Высказывание. Алгебра высказываний

Здесь: 1 - истина, 0 - ложь.

  • 1. Х: треугольник АВС - остроугольный. Х: неверно, что треугольник АВС - остроугольный. Это все равно, что: Х: треугольник АВС - прямоугольный или тупоугольный
  • 2. А: Иванова М. На экзамене по математике получила 4. : Неверно, что Иванова М. по математике получила 4.

Определение: Дизъюнкцией высказывания А и В называется высказывание АВ, истинное при условии, что хотя бы одно из высказываний А или В истинно.

Его читают «А или В».

Таблица истинности для АВ

Пример: 1. На этот раз ответчик явился и суд состоялся. - истина

2. В прямоугольном треугольнике сумма двух любых углов больше или равна третьего угла и гипотенуза меньше катета. - ложь

Определение: Импликацией высказываний А и В называется высказывание АВ, ложное лишь при условии, что А истинно, а В ложно.

Его читают: «Если А, то В».

Таблица истинности

Пример: 1. Если я сдам зачет, то пойду в кино.

2. Если треугольник равнобедренный, то углы при его основании равны. Определение: Эквиваленцией высказываний А и В называется высказывание АВ, истинное в том и только в том случае, когда А и В имеют одну и ту же истинность (т.е. либо оба истинны, либо оба ложны).

Читают: «А тогда и только тогда, когда В» или «А необходимо и достаточно для В»

Таблица истинности

Вторая задача, решаемая средствами алгебры высказываний, состоит в том, чтобы определить истинность конкретного высказывания на основе составления его формулы (процесс формализации) и составления таблицы истинности.

Пример: Если Саратов расположен на берегу Невы, то в Африке обитают белые медведи.

А: Саратов расположен на берегу реки Невы;

В: В Африке обитают белые медведи

Определение: Формула, которая истинна независимо от того, какие значения принимают входящие в нее высказывательные переменные, называется тавтологией или тождественно истинной формулой.

Определение: Формулы F 1 и F 2 называются равносильными, если их эквиваленция - тавтология.

Определение: Если формулы F 1 и F 2 равносильны, то предложения Р 1 и Р 2 , которые инициируют эти формулы, называются равносильными в логике высказываний.

Основные, наиболее часто встречающиеся равносильности, называют законами логики. Перечислим некоторые из них:

  • 1. Х Х - закон тождества
  • 2. Х Л - закон противоречия
  • 3. Х И - закон исключения третьего
  • 4. Х - закон двойного отрицания
  • 5. законы коммутативности
  • 6. Х (У Z) (Х У) Z закон ассоциативности

Х (У Z) (Х У) Z закон дистрибутивности

7. законы Де Моргана

8. законы сочленения переменной с константой

Используя законы логики, можно преобразовывать формулы.

4. Из множества формул, равносильных между собой, рассмотрим две. Это - совершенная конъюнктивная нормальная форма (СКНФ) и совершенная дизъюнктивная нормальная форма (СДНФ). Они строятся для данной формулы на основе ее таблицы истинности.

Построение СДНФ:

  • -- выбираются строки, соответствующие значениям истинности (1) данной формулы;
  • -- для каждой выделенной строки составляем конъюнкцию переменных или их отрицаний так, чтобы наборам значений переменных, представленных в строке, соответствовали истинные значения конъюнкции (для этого надо переменные, которые в этой строке принимали значения ложь (0) взять со знаком отрицания, а переменные, принимающие значения истинности (1) без отрицания);
  • -- составляется дизъюнкция полученных конъюнкций.

Из алгоритма следует, что для любой формулы можно составить СДНФ, и притом единственную, если формула не является тождественно ложной, т.е. принимающей только ложные значения.

Составление СКНФ осуществляется по следующему алгоритму:

  • -- выделить те строки таблицы, в которых формула принимает значение ложь (0);
  • -- из переменных, стоящих в каждой такой строке, составить дизъюнкцию, которая должна принимать значения - ложь (0). Для этого все переменные должны войти в нее со значением ложь, следовательно те, которые истинны (1), надо заменить их отрицанием;
  • -- из полученных дизъюнкций составить конъюнкцию.

Очевидно, что любая формула, не являющаяся тавтологией, имеет СКНФ.

СДНФ и СКНФ используются для получения следствий из данной формулы.

Пример: Составить таблицу истинности СДНФ и СКНФ для формулы: .

Таблица истинности СДНФ и СКНФ

5. Рассмотрим высказывательные форму «Река впадает в Черное море». Она содержит одну переменную и может быть представлена в виде «Река х впадает в Черное море».

В зависимости от значений переменной Х предложение является либо истинным, либо ложным, т.е. задается отображение множества рек на двух элементное множество. Обозначим это отображение, тогда:

Таким образом, имеем функцию, все значения которой принадлежат множеству.

Определение: Функция, все значения которой принадлежат множеству, называется предикатом.

Буквы, обозначающие предикаты, называют предикатными символами.

