Биологическая химия. Пассивный транспорт Пример простой диффузии в клетке

При облегченной диффузии вещества переносятся через мембрану также по градиенту концентрации, но с помощью специальных трансмембранных белков-переносчиков (транслоказ). Белок-переносчик имеет центр связывания, комплементарный переносимому веществу, поэтому для облегченной диффузии, в отличие от простой, характерна высокая избирательность: для каждого вещества или группы сходных веществ имеется свой переносчик.

Переносимое вещество присоединяется к транслоказе, в результате чего изменяется ее конформация, в мембране открывается канал, и вещество освобождается с другой стороны мембраны. Поскольку в канале нет гидрофобного препятствия, то этот механизм называют облегченной диффузией.Перенос ионов через ионные каналы представляет собой вариант облегченной диффузии. Для ионизированных атомов и молекул гидрофобный слой мембраны трудно преодолим. Трансмембранный перенос ряда ионов (Са2+, Na+, К+, О") происходит через ионные каналы. Ионные каналы представляют собой олигомерные белковые структуры, пронизывающие мембрану от наружной до внутренней поверхности и образующие трансмембранный гидрофильный (заполненный водой) канал, проходимый для определенных ионов (рис. 7.13, в). Избирательность каналов к ионам определяется наличием в белках канала специфического центра связывания иона. Проницаемость таких каналов в большинстве случаев регулируется: они могут быть или закрыты, или открыты (см. ниже). Сигналом для изменения состояния канала может быть гормон или иная сигнальная молекула, для которой данный канал имеет центр связывания. Есть каналы, реагирующие на изменение трансмембранного потенциала.
Перемещение ионов по каналам происходит путем диффузии по градиенту их концентрации. Ионы имеют электрический заряд, поэтому образование разности концентраций ионов по разным сторонам мембраны одновременно означает и образование разности электрического заряда, который тоже влияет на направление переноса ионов. Разность электрического потенциала и разность концентраций вместе называют электрохимическим потенциалом. Следовательно, ионы перемещаются через ионные каналы по градиенту мембранного электрохимического потенциала.
Направленные потоки веществ путем простой и облегченной диффузии в живой клетке никогда не прекращаются, поскольку выравнивание концентраций никогда не достигается: вещества, поступающие в клетку, например кислород, глюкоза, используются в метаболических процессах, а их убыль постоянно восполняется в результате трансмембранного переноса.
Перенос веществ путем простой и облегченной диффузии называют пассивным транспортом, поскольку перенос происходит по градиенту концентрации.

  • Обеззараживание ультрафиолетовым (уф) излучен стерилизация воздуха и твёрдых поверхностей, дезинфекция питьевой воды
  • 50.Элементы квантовой механики. Волновые свойства движущихся микрочастиц. Длина волны де Бройля. Дифракция электронов.
  • 51.Оптические спектры атомов. Спектр атома водорода. Молекулярные спектры.
  • 52.Понятие об индуцированном излучении света. Оптические квантовые генераторы (лазеры) и их применение в медицине
  • 53.Люминесценция. Виды люминесценции. Флюоресценция, фосфоресценция. Правило Стокса. Квантовый выход люминесценции. Закон Вавилова.
  • 54.Люминесценция биологических систем. Безизлучательный переход. Люминесцентный анализ. Люминесцентные метки и зонды и их применение.
  • 55.Рентгеновские лучи и их свойства. Простейшая рентгеновская трубка. Тормозное рентгеновское излучение и его спектр.
  • Характеристическое рентгеновское излучение
  • 56. Рентгеновские лучи и их свойства. Простейшая рентгеновская трубка. Характеристическое рентгеновское излучение и его спектр.
  • 57.Взаимодействие рентгеновского излучения с веществом. Применение рентгеновского излучения в медицине. Понятие о рентгеноструктурном анализе.
  • 6. Использование рентгеновского излучения в медицине
  • 58.Радиоактивность. Закон радиоактивного распада. Активность радиоактивных препаратов.
  • 59.Виды радиоактивного распада.
  • 60-61А. Взаимодействие радиоактивного излучения с веществом. Его ионизирующая и проникающая способность. Ослабление радиоактивного излучения при прохождении через вещество.
  • В медицине
  • Для получения картины внутренних органов и скелета используют рентгенография, рентгеноскопия, компьютерная томография.
  • 62.Дозиметрия. Поглощенная, экспозиционная, эквивалентная и эффективная эквивалентная дозы. Мощность дозы.
  • 63.Детекторы ионизирующего излучения. Дозиметры.
  • 64.Структура и основные функции биомембран. Модельные липидные мембраны.
  • 65.Физическое состояние липидов в мембране и методы исследования мембран (ямр, эпр, метод флюоресцентых и спиновых зондов, электронная микроскопия, ик – спектроскопия, рентгеноструктурный анализ).
  • 66.Транспорт веществ через биологические мембраны. Явление переноса. Общее уравнение переноса.
  • 67. Пассивный транспорт. Диффузия. Простая и облегченная диффузия, осмос, фильтрация.
  • 68.Физические методы изучения переноса веществ через мембраны
  • 69.Активный транспорт. Молекулярная организация мембранной системы активного транспорта на примере натрий-калиевого насоса.
  • 70.Биопотенциалы покоя. Механизм их возникновения.
  • 71. Биопотенциал действия. Механизм его возникновения.
  • 67. Пассивный транспорт. Диффузия. Простая и облегченная диффузия, осмос, фильтрация.

