Как переделать никелевый на литиевый шуруповерт 12в. Переделка шуруповерта на литиевые аккумуляторы: инструкция

С родных никель-кадмиевых NI-CD на литий-ионные Li-ion размером 18650.

Немного теории.

В мощных силовых портативных устройствах применяются специальные аккумуляторы с повышенной токоотдачей. В шуруповерте при повышенной нагрузке, создается высокий ток, и чтоб с ним справиться используют усиленные Ni-CD и NiMH аккумуляторы (обычно обернутые в бумагу). Средний рабочий ток двенадцати вольтового шуруповерта 3-7 ампер, при нагрузке может доходить до 15А, а в импульсе до 30А.

Отсюда вытекает первая рекомендация – необходимо применять при замене кадмия на литий только высокотоковые литий-ионные аккумуляторы. Сейчас данные аккумуляторы производят компании Samsung, LG, SONY и ряд других производителей.

Использование 4 аккумуляторов Li Ion в 12 Вольтовом шуруповерте губительно для силового ключа ШИМ регулятора оборотов, расположенный в кнопке. Напряжение полностью заряженного Li Ion аккумулятора 4,2 вольта, напряжение полностью заряженной сборки из четырех аккумуляторов составит 16.8 вольт что на треть превышает рекомендуемое напряжение, согласно закону Ома – «ток прямо пропорционален напряжению в цепи», говорит нам что ток уветичится так же на треть, и в импульсе он может достигнуть 40А, ни один ключ не выдержит такой перегрузки, и выйдет из строя. Мы рекомендуем применять для 12 Вольтового аккумулятора только 3 литий-ионных аккумулятора, 4 аккумулятора отлично справятся с 14,4 вольтовым аккумулятором, а 18 вотльтовым достаточно 5 аккумуляторов.

В процессе эксплуатации литий-ионного аккумулятора необходимо контролировать его напряжение заряда и разряда, так как в связи с его физико-химическими особенностями, напряжение необходимо держать в строго определенных рамках 2,5-4,2 вольт. Только в этих условиях гарантируется максимальный срок службы аккумулятора и безопасность его эксплуатации.

Применение контроллера заряда и разряда - обязательно и, исходя из первой рекомендации, контроллер должен поддерживать работу при токах от 12 до 30 ампер, иначе при повышенной нагрузке контроллер будет «уходить в защиту» и нормальной работы устройства не получится.

Для зарядки можно использовать родное зарядное устройство, не забудьте оставить датчик температуры и перегрева на своих местах, иначе заряжать не будет. Если по каким либо причинам зарядка «не хочет» работать, то следующих два Варианта для Вас.

Можно взять готовое к работе , рассчитанное на количество элементов в Вашей сборке и подобрать по оптимальному току заряда. В этом случае сверлится отверстие в блоке, для гнезда 5,5*2,1 мм, и дальнейшая зарядка будет осуществляться через него. Это решение особенно спасает, когда места в блоке батарей совсем мало. В нашем случае мы так и поступили, но все датчики оставили на своих местах, а вдруг пригодится.

Отличное решение для зарядки - это применение универсального модуля преобразования постоянного напряжения DC-DC с возможностью регулировки тока и напряжения, так называемые CC CV. Большую популярность имеют модули понижающие на чипах XL4015 и LM2596 . Выставляете на выходе модуля напряжение заряда 12,6-13,6 В и ток заряда в пределах 500-900мАч и модуль всё остальное сделает сам. Применение данных модулей дает возможность заряжать шуруповерт от любого источника питания с напряжением выше 13 вольт. Особенно оправдано, если Ваш шуруповерт имеете блок питания отдельно от зарядного блока, тогда старый блок питания отлично справится с зарядкой новых аккумуляторов.

Ну и общие рекомендации – желательно применять сечение провода не менее 4 мм.кв., при монтаже соблюдайте осторожность, любые замыкания приводят к мгновенному разогреву проводников и можно обжечься, все соединения и места спайки должны быть максимально надежными и прочными, так как высокие токи, ну и вибрация присутствует.



Мы для нашего шуруповерта решили применить аккумуляторы , они отвечают всем необходимым параметрам. Так же был применен – это миниатюрный 50*22 мм высокотоковый контроллер с защитой от короткого замыкания и перегрузки. Все соединения мы производили силиконовым проводом 6 мм.кв (рекомендуем применять сечение поменьше, с таким сечением сложно работать).



С начала мы долго думали, как разместить аккумуляторы с платой.Потом думали куда поставить разъем зарядки. Ну и как определились, начали всё потихоньку спаивать. Самым удобным оказалось два аккумулятора положить в основном корпусе, а плату BMS и третий аккумулятор расположить в штыре корпуса.



В процессе сборки появилась мысль снабдить наш аккумулятор , сказано - сделано. Место куда его прикрутить есть, и кнопочку не забыли, чтоб можно было нажать и посмотреть сколько осталось емкости. Модуль настраиваемый, так что по сути можно прикрутить к любому аккумулятору.

В качестве заключения.