Предикаты могут задаваться:

a) высказывательной формулой,

b) формулой, т.е. задавая интерпретацию предикатного символа,

c) таблицей.

1) Р - «впадать в Черное море».

Эта формула означает, что «Река а впадает в Черное море».

  • 2) Предикат Р задан высказывательной формулой: «быть простым числом на множестве первых 15 натуральных чисел».
  • 3) В табличной форме предикат имеет вид:

Областью определения предикатов может быть любое множество.

Если предикат при каком-либо наборе входящих переменных теряет смысл, то принято считать, что этому набору соответствует значение Л.

Если предикат содержит одну переменную, то его называют одноместным, две переменные - двуместным, n переменных - n-местным предикатом.

Для перевода текстов на язык предикатов и определения их истинности необходимо ввести логические операции над предикаторами и кванторы.

Над предикатами выполняются так же операции: отрицания, конъюнкции, дизъюнкции, импликации, эквиваленции.

Определение: Подмножество множества М, на котором задан предикат Р, состоящий из тех и только тех элементов М, которым соответствует значение И предиката Р, называется множеством истинности предиката Р.

Множество истинности обозначается.

Определение: Отрицанием предиката Р называется предикат, ложный при тех наборах значений переменных, которые обращают Р в истинный, и истинный при тех наборах значений переменных, которые обращают Р в ложный предикат.

Обозначается отрицание.

Быть студентом АБиК.

Не быть студентом АБиК.

Если, то множество, где М - множество, на котором заданы предикаты Р и Q .

Определение: конъюнкцией предикатов и называется предикат истинный при тех и только тех значениях переменных, входящих в него, которые обращают оба предиката и в истинные.

Быть футболистом

Быть студентом

: быть футболистом и быть студентом.

Определение: дизъюнкцией предикатов и называется предикат ложный при тех наборах входящих в него переменных, которые обращают оба предиката в ложные

Быть четным натуральным числом

Быть нечетным натуральным числом

: быть натуральным числом.

Определение: Импликацией предикатов называется предикат, ложный при тех и только тех наборах входящих в него переменных, которые обращают в истинный предикат, а - в ложный.

Обозначается:

Быть простым числом на множестве N

Быть нечетным числом

Ложен при и истинным при других натуральных числах.

Определение: Эквиваленцией предикатов и называется предикат, который становится истинным, если оба предиката и истинны, или оба ложны.

Обозначается:

- «выигрывать», т.е. х выигрывает у

Лучше знать шахматную историю, х знает лучше у

обозначает, что х выигрывает у у в шахматы тогда и только тогда, когда он лучше знает теорию.

Определение: Предикат следует из предиката если импликация истинна при любых входящих в нее значениях переменных.

Обозначаются следования: .

Быть студентом

Ходить в институт

Для превращения предиката в высказывание существуют 2 пути:

1) придание переменной конкретного значения

; х - студент

Иванов - студент.

2) Навешивание кванторов - любой, всякий, каждый

Существует, имеется.

Запись, где обладает свойством Р означает, что всякий предмет х обладает свойством Р. Или по другому, «все х обладают свойством Р».

Запись означает, что существует предмет х, обладающий свойством Р.

Основным (неопределяемым) понятием математической логики является понятие «простого высказывания».

Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом мы можем сказать, истинно оно или ложно в данных условиях места и времени. Логическими значениями высказываний являются «истина» и «ложь».

Приведем примеры высказываний:

1) Новгород стоит на Волхове.

2) Париж – столица Англии.

3) Карась не рыба.

4) Число 6 делится на 2 и на 3.

5) Если юноша окончил среднюю школу, то он получает аттестат зрелости.

Высказывания 1), 4), 5) истинны, а 2) и 3) – ложны.

Очевидно, предложение «Да здравствуют наши спортсмены!» не является высказыванием.

Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным. Примерами элементарных высказываний могут служить высказывания 1) и 2).

Высказывания, которые получаются из элементарных с помощью грамматических связок «не», «и», «или», «если …, то …», «тогда и только тогда», принято называть сложными или составными. Так, высказывание 3) получается из простого высказывания «Карась – рыба» с помощью отрицания «не», высказывание 4) образовано из элементарных высказываний «Число 6 делится на 2», «Число 6 делится на 3», соединенных союзом «и». Высказывание 5) получается из простых высказываний «Юноша окончил среднюю школу», «Юноша получает аттестат зрелости» с помощью грамматической связки «если …,
то …». Аналогично сложные высказывания могут быть получены из простых высказываний с помощью грамматических связок «или», «тогда и только тогда».

В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, а от их житейского содержания отвлекаются. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

В дальнейшем будем элементарные высказывания обозначать буквами латинского алфавита: a,b,c,…,x,y,z,…; истинное значение – буквой И или цифрой 1, а ложное значение – буквой Л или цифрой 0.

Если высказывание а истинно, то будем писать а=1 , если же ложно, то а=0 .