    Выделяют следующие виды пассивного переноса через биологические мембраны: простая диффузия, диффузия через поры, облегченная диффузия, осмос и фильтрация :

    а) Простая диффузия – это самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вследствие хаотического теплового движения частиц.

    –уравнение Коллендера.

    Величина Р = Dk / l называется коэффициентом проницаемости . В живой клетке такая диффузия обеспечивает прохождение кислорода и углекислого газа, а также ряда лекарственных веществ и ядов.

    в) Облегченная диффузия происходит при участии молекул-переносчиков (перенос через мембрану ионов калия)

    Соединения, обладающие способностью избирательно увеличивать скорость переноса ионов через мембрану получили название ионофоров .

    При облегчённой диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком выступает одно и тоже соединение. Например, глюкоза переносится лучше, чем фруктоза; фруктоза лучше, чем ксилоза; ксилоза, лучше, чем арабиноза и т.д.

    Известны также соединения, способные избирательно блокировать облегчённую диффузию ионов через мембрану. Они образуют прочные комплексы с молекулами переносчиками. Например яд рыбы фугу тетродотоксин блокирует транспорт натрия, флоридзин подавляет транспорт сахаров и т.д.

    в) Осмос – диффузия растворителя через полупроницаемую мембрану, разделяющую два раствора с разной концентрацией . Сила, которая вызывает это движение растворителя, называется осмотическим давлением. Оно возникает вследствие теплового движения молекул воды и растворённого вещества. Избыточное давление вызывает фильтрацию воды в обратном направлении. В некоторый момент наступает состояние динамического равновесия. Давление соответствующее этому состоянию называется осмотическим давлением. Величина осмотического давления определяется уравнением Ван-Гоффа:

    р = i·c·R·T, (16)

    где с – концентрация растворённого вещества; Т – термодинамическая температура; R – газовая постоянная; i – изотонический коэффициент, показывает во сколько раз возросло число частиц в растворе из-за диссоциации молекул. Скорость осмотического переноса воды через мембрану определяется соотношением:

    где Р о – коэффициент проницаемости, S – площадь мембраны, (р 1 – р 2) – разность осмотических давлений по одну и другую стороны мембраны.

    г) Фильтрацией называется движение жидкости через поры в мембране под действием градиента гидростатического давления . Объёмная скорость переноса жидкости при этом подчиняется закону Пуазейля:

    где r – радиус поры; l – длина канальца поры; (р 1 -р 2) – разность давлений на концах канальца; η – коэффициент вязкости переносимой жидкости; – модуль градиента давления вдоль поры;– гидравлическое сопротивление. Это явление наблюдается при переносе воды через стенки кровеносных сосудов (капилляров). Явление филь-трации играет важную роль во многих физиологических процессах. Так, например, образование первичной мочи в почечных нефронах происходит в результате фильтрации плазмы крови под действием давления крови. При некоторых патологиях фильтрация усиливается, что приводит к отёкам.