От процесса и результата остались довольны все. Вес аккумулятора уменьшился вдвое. Все возложенные испытания аккумулятор выдержал без нареканий.

Из пожеланий на будущее.

Валяется шуруповерт AEG тоже с 12 вольтовым аккумулятором, надеемся, руки дойдут и до него, и места в нем окажется побольше и думаем аккумуляторы поставить .

Ну, а что делать тем, у кого инструмент старый? Да всё очень просто: выбросить Ni-Cd банки и заменить их на Li-Ion популярного формата 18650 (маркировка обозначает диаметр 18 мм и длину 65 мм).

Какая нужна плата и какие нужны элементы для переделки шуруповёрта на литий-ион

Итак, вот мой аккумулятор на 9,6 В и ёмкостью 1,3 А·ч. При максимальном уровне заряда он имеет напряжение 10,8 вольт. Литий-ионные элементы имеют номинальное напряжение 3,6 вольта, максимальное – 4,2. Следовательно, для замены старых никель-кадмиевых элементов на литий-ионные мне потребуются 3 элемента, их рабочее напряжение будет 10,8 вольт, максимальное – 12,6 вольт. Превышение номинального напряжения никак не повредит мотору, он не сгорит и при большей разнице, беспокоиться не надо.

Литий-ионные элементы, как это всем давно известно, категорически не любят перезаряд (напряжение выше 4,2 В) и чрезмерный разряд (ниже 2,5 В). При таких превышениях рабочего диапазона элемент очень быстро деградирует. Поэтому литий-ионные элементы всегда работают в паре с электронной платой (BMS – Battery Management System), управляющей элементом и контролирующей как верхнюю, так и нижнюю границу напряжения. Это плата защиты, просто отсоединяющая банку от электрической цепи при выходе напряжения за границы рабочего диапазона. Поэтому помимо самих элементов, потребуется такая плата BMS.

Теперь два важных момента, с которыми я несколько раз неудачно экспериментировал, пока не пришёл к правильному выбору. Это – максимально допустимый рабочий ток самих Li-Ion элементов и максимальный рабочий ток BMS-платы.

В шуруповёрте рабочие токи при высокой нагрузке достигают 10-20 А. Поэтому и элементы нужно покупать такие, которые способны отдавать высокие токи. Лично я успешно пользуюсь 30-амперными элементами 18650 производства Sony VTC4 (ёмкостью 2100 мАч) и и 20-амперными Sanyo UR18650NSX (ёмкостью 2600 мАч). Они нормально работают в моих шуруповёртах. А вот, например, китайские TrustFire 2500 мАч и японские светло-зелёные Panasonic NCR18650B на 3400 мАч не годятся, они на такие токи не рассчитаны. Поэтому не надо гнаться за ёмкостью элементов – даже 2100 мАч более чем достаточно; главное при выборе – не просчитаться с максимально допустимым током разряда.

И точно так же, BMS-плата должна быть рассчитана на высокие рабочие токи. Я видел в Youtube, как народ собирает аккумуляторы на 5-ти или 10-амперных платах – не знаю, лично у меня такие платы при включении шуруповёрта сразу уходили в защиту. По-моему, это выброс денег. Скажу так, что сама фирма Makita ставит в свои аккумуляторы 30-амперные платы. Поэтому я пользуюсь 25-амперными BMS, купленными на Алиэкспрессе. Они стоят около 6-7 долларов и ищутся по запросу «BMS 25A». Поскольку нужна плата на сборку из 3-х элементов, то надо искать такую плату, в названии которой будет «3S».

Ещё один важный момент: у некоторых плат на зарядку (обозначение «С») и нагрузку (обозначение «P») могут идти разные контакты. Например, плата может иметь три контакта: «P-», «P+» и «C-», как на родной макитовской литий-ионной плате. Такая плата нам не подойдёт. Зарядка и разрядка (charge/discharge) должны осуществляться через один контакт! То есть, на плате должно быть 2 рабочих контакта: просто «плюс» и просто «минус». Потому что наше старое зарядное устройство также имеет только два контакта.

В общем, как уже можно было догадаться, я со своими экспериментами выбросил массу денег как на неправильные элементы, так и на неправильные платы, совершив все ошибки, которые можно было совершить. Зато получил бесценный опыт.

Как разобрать аккумулятор шуруповёрта

Как разобрать старый аккумулятор? Есть аккумуляторы, где половинки корпуса крепятся винтами, но есть и на клею. Мои аккумуляторы как раз из последних, и я вообще долгое время считал, что их невозможно разобрать. Оказалось, что возможно, если у тебя есть молоток.

В общем, с помощью интенсивных ударов в периметр кромки нижней части корпуса (молоток с нейлоновой головкой, аккумулятор нужно держать в руке на весу) место склейки успешно разъединяется. Корпус при этом никак не повреждается, я уже 4 штуки так разобрал.

Интересующая нас часть.

От старой схемы нужны только контактные пластины. Они прочно приварены к верхним двум элементам точечной сваркой. Отковырять сварку можно отвёрткой или плоскогубцами, но ковырять надо максимально аккуратно, чтобы не сломать пластик.