Логические высказывания принято подразделять на два вида: элементарные логические высказывания исоставные логические высказывания.

Составное логическое высказывание - это высказывание, образованное из других высказываний с помощью логических связок.

Логическая связка - это любая логическая операция над высказыванием. Например, употребляемые в обычной речи слова и словосочетания «не», «и», «или», «если… , то», «тогда и только тогда» являются логическими связками.

Элементарные логические высказывания - это высказывания не относящиеся к составным.

Примеры: «Иванов - футболист» - элементарные логические высказывания. «Иванов - футболист и шахматист» - составное логическое высказывание, состоящие из двух элементарных высказываний, связанных между собой при помощи связки «и».

46. Элементы алгебры логики

Алгебра логики – это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: 0 и 1. Алгебра логики оперирует с логическими высказываниями.

Высказывание – это любое предложение, в отношении которого имеет смысл утверждение о его истинности или ложности. При этом считается, что высказывание удовлетворяет закону исключенного третьего, то есть каждое высказывание или истинно, или ложно и не может быть одновременно и истинным и ложным.

Высказывания:

– “Сейчас идет снег” – это утверждение может быть истинным или ложным;

– “Вашингтон – столица США” – истинное утверждение;

– “Частное от деления 10 на 2 равно 3” ложное утверждение.

В алгебре логики все высказывания обозначают буквами а, b, с ит. д. Содержание высказываний учитывается только при введении их буквенных обозначений, и в дальнейшем над ними можно производить любые действия, предусмотренные данной алгеброй. Причем если над исходными элементами алгебры выполнены некоторые разрешенные в алгебре логики операции, то результаты операций также будут элементами этой алгебры.

Простейшими операциями в алгебре логики являются операции логического сложения (иначе: операция ИЛИ (OR),операция дизъюнкции) и логического умножения (иначе: операция И (AND), операция конъюнкции). Для обозначения операции логического сложения используют символы + или V, а логического умножения – символы или Правила выполнения операций в алгебре логики определяются рядом аксиом, теорем и следствий. В частности, для алгебры логики применимы законы:

1. Сочетательный:

47. (a + b) + с = а + (b + с ),

48. (а b) с = а (b с ).

2. Переместительный:

49. (а + b) = (b + a),

50. b) = (b а).

3. Распределительный:

51. а (b + с) = а b + (a с),

52. (а + b) с = а с + b с.

Справедливы соотношения, в частности:

53. а + а = аа + b = b, если а ≤ b,

54. а а = аа b = а , если a b,

a + a b = aa b = b, если а b ,

а + b = а, если а b.

Наименьшим элементом алгебры логики является 0, наибольшим элементом – 1. В алгебре логики также вводится еще одна операция – отрицания (операция НЕ (NOT) , инверсия), обозначаемая чертой над элементом.

По определению

Функция в алгебре логики – выражение, содержащее элементы алгебры логики а, b, с и др., связанные операциями, определенными в этой алгебре. Примеры логических функций:

и т. д. Эти соотношения используются для синтеза логических функций и вычислительных схем.

Логика, созданная как наука Аристотелем (384-322 г. до н.э.), на протяжении столетий использовалась для развития многих областей знания, включая теологию, философию, математику.

Она - тот фундамент, на котором построено все здание математики. По сути, логика — это наука о рассуждениях, которая позволяет определить истинность или ложность того или иного математического утверждения, исходя из совокупности первичных предположений, называемых аксиомами. Логика применяется также в информатике для построения компьютерных программ и доказательства их корректности. Понятия, методы и средства логики лежат в основе современных информационных технологий. Одна из основных целей этой работы — изложить основы математической логики, показать, как она используется в информатике, и разработать методы анализа и доказательства математических утверждений.

Логические представления - описание исследуемой сис-темы, процесса, явления в виде совокупности сложных высказываний, составленных из простых (элементарных) высказываний и логических связок между ними. Логические представления и их составляющие характеризуются опре-деленными свойствами и набором допустимых преобразо-ваний над ними (операций, правил вывода и т.п.), реализую-щих разработанные в формальной (математической) логике правильные методы рассуждений — законы логики .

Понятие высказывания

Высказывание — это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно или ложно. Иными словами, утверждение об истинности или ложности высказывания должно иметь смысл. Истинность или ложность, приписываемые некоторому утверждению, называются его значением истинности , или истинностным значением.

Например, высказывания Дважды два четыре и Город Челябинск находится в азиатской части России истинные, а высказывания Три больше пяти и Река Дон в настоящее время впадает в Каспийское море ложны, так как не соответствуют действительности. Истинные высказывания принято обозначать T (true ) или И (истина ), а ложные, соответственно, F (false ) или Л (ложь ). В информатике истинность принято обозначать 1 (двоичная единица), а ложность - 0 (двоичный ноль).