    Облегченную диффузию также называют диффузией с переносчиком, поскольку вещество транспортируется через мембрану с помощью специфического белка-переносчика. Таким образом, переносчик облегчает диффузию вещества на противоположную сторону мембраны.

    Облегченную диффузию отличают от простой диффузии по следующей важной особенности: величина простой диффузии через открытый канал повышается пропорционально концентрации диффундирующего вещества, а при облегченной диффузии по мере повышения концентрации диффундирующего вещества скорость диффузии достигает максимума, который называют Vmax. Это различие между простой и облегченной диффузией показано на рис. 4-6. Видно, что при повышении концентрации диффундирующего вещества величина простой диффузии пропорционально возрастает, а при облегченной диффузии величина диффузии не может быть выше уровня Vmax.

    Что ограничивает скорость облегченной диффузии ? На этом рисунке показан белок-переносчик с порой, внешняя часть которой достаточно велика для транспорта специфической молекулы. Также показан связывающий рецептор на внутренней стороне белка-переносчика. Транспортируемая молекула входит в пору и связывается с рецептором. Затем в течение доли секунды происходит конформационное или химическое изменение в белке-переносчике, что приводит к открытию поры на противоположной стороне мембраны.

    Поскольку сила связи с рецептором слабая , тепловое движение прикрепленной молекулы позволяет ей оторваться от рецептора и выделиться с противоположной стороны мембраны. Скорость транспорта молекул посредством этого механизма никогда не бывает больше скорости, с которой происходят изменения молекулы белка-переносчика при переходе ее из одного состояния в другое. Следует особо отметить, что этот механизм позволяет транспортируемой молекуле двигаться, т.е. диффундировать через мембрану в любом направлении.

    К наиболее важным веществам, проходящим через клеточную мембрану посредством облегченной диффузии , относят глюкозу и большинство аминокислот. Молекула переносчика для глюкозы обнаружена, и ее молекулярная масса около 45000. Она может также транспортировать некоторые другие моносахариды, структура которых подобна структуре глюкозы, включая галактозу. Кроме того, скорость облегченной диффузии глюкозы в 10-20 раз может повысить инсулин.

    В настоящее время очевидно, что через клеточную мембрану могут диффундировать многие вещества. Обычно важна общая величина диффузии вещества в желаемом направлении, которая определяется рядом факторов.

    Влияние разницы концентрации на величину «чистой» диффузии через мембрану . Скорость диффузии вещества внутрь пропорциональна концентрации молекул снаружи, поскольку эта концентрация определяет, как много молекул сталкивается с внешней стороной мембраны каждую секунду. Наоборот, скорость, с которой молекулы диффундируют наружу, пропорциональна их концентрации внутри мембраны. Следовательно, величина «чистой» диффузии в клетку пропорциональна разности концентраций снаружи и внутри, или
    «Чистая» диффузия ~ (С0 - Q), где С0 - концентрация снаружи, a Q - концентрация внутри.

    Вернуться в оглавление раздела " "

    Простая диффузия

    По пути простой диффузии частицы вещества перемещаются сквозь липидный бислой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O 2 , N 2 , бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

    Облегчённая диффузия

    Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегчённой диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегчённой диффузии по сравнению с простой пассивной диффузией. Скорость облегчённой диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегчённая диффузия не требует специальных энергетических затрат за счёт гидролиза АТФ. Эта особенность отличает облегчённую диффузию от активного трансмембранного транспорта.

    Белки-переносчики

    Белки-переносчики - это трансмембранные белки, которые специфически связывают молекулу транспортируемого вещества и, изменяя конформацию, осуществляют перенос молекулы через липидный слой мембраны. В белках-переносчиках всех типов имеются определенные участки связывания для транспортируемой молекулы. Они могут обеспечивать как пассивный, так и активный мембранный транспорт.

