется интегралом

или приближенно при малых

Определим вариацию

Интегрируя по частям, находим:

Сравнив это выражение с (61,2), получаем:

Это и есть искомая формула, определяющая сумму обратных радиусов кривизны слабо изогнутой поверхности.

При равновесии трех соприкасающихся друг с другом фаз их поверхности раздела устанавливаются таким образом, чтобы была равна нулю равнодействующая трех сил поверхностного натяжения, действующих на общую линию соприкосновения трех сред. Это условие приводит к тому, что поверхности раздела должны пересекаться друг с другом под углами (так называемые краевые углы), определяющимися значениями поверхностного натяжения.

Наконец, остановимся на вопросе о граничных условиях, которые должны соблюдаться на границе двух движущихся жидкостей при учете сил поверхностного натяжения. Если поверхностное натяжение не учитывается, то на границе двух жидкостей имеем:

что выражает равенство сил трения, действующих на поверхности обеих жидкостей. При учете поверхностного натяжения надо написать в правой части этого условия дополнительную силу, определяемую по величине формулой Лапласа и направленную по нормали к поверхности:

Иначе можно написать это уравнение в виде

Условие (61,13), однако, еще не является наиболее общим. Дело в том, что коэффициент поверхностного натяжения а может оказаться не постоянным вдоль поверхности (например, в результате непостоянства температуры). Тогда наряду с нормальной силой (исчезающей в случае плоской поверхности) появляется некоторая дополнительная сила, направленная тангенциально к поверхности. Аналогично тому как при неравномерном давлении появляется объемная сила, равная (на единицу объема) - здесь имеем для тангенциальной силы действующей на единицу площади поверхности раздела, .

Мы пишем здесь градиент со знаком плюс перед ним, а не со знаком минус, как в силе - в связи с тем, что силы поверхностного натяжения стремятся уменьшить площадь поверхности, между тем как силы давления стремятся увеличить объем тела. Прибавляя эту силу к правой стороне равенства (61,13), получим граничное условие

(единичный вектор нормали направлен внутрь первой жидкости). Отметим, что это условие может быть выполнено только у вязкой жидкости. Действительно, у идеальной жидкости тогда левая сторона равенства (61,14) будет представлять собой вектор, направленный по нормали, а правая - вектор, направленный по касательной к поверхности. Но такое равенство невозможно (за исключением, разумеется, тривиального случая, когда эти величины равны нулю каждая в отдельности).

Соприкасающаяся с другой средой, находится в особых условиях по сравнению с остальной массой жидкости. Силы, действующие на каждую молекулу поверхностного слоя жидкости, граничащей с паром, направлены в сторону объёма жидкости, то есть внутрь жидкости. Вследствие этого для перемещения молекулы из глубины жидкости на поверхность требуется совершить работу. Если при постоянной температуре увеличить площадь поверхности на бесконечно малую величину dS , то необходимая для этого работа будет равна . Работа по увеличению площади поверхности совершается против сил поверхностного натяжения, которые стремятся сократить, уменьшить поверхность. Поэтому работа самих сил поверхностного натяжения по увеличению площади поверхности жидкости будет равна:

Здесь коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и определяется величиной работы сил поверхностного натяжения по изменению площади поверхности на единицу. В СИ коэффициент поверхностного натяжения измеряется в Дж/м 2 .

Молекулы поверхностного слоя жидкости обладают избыточной по сравнению с глубинными молекулами, потенциальной энергией, которая прямо пропорциональна площади поверхности жидкости:

Приращение потенциальной энергии поверхностного слоя связано только с приращением площади поверхности: . Силы поверхностного натяжения - консервативные силы , поэтому выполняется равенство: . Силы поверхностного натяжения стремятся уменьшить потенциальную энергию поверхности жидкости. Обычно та энергия, которая может быть преобразована в работу, называется свободной энергией U S . Поэтому можно записать. Используя понятие свободной энергии, можно записать формулу (6.36) так: . Используя последнее равенство можно определить коэффициент поверхностного натяжения как физическую величину, численно равную свободной энергии единицы площади поверхности жидкости.