Вот примеры предложений, не являющихся высказываниями:

Кто вы? (вопрос),

Прочтите эту главу до следующего занятия (приказ или восклицание),

Это утверждение ложно (внутренне противоречивое утверждение),

Площадь отрезка меньше длины куба (нельзя сказать истинно это предложение или ложно, т.к. не имеет смысла).

Мы будем обозначать высказывания буквами латинского алфавита р , q , r , Например, р может обозначать утверждение Завтра будет дождь , а q — утверждение Квадрат целого числа есть число положительное .


Логические связки

В обыденной речи для образования сложного предложения из простых используются связки — особые части речи, соединяющие отдельные предложения. Наиболее часто употребляются связки и , или , не , если ... то , только если , и тогда и только тогда . В отличие от обыденной речи, в логике смысл таких связок должен быть определен однозначно. Истинность сложного высказывания однозначно определяется истинностью или ложностью составляющих его частей. Высказывание, не содержащее связок, называется простым . Высказывание, содержащее связки, называется сложным . Логические связки также называют логическими операциями над высказываниями.

Пусть р и q обозначают высказывания

р: Джейн водит автомобиль,

q: У Боба русые волосы.

Сложное высказывание

Джейн водит автомобиль и у Боба русые волосы состоит из двух частей, объединенных связкой и . Это высказывание может быть символически записано в виде

где символ обозначает слово и на языке символических выражений. Выражение называется конъюнкцией высказываний р и q .

Встречаются также следующие варианты записи конъюнкции:

Точно так же высказывание

Джейн водит автомобиль или у Боба русые волосы.

символически выражается как

где обозначает слово или в переводе на символический язык. Выражение называется дизъюнкцией высказываний р и q .

Опровержение, или отрицание высказывания p обозначается через

Таким образом, если р есть высказывание Джейн водит автомобиль , то - это утверждение Джейн не водит автомобиль .

Если r есть высказывание Джо нравится информатика , то Джейн не водит автомобиль и у Боба русые волосы или Джо любит информатику символически запишется как

.

И наоборот, выражение

это символическая форма записи высказывания Джейн водит автомобиль, у Боба волосы не русые и Джо нравится информатика .

Рассмотрим выражение . Если некто говорит: "Джейн водит автомобиль и у Боба русые волосы" , то мы, естественно, представляем себе Джейн за рулем автомобиля и русоволосого Боба. В любой другой ситуации (например, если Боб не русоволос или Джейн не водит автомобиль) мы скажем, что говорящий не прав.

Возможны четыре случая, которые нам необходимо рассмотреть. Высказывание р может быть истинным (Т ) или ложным (F ) и независимо от того, какое истинностное значение принимает р , высказывание q может также быть истинным (Т ) или ложным (F ). Таблица истинности перечисляет все возможные комбинации истинности и ложности сложных высказываний.

Итак, конъюнкция истинна тогда и только тогда, когда истинны оба высказывания p и q , то есть в случае 1.

Точно так же рассмотрим высказывание Джейн водит автомобиль или у Боба русые волосы , которое символически выражается как . Если некто скажет: "Джейн водит автомобиль или у Боба русые волосы", то он будет не прав только тогда, когда Джейн не сможет управлять автомобилем, а Боб не будет русоволосым. Для того чтобы все высказывание было истинным, достаточно, чтобы одна из двух составляющих его компонент была истинной. Поэтому имеет таблицу истинности

Дизъюнкция ложна только в случае 4, когда оба р и q ложны.

Таблица истинности для отрицания имеет вид

Истинностное значение всегда противоположно истинностному значению р. В таблицах истинности отрицание всегда оценивается первым, если только за знаком отрицания не следует высказывание, заключенное в скобки. Поэтому интерпретируется как , так что отрицание применяется только к р . Если мы хотим отрицать все высказывание, то это записывается как .

Символы и называют бинарными связками, так как они связывают два высказывания. Символ ~ является унарной связкой, так как применяется только к одному высказыванию.

Еще одна бинарная связка - это исключающее или, которое обозначается через . Высказывание истинно, когда истинно p или q , но не оба одновременно. Эта связка имеет таблицу истинности

Используя слово или , мы можем иметь в виду исключающее или . Например, когда мы говорим, что р — либо истина, либо ложь, то, естественно, предполагаем, что это не выполняется одновременно. В логике исключающее или используется довольно редко, и в дальнейшем мы, как правило, будем обходиться без него.

Рассмотрим высказывание

,

где скобки использованы, чтобы показать, какие именно высказывания являются компонентами каждой связки.

Таблица истинности дает возможность однозначно указать те ситуации, когда высказывание является истинным; при этом мы должны быть уверены, что учтены все случаи. Поскольку сложное высказывание содержит три основных высказывания р , q и r , то возможны восемь случаев

Случай p q r
T T T F F T
T T F F F T
T F T T T T
T F F T F T
F T T F F F
F T F F F F
F F T T T T
F F F T F F

При нахождении значений истинности для столбца мы используем столбцы для и r , а также таблицу истинности для . Таблица истинности для показывает, что высказывание истинно лишь в том случае, когда истинны оба высказывания и r . Это имеет место лишь в случаях 3 и 7.