    См. также


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Пассивный транспорт" в других словарях:

      пассивный транспорт - – перенос веществ по градиенту концентрации, без затрат энергии (например, диффузия, осмос). Общая химия: учебник / А. В. Жолнин … Химические термины

      - (от лат. transporto переношу, перемещаю, перевожу) в живых организмах, включает доставку необходимых соединений к определённым органам и тканям (с помощью кровеносной системы у животных и проводящей системы у растений), всасывание их клетками и… … Биологический энциклопедический словарь

      Мембранный транспорт транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов простой диффузии, облегченной диффузии и активного транспорта. Важнейшее свойство биологической… … Википедия

      Материальный обмен между ядром и цитоплазмой клетки осуществляется посредством ядерных пор транспортных каналов, пронизывающих двухслойную ядерную оболочку. Переход макромолекул из ядра в цитоплазму и в обратном направлении называется ядерно… … Википедия

      Перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой… … Википедия

      Транспортная функция белков участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму. Есть разные виды транспорта, которые осуществляются при… … Википедия

      Обмен веществами между ядром и цитоплазмой клетки осуществляется посредством ядерных пор транспортных каналов, пронизывающих двухслойную ядерную оболочку. Переход молекул из ядра в цитоплазму и в обратном направлении называется ядерно… … Википедия

      Материальный обмен между ядром и цитоплазмой клетки осуществляется посредством ядерных пор транспортных каналов, пронизывающих двухслойную ядерную оболочку. Переход макромолекул из ядра в цитоплазму и в обратном направлении называется ядерно… … Википедия

      Материальный обмен между ядром и цитоплазмой клетки осуществляется посредством ядерных пор транспортных каналов, пронизывающих двухслойную ядерную оболочку. Переход макромолекул из ядра в цитоплазму и в обратном направлении называется ядерно… … Википедия

    Книги

    • Физиология и молекулярная биология мембран клеток , А. Г. Камкин, И. С. Киселева. В учебном пособии изложены современные представления об электрофизиологии и молекулярной биологии мембран клеток. Освещены вопросы молекулярной организации биологических мембран, пассивных…

    А) Цитоплазма представляет собой метаболический рабочий аппарат клетки. В ней сосредоточены общие и специальные органоиды, в цитоплазме протекают основные метаболические процессы.

    Общей чертой всех мембран клетки, внешней плазматической мембраны и всех внутриклеточных мембран и мембранных органоидов является то, что они представляют собой тонкие (6-10 нм) пласты липопротеидной природы (липиды в комплексе с белками), замкнутые сами на себя. В клетке нет открытых мембран со свободными концами. Мембраны клетки всегда ограничивают полости или участки, закрывая их со всех сторон и тем самым отделяя содержимое таких полостей от окружающей их среды. Так, плазматическая мембрана, покрывая всю поверхность клетки, имеющей сложную форму и многочисленные выросты, нигде не прерывается, она замкнута. Она отделяет содержимое цитоплазмы от окружающей клетку среды. Внутриклеточные замкнутые мембраны образуют пузырьки - вакуоли шаровидной или уплощенной формы. В последнем случае образуются плоские мембранные мешки, или цистерны. Часто полости, отграниченные мембранами, имеют сложную форму, напоминающую губку или сеть, но и в этом случае такие полости без перерывов отграничены мембраной. В подобных вариантах мембраны также разделяют две структурные фазы цитоплазмы: гиалоплазму от содержимого вакуолей и цистерн. Такое же свойство имеют мембраны митохондрий и пластид: они разделяют внутреннее содержимое от межмембранных полостей и от гиалоплазмы. Ядерная оболочка тоже может быть представлена в виде перфорированного полого двойного мембранного мешка шаровидной формы. Мембраны ядерной оболочки разграничивают, отделяют друг от друга кариоплазму и хромосомы от полости перинуклеарного пространства и от гиалоплазмы. Эти общие морфологические свойства клеточных мембран определяются их химическим составом, их липопротеидной природой.

    Б) Строение плазматической мембраны

    Цитоплазматическая мембрана имеет толщину 8-12 нм, поэтому рассмотреть ее в световой микроскоп невозможно. Строение мембраны изучают при помощи электронного микроскопа. Плазматическая мембрана образована двумя слоями липидов – билипидным слоем, или бислоем. Каждая молекула липида состоит из гидрофильной головки и гидрофобного хвоста, причем в биологических мембранах липиды расположены головками наружу, хвостами внутрь. В билипидный слой погружены многочисленные молекулы белков. Одни из них находятся на поверхности мембраны (внешней или внутренней), другие пронизывают мембрану насквозь.