Действие сил поверхностного натяжения можно наблюдать с помощью простого эксперимента над тонкой плёнкой жидкости (например, мыльного раствора), которая обволакивает проволочный прямоугольный каркас, у которого одна сторона может перемешаться (рис.6.11). Предположим, что на подвижную сторону, длиной l, действует внешняя сила F B , перемещающая подвижную сторону рамки равномерно на очень малое расстояние dh. Элементарная работа этой силы будет равна , так как сила и перемещение сонаправлены. Поскольку плёнка имеет две поверхности и, то вдоль каждой из них направлены силы поверхностного натяжения F, векторная сумма которых равна внешней силе. Модуль внешней силы равен удвоенному модулю одной из сил поверхностного натяжения: . Минимальная работа, совершаемая внешней силой, равна по величине сумме работ сил поверхностного натяжения: . Величина работы силы поверхностного натяжения будет определяться так:


, где . Отсюда . То есть коэффициент поверхностногонатяжения может быть определён как величина, равная силе поверхностного натяжения, действующей по касательной к поверхности жидкости, приходящейся на единицу длины линии раздела. Силы поверхностного натяжения стремятся сократить площадь поверхности жидкости. Это заметно для малых объёмов жидкости, когда она принимает форму капель-шариков. Как известно, именно сферическая поверхность имеет минимальную площадь при данном объёме. Жидкость, взятая в большом количестве, под действием силы тяжести растекается по поверхности, на которой она находится. Как известно, сила тяжести зависит от массы тела, поэтому её величина по мере уменьшения массы тоже уменьшается и при определённой массе становится сравнимой или даже много меньше величины силы поверхностного натяжения. В этом случае силой тяжести можно пренебречь. Если жидкость находится в состоянии невесомости, то даже при большом объёме её поверхность стремится к сферической. Подтверждение тому - знаменитый опыт Плато. Если подобрать две жидкости с одинаковой плотностью, то действие силы тяжести на одну из них (взятую в меньшем количестве) будет скомпенсировано архимедовой силой и она примет форму шара. При этом условии она будет плавать внутри другой жидкости.

Рассмотрим, что происходит с каплей жидкости 1, граничащей с одной стороны с паром 3, с другой стороны с жидкостью 2 (рис.6.12). Выберем очень малый элемент границы раздела всех трёх веществ dl. Тогда силы поверхностного натяжения на границах раздела сред будут направлены по касательным к контуру границ раздела и равны:

Действием силы тяжести пренебрежём. Капля жидкости 1 находится в равновесии, если выполняются условия:

(6.38)

Подставив (6.37) в (6.38), сократив на dl обе части равенств (6.38), возведя в квадрат обе части равенств (6.38) и сложив их, получим:

где - угол между касательными к линиям раздела сред, называется краевым углом.

Анализ уравнения (6.39) показывает, что при получим и жидкость 1 полностью смачивает поверхность жидкости 2, растекаясь по ней тонким слоем (явление полного смачивания ).

Аналогичное явление можно наблюдать и при растекании тонким слоем жидкости 1 по поверхности твёрдого тела 2. Иногда жидкость наоборот не растекается по поверхности твёрдого тела. Если , то и жидкость 1 полностью не смачивает твёрдое тело 2 (явление полного несмачивания ). В этом случае есть только одна точка касания жидкости 1 и твёрдого тела 2. Полное смачивание или несмачивание являются предельными случаями. Реально можно наблюдать частичное смачивание , когда краевой угол острый () и частичное несмачивание , когда краевой угол тупой ().

На рисунке 6.13 а приведены случаи частичного смачивания, а на рис.6.13 б приведены примеры частичного несмачивания. Рассмотренные случаи показывают, что наличие сил поверхностного натяжения граничащих жидкостей или жидкости на поверхности твёрдого тела приводит к искривлению поверхностей жидкостей.

Рассмотрим силы, действующие на кривую поверхность. Кривизна поверхности жидкости приводит к появлению сил, действующих на жидкость под этой поверхностью. Если поверхность сферическая, то к любому элементу длины окружности (см. рис.6.14) приложены силы поверхностного натяжения, направленные по касательной к поверхности и стремящиеся её сократить. Результирующая этих сил направлена к центру сферы.

Отнесённая к единице площади поверхности эта результирующая сила оказывает дополнительное давление, которое испытывает жидкость под искривлённой поверхностью. Это дополнительное давление называется давлением Лапласа . Оно всегда направлено к центру кривизны поверхности. На рисунке 6.15 приведены примеры вогнутой и выпуклой сферических поверхностей и показаны давления Лапласа, соответственно.

Определим величину давления Лапласа для сферической, цилиндрической и любой поверхности.