Заметим, что при определении значений истинности для столбца играет роль только истинность высказываний p и . Таблица истинности для показывает, что единственный случай, когда высказывание, образованное с помощью связки или , ложно, — это случай, когда ложны обе части этого высказывания. Такая ситуация имеет место только в случаях 5, 6 и 8.

Другой, эквивалентный способ построения таблицы истинности состоит в том, чтобы записывать истинностные значения выражения под связкой. Снова рассмотрим выражение. Сначала мы записываем истинностные значения под переменными р , q и r . Единицы под столбцами истинностных значений указывают на то, что этим столбцам истинностные значения присваиваются в первую очередь. В общем случае число под столбцом будет показывать номер шага, на котором производятся вычисления соответствующих истинностных значений. Затем мы записываем под символом ~ истинностные значения высказывания . Далее записываем истинностные значения под символом . Наконец, записываем значения высказывания под символом .

Случай p q r p ((~ q ) r
T T T T T F T F T
T T F T T F T F F
T F T T T T F T T
T F F T T F F F F
F T T F F F T F T
F T F F F F T F F
F F T F T T F T T
F F F F F F F F F

1.1.3. Условные высказывания

Допустим, некто утверждает, что если случится одно событие, то случится и другое. Предположим, отец говорит сыну: "Если в этом семестре ты сдашь все экзамены на «отлично», я куплю тебе машину ". Заметьте, что высказывание имеет вид: если р, то q , где р — высказывание В этом семестре ты сдашь все экзамены на «отлично» , а q — высказывание Я куплю тебе машину . Сложное высказывание мы обозначим символически через . Спрашивается, при каких условиях отец говорит правду? Предположим, высказывания р и q истинны. В этом случае счастливый студент получает отличные оценки по всем предметам, и приятно удивленный отец покупает ему машину. Естественно, ни у кого не вызывает сомнения тот факт, что высказывание отца было истинным. Однако существуют еще три других случая, которые необходимо рассмотреть. Допустим, студент действительно добился отличных результатов, а отец не купил ему машину.

Самое мягкое, что можно сказать об отце в таком случае, — это то, что он солгал. Следовательно, если р истинно, а q ложно, то ложно. Допустим теперь, что студент не получил положительные оценки, но отец тем не менее купил ему машину. В этом случае отец предстает очень щедрым, но его никак нельзя назвать лжецом. Следовательно, если р ложно и q истинно, то высказывание если р, то q (т.е. ) истинно. Наконец, предположим, что студент не добился отличных результатов, и отец не купил ему машину.

Поскольку студент не выполнил свою часть соглашения, отец тоже свободен от обязательств. Таким образом, если р и q ложны, то считается истинным. Итак, единственный случай, когда отец солгал, — это когда он дал обещание и не выполнил его.

Таким образом, таблица истинности для высказывания имеет вид

Символ называется импликацией , или условной связкой .

Может показаться, что носит характер причинно-следственной связи, но это не является необходимым. Чтобы увидеть отсутствие причины и следствия в импликации, вернемся к примеру, в котором р есть высказывание Джейн управляет автомобилем , а q — утверждение У Боба русые волосы . Тогда высказывание Если Джейн управляет автомобилем, то у Боба русые волосы запишется как

если p , то q или как .

То, что Джейн управляет автомобилем, никак причинно не связано с тем, что Боб русоволосый. Однако нужно помнить, что истинность или ложность бинарного сложного высказывания зависит только от истинности составляющих его частей и не зависит от наличия или отсутствия между ними какой-либо связи.

Рассмотрим следующий пример. Требуется найти таблицу истинности для выражения

.

Используя таблицу истинности для , приведенную выше, построим сначала таблицы истинности для и , учитывая, что импликация ложна только в случае, когда .

Теперь используем таблицу для , чтобы получить для высказывания

таблицу истинности

Случай p q r (p q ) (q r )
T T T T T T T T T T
T T F T T T F T F F
T F T T F F F F T T
T F F T F F F F T F
F T T F T T T T T T
F T F F T T F T T F
F F T F T F T F F T
F F F F T F T F T F
*

Высказывание вида обозначается через . Символ называется эквиваленцией . Эквиваленция также иногда обозначается как (не следует путать с унарной операцией отрицания).

Высказывание – это повествовательное предложение (утверждение), о котором можно говорить, что оно истинно или ложно.

Высказывания обозначают большими или маленькими латинскими буквами.

Пример 1: А: «Москва – столица России» – истинное высказывание. b = «Волга впадает в Черное море» – ложное высказывание.

Значения истинности высказываний обозначаются буквами И – «истина» и Л – «ложь» или цифрами 1 – «истина» и 0 – «ложь». Т.е., А = 1(И), b = 0(Л).