    Функции плазматической мембраны

    Мембрана защищает содержимое клетки от повреждений, поддерживает форму клетки, избирательно пропускает необходимые вещества внутрь клетки и выводит продукты обмена, а также обеспечивает связь клеток между собой. Барьерную, отграничительную функцию мембраны обеспечивает двойной слой липидов. Он не дает содержимому клетки растекаться, смешиваться с окружающей средой или межклеточной жидкостью, и препятствует проникновению в клетку опасных веществ. Ряд важнейших функций цитоплазматической мембраны осуществляется за счет погруженных в нее белков. При помощи белков-рецепторов клетка может воспринимать различные раздражения на свою поверхность. Транспортные белки образуют тончайшие каналы, по которым внутрь клетки и из нее проходят ионы калия, кальция, натрия и другие ионы малого диаметра. Белки-ферменты обеспечивают процессы жизнедеятельности в самой клетке. Крупные пищевые частицы, не способные пройти через тонкие мембранные каналы, попадают внутрь клетки путем фагоцитоза или пиноцитоза. Общее название этим процессам – эндоцитоз.

    2. Определения:

    Диффузия - процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму.

    Простая диффузия - пример пассивного транспорта. Его направление определяется только разностью концентраций вещества по обеим сторонам мембраны (градиентом концентрации). Путём простой диффузии в клетку проникают неполярные (гидрофобные) вещества, растворимые в липидах и мелкие незаряженные молекулы (например, вода). Большинство веществ, необходимых клеткам, переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки, по-видимому, образуют непрерывный белковый проход через мембрану.

    Различают две основные формы транспорта с помощью переносчиков: облегчённая диффузия и активный транспорт.

    Облегчённая диффузия обусловлена градиентом концентрации, и молекулы движутся соответственно этому градиенту. Однако если молекула заряжена, то на её транспорт влияет как градиент концентрации, так и общий электрический градиент поперёк мембраны (мембранный потенциал).

    Активный транспорт - это перенос растворённых веществ против градиента концентрации или электрохимического градиента с использованием энергии АТФ. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении.

    Осмос - процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону большей концентрации растворённого вещества из объёма с меньшей концентрацией растворенного вещества.

    Различают два типа эндоцитоза:

    1. Фагоцитоз - поглощение твёрдых частиц. Специализированные клетки, осуществляющие фагоцитоз, называются фагоцитами.

    2. Пиноцитоз - поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Часто при этом образуются очень мелкие пузырьки (микропиноцитоз).

    Экзоцитоз - процесс, обратный эндоцитозу. Таким способом выводятся гормоны, полисахариды, белки, жировые капли и другие продукты клетки. Они заключаются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Обе мембраны сливаются, и содержимое пузырька выводится в среду, окружающее клетку.

    Пассивный транспорт включает простую и облегченную диффузию - процессы, которые не требуют затраты энергии. Диффузия – транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, те. вещества поступают по градиенту концентрации. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ. Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со скоростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны. Облегченная диффузия осуществляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мелкие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водорастворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые претерпевают обратимые изменения конфор мации, обеспечивающие транспорт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.

    Активный транспорт является энергоемким процессом, благодаря которому перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-переносчиком Nа+-К+-АТФазой), благодаря которому ионы Na+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в нее. Концентрация К+ внутри клетки в 10-20 раз выше, чем снаружи, а концентрация Na наоборот. Такая разница в концентрациях ионов обеспечивается работой (Na*-K*> насоса. Для поддержания данной концентрации происходит перенос трех ионов Na из клетки на каждые два иона К* в клетку. В этом процессе принимает участие белок в мембране, выполняющий функцию фермента, расщепляющего АТФ, с высвобождением энергии, необходимой для работы насоса. Участие специфических мембранных белков в пассивном и активном транспорте свидетельствует о высокой специфичности этого процесса. Этот механизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-переносчиком и сочетается с однонаправленным переносом иона Nа+. Облегченный транспорт ионов опосредуется особыми трансмембранными белками - ионными каналами, обеспечивающими избирательный перенос определенных ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на (а) изменение мембранного потенциала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), (в) связывание лиганда (сигнальной молекулы или иона).