Сферическая поверхность . Капля жидкости . При уменьшении радиуса сферы (рис.6.16) поверхностная энергия уменьшается, а работа производится силами, действующими в капле. Следовательно, объём жидкости под сферической поверхностью всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления шар уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой:

Уменьшение поверхностной энергии произошло на величину, определяемую формулой: (6.41)

Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что и , получим давление Лапласа: (6.42)

Объём жидкости под цилиндрической поверхностью также как и под сферической всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления цилиндр уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой (6.40), только величина давления Лапласа и приращение объёма будут другими. Уменьшение поверхностной энергии произошло на величину, определяемую формулой(6.41). Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что для цилиндрической поверхности и , получим давление Лапласа:

Используя формулу (6.45), можно перейти к формулам (6.42) и (6.44). Так для сферической поверхности, следовательно, формула (6.45) упростится до формулы (6.42); для цилиндрической поверхности r 1 = r , а , тогда формула (6.45) упростится до формулы (6.44). Чтобы отличить выпуклую поверхность от вогнутой, принято считать давление Лапласа положительным для выпуклой поверхности, а соответственно и радиус кривизны выпуклой поверхности будет тоже положительным. Для вогнутой поверхности радиус кривизны и давление Лапласа считают отрицательными.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДИЗАЙНА И ТЕХНОЛОГИИ

КАФЕДРА ФИЗИКИ

С.М. РАЗИНОВА, В.Г. СИДОРОВ

Молекулярная физика определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах

Методические указания к лабораторной работе № 23

Утверждено в качестве методического пособия

Редакционно-издательским советом МГУДТ

Куратор РИС Козлов А.С.

Работа рассмотрена на заседании кафедры физики и рекомендована к печати.

Сидоров В.Г., доц. к.т.н.

Рецензент: доц. Родэ С.В., к.ф.-м.н.

Р-23 Разинова С.М. Молекулярная физика. Определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах .: методические указания к лабораторной работе № 23/ Разинова С.М., Сидоров В.Г. - М.: ИИЦ МГУДТ, 2004 – 11 стр.

Методические указания к выполнению лабораторной работы № 23 по теме «Молекулярная физика.Определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах» содержит теоретический раздел, посвященный проявлениям сил поверхностного натяжения, механизму возникновения добавочного давления и расчет его величины, явлениям на границе жидкости и твердого тела, а также описание установки и принципа измерений, порядка выполнения работы, контрольные вопросы для допуска и защиты лабораторной работы.

Предназначен для студентов специальностей: 06.08, 17.07, 21.02, 22.03, 25.06, 25.08, 25.09, 28.10, 28.11, 28.12, 33.02.

© Московский государственный университет

дизайна и технологии, 2004

Лабораторня работа № 23.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ МЕТОДОМ ПОДНЯТИЯ ЖИДКОСТИ В КАПИЛЛЯРАХ”.

ЦЕЛЬ РАБОТЫ: ознакомление с теоретическими основами явления поверхностного натяжения и определение коэффициента поверхностного натяжения.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: измерительный микроскоп, сосуд с водой, два капилляра, штатив с держателем.

Введение

1. Давление под изогнутой поверхностью воды. Формула Лапласа.

Одним из проявлений сил поверхностного натяжения является возникновение добавочного давления под искривленной поверхностью жидкости.

Рассмотрим механизм возникновения этого давления и рассчитаем его величину.

Представим себе изогнутую сферическую поверхность с радиусом кривизны R и центром кривизны в т. О. Выделим на этой поверхности участок, ограниченный круговым контуром c радиусом r (рис. 1). На каждый отрезок контурабудет действовать сила поверхностного натяженияF  i , направленная по касательной к поверхности перпендикулярно отрезку контура .

Добавочное давление создается за счёт составляющей силы F  i , перпендикулярной поверхности сечения радиуса r площадью S= r 2 .

.

Силу F поверхностного натяжения можно выразить из определения коэффициента поверхностного натяжения, как F= = 2 r , тогда

.

Так как cos=r/R , то

Если в формуле (1) подставить вместо радиуса R значение кривизны поверхности H=1/R , то получим:

Лаплас доказал, что формула (2) для поверхности любой формы, если под Н понимать среднюю кривизну поверхности в той точке, под которой определяется дополнительное давление. В геометрии доказывается, что величина, равная

, (3)

остается постоянной для любой пары взаимно перпендикулярных нормальных сечений, проведенных через точку произвольной поверхности. Эту величину назвали средней кривизной поверхности в данной точке. Радиусы R 1 и R 2 могут иметь разные знаки в зависимости от того, где лежит центр кривизны: если центр кривизны лежит под поверхностью (рис.2, а), то радиус положителен, составляющие силы поверхностного натяжения направлены вниз и, следовательно, возникающая добавочная сила давления направлена также вниз; если центр кривизны лежит над поверхностью (рис.2, б), то радиус отрицателен, составляющиесилы поверхностного натяжения будут направлены вверх, они и создают силу давления, направленную вверх. В случае плоской поверхности (рис.2,в) добавочное давление отсутствует (у касательной к поверхности силы натяжения нет перпендикулярной к ней составляющей).