Не всякое предложение является высказыванием. Так, к высказываниям не относятся вопросительные, и восклицательные предложения, поскольку говорить об их истинности или ложности нет смысла. Не являются высказываниями и такие предложения: «Каша – вкусное блюдо», «Математика – интересный предмет». Не может быть единого мнения о том, истинны эти предложения или ложны. Предложение «Существуют инопланетные цивилизации» следует считать высказыванием, так как объективно оно либо истинное, либо ложное, хотя пока никто не знает, какое именно.

Предложение, которое содержит хотя бы одну переменную и становится высказыванием при подстановке вместо всех переменных их значений, называется высказывательной формой.

Рассмотрим предложения: «Он рыжеволос» и «Число делится на 7». Эти предложения не содержат переменных в явном виде, но, тем не менее, являются высказывательными формами: первое из них становится высказыванием (истинным или ложным) только после замены местоимения «он» именем конкретного человека из некоторого множества людей мужского пола; второе становится высказыванием, если вместо слова «число» подставлять целые числа. Иначе эти предложения можно записать так: «Человек х рыжеволос», «Число у делится на 7».

Из высказывательных форм можно получать высказывания также с помощью специальных слов, так называемых кванторов . Их два: 1) квантор всеобщности – (любой, всякий, каждый); 2) квантор существования –(существует, найдется, имеется, некоторый, по меньшей мере, один). Например, из высказывательной формы «Площадь комнаты 20 м 2 » можно с помощью кванторов получить высказывания: «Площадь любой комнаты 20 м 2 » – ложное, «Существует комната, площадь которой 20 м 2 » – истинное. Предложения, образованные с помощью квантора всеобщности, называются общеутвердительными ; предложения, образованные с помощью квантора существования, называются частноутвердительными .

Из двух данных предложений можно образовывать новые предложения с помощью союзов «и», «или», «либо», «если…, то…», «…тогда и только тогда, когда…» и других. С помощью частицы «не» и словосочетания «неверно, что…» из одного предложения можно получить новое. Наиболее употребительными являются союзы «и», «или», «если…, то…» и «…тогда и только тогда, когда». Остальные союзы считают близкими по смыслу одному из перечисленных союзов.

Союзы «и», «или», «если, то», «тогда и только тогда, когда», а также частицу «не» (словосочетание «неверно, что») называют логическими связками.

Предложения, образованные из других предложений с помощью логических связок, называют составными или сложными . Предложения, которые не содержат логических связок, называют элементарными или простыми .

Пример 2 : Из предложений «Солнце всходит на востоке» и «Солнце заходит на западе» можно получить следующие составные высказывания: «Солнце всходит на востоке и заходит на западе»; «Солнце всходит на востоке или заходит на западе»; «Если солнце всходит на востоке, то оно заходит на западе»; «Солнце всходит на востоке тогда и только тогда, когда оно заходит на западе»; «Солнце не всходит на востоке» или «Неверно, что солнце заходит на западе».

В грамматике различают предложения простые и сложные. Предложение, простое по своей грамматической структуре, может быть составным с точки зрения логики. Например, простое с точки зрения грамматики предложение «На улице холодно и сыро» считается в логике сложным, так как образовано с помощью логической связки «и» из двух элементарных предложений «На улице холодно» и «На улице сыро». Простое предложение «Завтра не будет осадков» по своей логической структуре не является элементарным, так как содержит логическую связку «не».

В математической логике смысл логических связок уточняется так, чтобы вопрос об истинности или ложности составных предложений, образованных из высказываний во всех случаях решался однозначно. Таким уточнением займемся ниже.

Процесс получения составных высказываний с помощью логических связок называется логической операцией.

По числу логических связок выделяют пять логических операций.

1. Негация (отрицание) – единственная операция, которая может применяться к одному высказыванию.

Негацией высказывания называется новое высказывание, которое истинно тогда и только тогда, когда само высказывание ложно и ложно, когда само высказывание истинно.

Негация обозначается , или ¬b , читается: «не А» или «неверно, что А».

Например, высказывание А = «Луна – спутник Марса» – ложное, а высказывание = «Неверно, что Луна – спутник Марса» – истинное.

Для произвольного высказывания А определение удобно записывать с помощью так называемой таблицы истинности :

Пример 3: Сформулировать отрицание высказываний: А = «Курган – большой город»; В = «Сыр делают из молока»; С = «32 не делится на 4»; D = «Все псы попадают в рай».

Решение . = «Неверно, что Курган – большой город»; = «Сыр делаютне из молока»; = «32 делится на 4»;= «Не все псы попадают в рай» = «Некоторые псы не попадают в рай».

Отрицания сложных высказываний чаще всего формулируются с помощью словосочетания «неверно, что…». Например: Высказывание Е = «23 марта 1917 года в Москве утро было морозным и солнечным»; отрицание: = «Неверно, что 23 марта 1917 года в Москве утро было морозным и солнечным»

2. Конъюнкция (логическое умножение) – от латинского conjunctio – соединение.