    Транспорт через мембрану малых молекул . Мембранный транспорт может включать однонаправленный перенос молекул какого-то вещества или совместный транспорт двух различных молекул в одном или противоположных направлениях. Через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы. Одно из важнейших свойств плазматической мембраны связано со способностью пропускать в клетку или из нее различные вещества. Это необходимо для поддержания постоянства ее состава (т.е. гомеостаза).

    Транспорт ионов . В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K+, Na+) и значительно ниже для анионов (Cl-). Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na+. Транспорт ионов может происходить по градиенту концентрации- пассивнобез дополнительной затраты энергии. Так, например, в клетку проникает ион Na+ из внешней среды, где его концентрация выше, чем в цитоплазме. Наличие белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных.

    Оказывается в цитоплазме концентрация K+ почти в 50 раз выше, а Na+ ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +20С, и через некоторое время концентрация K+ и Na+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта, и он осуществляется с помощью белковых ионных насосов. В плазматической мембране находится двухсубъединичная молекула (K+ + Na+)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na+ и закачивает в клетку 2 иона K+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na+ переносится через мембрану из клетки, а K+ получает возможность связаться с белковой молекулой и затем переносится в клетку. В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2+ и Ca2+, также с затратой АТФ. Так активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na+, будет зависеть от активности (K+ + Na+)-насоса. Если этот (K+-Na+)- насос заблокировать, то скоро разность концентрации Na+ по обе стороны мембраны исчезнет, сократится при этом диффузия Na+ внутрь клетки, и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K+-Na+)-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Na+ и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы. Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода. Само по себе участие специальных мембранных белков, участвующих в пассивном или активном транспорте низкомолекулярных соединений, указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки “узнают” данный ион, взаимодействуют с ним, связываются специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.

    3. Гипертонический – раствор с большей концентрацией и большим осмотическим давлением по сравнению с другим раствором.

    Гипотонический – раствор, имеющий меньшую концентрацию и меньшее значение осмотического давления.

    Изотонические растворы – растворы с одинаковым осмотическим давлением.

    4. Плазмолиз - это осмотический процесс в клетках растений, грибов и бактерий, связанный с их обезвоживанием и отступлением жидкой цитоплазмы от внутренней поверхности клеточной мембраны с образованием полостей. Это возможно благодаря наличию клеточной стенки, которая обеспечивает жесткий внешний каркас.

    Деплазмолиз - обратный процесс, то есть восстановление исходной формы клетки при снижении осмотического давления во внеклеточной жидкости

    5. Коллоидные системы – системы, размер частиц дисперсной фазы в которых составляет 10-7 – 10-9 м. Коллоидные системы характеризуются гетерогенностью, т.е. наличием поверхностей раздела фаз и очень большим значением удельной поверхности дисперсной фазы. Это обусловливает значительный вклад поверхностной фазы в состояние системы и приводит к появлению у коллоидных систем особых, присущих только им, свойств.

    Цитоплазма построена по коацерватному типу и представляет сложную коллоидную систему из белковых, углеводных и липидных соединений.

    6. Некроз - омертвение, гибель клеток и тканей в живом организме; при этом жизнедеятельность их полностью прекращается. Понятие "некроз" является видовым по отношению к более общему понятию "смерть"

    Паранекроз - это совокупность обратимых неспецифических изменений в живых клетках, возникающих в ответ на действие повреждающих агентов, сопровождающейся нарушением функциональных свойств клеток. Пограничное состояние между жизнью и смертью.

    Апоптоз или запрограммированная (контролируемая) клеточная гибель представляет собой активную форму гибели клетки многоклеточного организма, являющуюся результатом реализации ее генетической программы в ответ на внешние или внутренние сигналы и требующую затрат энергии и синтеза макромолекул de novo. Морфологически апоптоз проявляется в уменьшении размера клетки, конденсации и фрагментации хроматина, уплотнении наружной и цитоплазматических мембран без выхода содержимого клетки в окружающую среду.