Если в формулу (2) подставить (3), то получим:

(4)

Эта формула носит название ФОРМУЛЫ ЛАПЛАСА , она дает возможность рассчитать добавочное давление, возникающее под произвольно изогнутой поверхностью жидкости.

2.Явления на границе жидкости и твердого тела . При соприкосновении жидкости и твердого тела с твердым телом необходимо учитывать как силы взаимодействия между молекулами жидкости, так и силы взаимодействия между молекулами жидкости и твердого тела. Если силы сцепления жидкости и твердого тела больше сил сцепления частиц жидкости, жидкость называется СМАЧИВАЮЩЕЙ данное твердое тело, если наоборот, то жидкость будет НЕСМАЧИВАЮЩЕЙ это тело. Одно и то же тело может смачиваться одной жидкостью и не смачиваться другой. Например, стекло смачивается водой и не смачивается ртутью.

Посмотрим, как ведет себя смачивающая жидкость около стенок сосуда (рис. 3, а). Рассмотрим сферу молекулярного действия ближайшей к стенке молекулы поверхности жидкости. На эту молекулу будут действовать силы F 1 - со стороны молекул твердого тела и F 2 - со стороны молекул жидкости. Так как для смачивающей жидкости F 1 F 2 , то равнодействующая F будет направлена вглубь жидкости, перпендикулярно ее поверхности, поэтому поверхность жидкости вблизи стенки не горизонтальна, а изгибается вверх. В случае несмачивающей жидкости, по аналогии, поверхность жидкости вблизи стенок изгибается вверх (рис.3, б). Итак, поверхность свободной жидкости вблизи стенок искривляется.

Степень смачиваемости жидкостей характеризуется КРАЕВЫМ УГЛОМ, равным углу между касательными к поверхности жидкости и поверхности твердого тела. В случае смачивания этот угол (рис.3, а) , если, то говорят о полном смачивании жидкостью твердого тела. В случае не смачивания краевой уголтупой:(рис.3, б), если, то говорят о полном несмачивании.

Рисунок 4,а показывает вид капли смачивающей жидкости на горизонтальной поверхности, рисунок 4,б - вид капли жидкости, не смачивающей поверхности.

3. Капиллярность. Если в жидкость погрузить широкую трубу, то в соответствии с рис. 3 поверхность жидкости у стенок искривится. Такого рода изогнутые поверхности носят название менисков.

Если же трубка будет достаточно узкой, то поверхность мениска примет сферическую форму, или ближайшую к ней, при этом радиус кривизны поверхности жидкости будет того же порядка, что и радиус трубки. Образующееся искривление поверхности жидкости вызовет появление добавочного давления, величина которого определяется в самом общем случае формулой (4) Лапласа. Возникшее дополнительное давление в случае смачивания приведет к подъему жидкости в узкой трубке на некоторую высоту (Рис.5, а), а в случае не смачивания - к ее опусканию (Рис.5, б).

Рассмотрим это явление подробно.

Если, например, жидкость в трубке смачивающая, то добавочное давление жидкости под поверхностью мениска будет направлено вверх (рис.2, б), а величина его в соответствии с (1) будет равна

где  - коэффициент поверхностного натяжения, R - радиус кривизны поверхности жидкости (как указывалось выше, поверхность жидкости в узкой трубке можно считать частью сферы радиуса R).

Так как в сосуде, в который опущена трубка, под плоской поверхностью добавочное давление равно нулю, то в трубке жидкость поднимается на такую высоту, при которой гидростатическое давление столба жидкости уравновесит лапласовское добавочное давление р. Гидростатическое давление, создаваемое столбом жидкости высотой h, равно gh, где  - плотность жидкости, g - ускорение свободного падения, тогда условие равновесия примет вид:

Из рисунка (5) видно, что , где - краевой угол смачивания, тогда из формулы (5) можно найти связь между высотой h подъема жидкости по узкой трубки и радиусом трубки r.

Из (6) видно, что высота поднятия в узкой трубке тем больше, чем меньше ее радиус, поэтому поднятие жидкостей особенно заметно в узких трубках. Такие трубки носят название КАПИЛЛЯРОВ , а само явление поднятия или опускания в них жидкостей - КАПИЛЛЯРНОСТЬЮ.

Основываясь на изложенной теории можно экспериментально определить коэффициент поверхностного натяжения жидкости.