Конъюнкцией двух высказываний называется новое высказывание, которое истинно тогда и только тогда, когда оба высказывания истинны.

Конъюнкция обозначается
илиА& B ; читается: «А и В ».

Таблица истинности для конъюнкции выглядит следующим образом:

Пример 4: Определить значение истинности высказываний «Париж расположен на Сене и 2 + 3 = 5»; «1 – простое число и 2 – простое число»; «Число 3 – четное и медведи живут в Африке».

Решение. Первое высказывание является конъюнкцией двух высказываний А = «Париж расположен на Сене» и В А В = 1. Следовательно,
= 1.

Второе высказывание является конъюнкцией высказываний А = «1 – простое число» (А = 0) и В = «2 – простое число» (В = 1). Следовательно,
= 0.

Третье высказывание является конъюнкцией двух ложных высказываний, следовательно,
=0.

3. Дизъюнкция (логическое сложение) – от латинского disjunction – разделение .

Дизъюнкцией двух высказываний является новое высказывание, которое ложно тогда и только тогда, когда оба высказывания ложны.

Дизъюнкция обозначается
и читается «А или В ».

Таблица истинности для дизъюнкции выглядит следующим образом:

Пример 5: Определить значение истинности высказываний «Париж расположен на Сене или 2 + 3 = 5»; «1 – простое число или 2 – простое число»; «Число 3 – четное или медведи живут в Африке».

Решение. Первое высказывание является дизъюнкцией двух высказываний А = «Париж расположен на Сене» и В = «2 + 3 = 5». Значение истинности высказывания А = 1 и значение истинности высказывания В = 1. Следовательно,
= 1.

Второе высказывание является дизъюнкцией высказываний А = «1 – простое число» (А = 0) и В = «2 – простое число» (В = 1). Следовательно,
= 1.

Третье высказывание является дизъюнкцией двух ложных высказываний, следовательно,
=0.

4. Импликация (логическое следствие).

Импликацией двух высказываний называется новое высказывание, которое ложно тогда и только тогда, когда первое высказывание истинно, а второе – ложно.

Импликация обозначается
или
, читается «ЕслиА , то В » («Когда А , тогда В », «А , следовательно В »).

Таблица истинности импликации выглядит так:

Компоненты импликации имеют свои собственные «имена»: предложение А называется посылкой или антецедентом , предложение В заключением или консеквентом .

Пример 6: Чтобы запомнить правило нахождения значения истинности импликации, удобно воспользоваться следующими высказываниями: «Дождь идет», «Асфальт мокрый», «Дождь не идет», «Асфальт сухой».

1)
= «Если дождь идет, то асфальт мокрый» = 1;

2)
= «Если дождь идет, то асфальт сухой» = 0;

3)
= «Если дождь не идет, то асфальт мокрый» = 1 (прошла поливальная машина или растаял снег);

4)
= «Если дождь не идет, то асфальт сухой» = 1.

Принятое определение импликации соответствует употреблению союза «если…, то…» не только в математике, но и в обыденной, повседневной речи. Так, например, обращение приятеля «Если будет хорошая погода, то я приду к тебе в гости» вы расцените как ложь в том и только в том случае, если погода будет хорошая, а приятель к вам в гости не придет.

Вместе с тем определение импликации вынуждает считать истинными высказываниями такие предложения, как «Если 2×2 = 4, то Москва – столица России» или «Если 2×2 = 5, то существуют ведьмы». Эти предложения, вероятно, кажутся бессмысленными. Дело в том, что мы привыкли соединять союзом «если…, то…» (так же, как и другими союзами) предложения, связанные по смыслу. Но определениями логических операций смысл составляющих высказываний никак не учитывается; они рассматриваются как объекты, обладающие единственным свойством – быть истинными либо ложными. Поэтому не стоит смущаться «бессмысленностью» некоторых составных высказываний, их смысл не входит в предмет нашего рассмотрения.

5. Эквиваленция (логическая равносильность).

Эквиваленцией двух высказываний называется новое высказывание, которое истинно тогда и только тогда, когда оба высказывания одновременно истинны либо ложны.

Эквиваленция обозначается
или
, читается «А тогда и только тогда, когда В ».

Таблица истинности для эквиваленции выглядит так:

В форме эквиваленции, как правило, формулируются определения (например, определения логических операций).

Пример 7: Пусть через А обозначено высказывание «9 делится на 3», а через В – высказывание «10 делится на 3». Составьте высказывания, имеющие логическую структуру: а)
; б)
; в)
; г)
; д)
; е)
и определите их значения истинности.

Решение. а)
= «Если 9 делится на 3, то 10 делится на 3» = 0, т.к.А = 1, а В = 0. б)
= «Если 10 делится на 3, то 9 делится на 3» = 1. в)
= «9 делится на 3 тогда и только тогда, когда 10 делится на 3» = 0. г)
= «10 делится на 3 тогда и только тогда, когда 9 делится на 3» = 0. д)
= «Если 9 не делится на 3, то 10 делится на 3» = 1 (т.к.А = 1, то = 0 иВ = 0, следовательно,
= 1). е)
= «9 делится на 3 тогда и только тогда, когда 10 не делится на 3» = 1 (А = 1 и = 1, тогда
= 1).