    7. К числу наиболее типичных изменений живой протоплазмы, относятся:

    А)Повышение вязкости протоплазмы клеток . Нередко изменение вязкости бывает двухфазным. При действии слабых раздражителей она может уменьшаться, но при усилении раздражителя вязкость начинает повышаться. На действие раздражителя размер коллоидной частицы увеличивается.

    Б)Уменьшение степени дисперсности коллоидов протоплазмы, что выражается в возникновении в клетке видимых структур,

    Вязкость повышается, а дисперсность уменьшается, например, при повреждении клеток, размеры коллоидных частиц укрупняются, за счёт набухания и их агрегации. Между размерами коллоидных частиц и дисперсностью обратная зависимость.

    В) Подавление гранулообразующей деятельности и усиление ее способности связывать прижизненные красители. При этом цитоплазма и ядро начинают сильно прокрашиваться диффузно, причем, в ряде случаев этот процесс в ядре выявляется раньше, чем в цитоплазме.

    Г) Сдвиг внутриклеточной реакции цитоплазмы и ядра в кислую сторону , а также выход из альтерированных клеток различных веществ, например, ионов калия, магния, кальция, фосфатов, нуклеиновых кислот и др. и одновременное проникновение в клетку ионов натрия и хлора.

    8. Метод прижизненного окрашивания

    Для определения ответной реакции клеток при различных повреждающих воздействиях, наряду с другими цитологическими методами исследования, широко используется метод прижизненного окрашивания. Для окраски живого объекта применяют витальные красители, обладающие минимальной токсичностью. Прижизненные красители бывают:

    а) кислыми (трипановая синь, метиловый кармин)

    б) основными (нейтральный красный, янус зеленый, метиленовый синий).

    Различают также диффузные и гранулярные витальные красители. Красители вводят животному либо внутривенно - в этом случае краска наиболее полно проникает в органы исследуемого животного, либо окрашивают изолированные живые ткани. Удобными объектами для исследования являются тонкие пленки растительных и животных тканей, форменные элементы крови (лейкоциты), изолированные железы личинок насекомых, роговица лягушки. Проведение работы с живыми «переживающими» клетками требует соблюдения определенных мер предосторожности, гарантирующих нормальное состояние клетки. Животные клетки обычно изучаются в рингеровском или в рингер-локковском солевом растворе или, наконец, в капле кровяной плазмы того животного, от которого взята исследуемая ткань.

    Растительные клетки обычно, изучаются в водопроводной воде или в растворах сахара. Окрашивание производится в чашках Петри при температуре воздуха 20 - 25°С и при определенной концентрации красителя, которая устанавливается экспериментальным путем, индивидуально для каждой ткани.

    В цитоплазме неповрежденных клеток образуются мелкие гранулы красителя в виде зерен, капелек. Ядро остается при этом неокрашенным (воспринимается как оптическая пустота). Неповрежденные клетки (нейтральный красный 1,5 %).Ядро не окрашено - оптическая пустота, в цитоплазме гранулы красителя.

    В поврежденных клетках цитоплазма и ядро окрашиваются красителем диффузно.

    Поврежденные клетки Ядра и цитоплазма окрашиваются диффузно

    Двойное витальное окрашивание.

    Интересным и перспективным является метод двойной витальной окраски, разработанный на кафедре биологии (И. Е. Камнев, Л. Ф. Гордеева, 1959). Этот метод заключается в том, что ткани окрашиваются нейтральным красным в сочетании с азуром I.

    В основе метода избирательная способность повреждённых и неповреждённых клеток взаимодействовать с красителями. Преимущество этого метода заключается в том, что в результате такого окрашивания возникает четко видимая разница между нормальными и поврежденными клетками на изучаемом препарате. Цитоплазма интактных клеток почти бесцветна и содержит большое количество гранул нейтрального красного. Ядро не окрашено. В поврежденных клетках цитоплазма и ядро диффузно окрашиваются азуром I в синий цвет. Окрашивание позволяет выявить такие тонкие начальные изменения, которые не обнаруживаются другими методами. Поэтому метод прижизненной окраски нашел широкое применение для решения и трактовки ряда как общетеоретических, так и прикладных вопросов.