Виды высказываний

Логические высказывания принято подразделять на два вида: элементарные логические высказывания и составные логические высказывания.

Составное логическое высказывание - это высказывание, образованное из других высказываний с помощью логических связок.

Логическая связка - это любая логическая операция над высказыванием. Например, употребляемые в обычной речи слова и словосочетания «не», «и», «или», «если… , то», «тогда и только тогда» являются логическими связками.

Элементарные логические высказывания - это высказывания не относящиеся к составным.

Примеры: «Петров - врач», «Петров - шахматист» - элементарные логические высказывания. «Петров - врач и шахматист» - составное логическое высказывание, состоящие из двух элементарных высказываний, связанных между собой при помощи связки «и».

Связь с математической логикой

Обычная логика двухзначна, то есть приписывает высказываниям только два возможных значения: истинно оно или ложно .

Пусть - высказывание. Если оно истинно, то пишут , если ложно, то .

Основные операции над логическими высказываниями

Отрицание логического высказывания - логическое высказывание, принимающее значение «истинно», если исходное высказывание ложно, и наоборот.

Конъюнкция двух логических высказываний - логическое высказывание, истинное только тогда, когда они одновременно истинны.

Дизъюнкция двух логических высказываний - логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно.

Импликация двух логических высказываний A и B - логическое высказывание, ложное только тогда, когда B ложно, а A истинно.

Равносильность (эквивалентность) двух логических высказываний - логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны.

Кванторное всеобщности () - логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.

Кванторное логическое высказывание с квантором существования () - логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.

См. также

  • Утверждение

Примечания

Литература

  • Карпенко, А. С. Современные исследования в философской логике // Логические исследования. Вып. 10. - М.: Наука, 2003. ISBN 5-02-006257-X - С. 61-93.
  • Крипке, С. А. Витгенштейн о правилах и индивидуальном языке / Пер. В. А. Ладова, В. А. Суровцева. Под общ. ред. В. А. Суровцева. - Томск: Изд-во Том. ун-та, 2005. - 152 с. - (Библиотека аналитической философии). ISBN 5-7511-1906-1
  • Курбатов, В. И. Логика. Систематический курс. - Ростов н/Д: Феникс, 2001. - 512 c. ISBN 5-222-01850-4
  • Шуман, А. Н. Современная логика: теория и практика. - Минск: Экономпресс, 2004. - 416 с. ISBN 985-6479-35-5
  • Макарова, Н. В. Информатика и ИКТ. - Санкт-Петербург: Питер Пресс, 2007 ISBN 978-5-91180-198-4 - С. 343-345.
  • Кондаков Н. И. Логический словарь / Горский Д. П.. - М .: Наука, 1971. - 656 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Высказывание (логика)" в других словарях:

    Высказывание: Высказывание (логика) предложение, которое может быть истинно или ложно. Высказывание (лингвистика) предложение в конкретной речевой ситуации. См. также Суждение … Википедия

    - (от греч. logos слово, понятие, рассуждение, разум), или Формальная логика, наука о законах и операциях правильного мышления. Согласно основному принципу Л., правильность рассуждения (вывода) определяется только его логической формой, или… … Философская энциклопедия

    Раздел логики, в котором изучаются истинностные взаимосвязи между высказываниями. В рамках данного раздела высказывания (пропозиции, предложения) рассматриваются только с т.зр. их истинности или ложности, безотносительно к их внутренней субъектно … Философская энциклопедия

    логика высказываний - ЛОГИКА ВЫСКАЗЫВАНИЙ, пропозициональная логика раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, простые высказывания при этом выступают как… … Энциклопедия эпистемологии и философии науки

    Грамматически правильное повествовательное предложение, взятое вместе с выражаемым им смыслом. В логике употребляется несколько понятий В., существенно различающихся между собой. Прежде всего это понятие дескриптивного, или о п и с а тельного,… … Философская энциклопедия

    Логика Бэрроуза Абади Нидхэма (англ. Burrows Abadi Needham logic) или BAN логика (англ. BAN logic) это формальная логическая модель для анализа знания и доверия, широко используемая при анализе протоколов… … Википедия

    Центральный раздел логики, в котором изучается субъектно предикатная структура высказывании и истинностные взаимосвязи между ними. Л.п. представляет собой содержательное расширение логики высказываний. В рамках данного раздела любое высказывание… … Философская энциклопедия

    Или Логика науки, применение идей, методов и аппарата логики в анализе научного познания. Развитие логики всегда было тесно связано с практикой теоретического мышления и прежде всего с развитием науки. Конкретные рассуждения дают логике материал … Философская энциклопедия