Всё почти готово для дальнейшей работы. Кстати, штатные термодатчик и размыкатель я оставил, хотя они уже не особо актуальны.

Но очень даже вероятно, что наличие этих элементов необходимо для нормальной работы штатного зарядного устройства. Поэтому настоятельно рекомендую их сохранить.

Собираем литиево-ионный акумулятор

Вот новые элементы Sanyo UR18650NSX (по этому артикулу их можно найти на Алиэкспрессе) ёмкостью 2600 мАч. Для сравнения, старый аккумулятор имел ёмкость всего 1300 мАч, в два раза меньше.

Надо припаять провода к элементам. Провода нужно брать сечением не менее 0,75 кв.мм, ведь токи у нас будут немалые. Провод с таким сечением нормально работает с токами более 20 А при напряжении 12 В. Паять литий-ионные банки можно, кратковременный перегрев им никак не повредит, это проверено. Но нужен хороший быстродействующий флюс. Я пользуюсь глицериновым флюсом ТАГС. Полсекунды – и всё готово.

Припаиваем другие концы проводов к плате согласно схеме.

На контактные разъёмы батареи я всегда пускаю ещё более толстые провода по 1,5 кв.мм – потому что место позволяет. Прежде чем их припаивать к ответным контактам, на плату надеваю отрезок термоусадочной трубки. Она необходима для дополнительной изоляции платы от аккумуляторных элементов. В противном случае острые края пайки легко могут протереть или проткнуть тонкую плёнку литий-ионного элемента и вызывать замыкание. Можно и не применять термоусадку, но хотя бы что-то изолирующее проложить между платой и элементами совершенно необходимо.

Теперь всё заизолировано как надо.

Контактную часть можно укрепить в корпусе аккумулятора парой капелек супер-клея.

Аккумулятор готов к сборке.

Хорошо, когда корпус на винтах, но это не мой случай, поэтому я просто снова склеиваю половинки «Моментом».

Зарядка батареи производится штатным зарядным устройством. Правда, алгоритм работы меняется.

У меня есть два зарядных устройства: DC9710 и DC1414 T. И работают они теперь по-другому, поэтому я расскажу, как именно.

Зарядное устройство Makita DC9710 и литий-ионная батарея

Раньше заряд аккумулятора контролировало само устройство. При достижении полного уровня оно останавливало процесс и сигнализировало о завершении зарядки зелёным индикатором. Но сейчас контролем уровня и отключением питания занимается установленная нами схема BMS. Поэтому по завершении зарядки красный светодиод на зарядном устройстве просто выключится.

Если у вас именно такое старое устройство – вам повезло. Потому что с ним всё просто. Горит диод – идёт зарядка. Погас – зарядка завершена, аккумулятор полностью заряжен.

Зарядное устройство Makita DC1414 T и литий-ионная батарея

Здесь есть небольшой нюанс, который нужно знать. Это ЗУ поновее и предназначено оно для зарядки более широкого диапазона аккумуляторов от 7,2 до 14,4 В. Процесс зарядки на нём идёт как обычно, горит красный светодиод:

А вот когда аккумулятор (которому в случае NiMH-элементов положено иметь максимальное напряжение 10,8 В) достигнет 12 вольт (у нас же Li-Ion элементы, у которых максимальное суммарное напряжение может составлять 12,6 В), заряднику снесёт крышу. Потому что он не поймёт, какой именно аккумулятор он заряжает: то ли 9,6-вольтовый, то ли 14,4-вольтовый. И в этот момент Makita DC1414 войдёт в режим ошибки, попеременно мигая красным и зелёным светодиодом.

Это нормально! Ваша новая батарея всё равно зарядится – правда, не до конца. Напряжение будет составлять примерно 12 вольт.

То есть какую-то часть ёмкости с этим зарядным устройством вы упустите, но мне кажется, это можно пережить.

Итого модернизация аккумулятора обошлась примерно в 1000 рублей. Новый макитовский Makita PA09 стоит в два раза дороже. Причём мы в итоге получили вдвое большую ёмкость, а дальнейший ремонт (в случае нескорого выхода из строя) будет заключаться только в замене литий-ионных элементов.

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о двух простеньких платках, предназначенных для контроля за сборками Li-Ion аккумуляторов, именуемые BMS. В обзоре будет тестирование, а также несколько вариантов переделки шуруповерта под литий на основе этих плат или подобных. Кому интересно, милости прошу под кат.
Update 1, Добавлен тест рабочего тока плат и небольшое видео по красной плате
Update 2, Поскольку тема вызвала небольшой интерес, поэтому постараюсь дополнить обзор еще несколькими способами переделки шурика, чтобы получился некий простенький FAQ

Общий вид:


Краткие ТТХ плат:


Примечание:

Сразу же хочу предупредить – с балансиром только синяя плата, красная без балансира, т.е. это чисто плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока. А также вопреки некоторым убеждениям ни одна из них не имеет контроллера заряда (CC/CV), поэтому для их работы необходима специальная платка с фиксированным напряжение и ограничением тока.

Габариты плат:

Размеры плат совсем небольшие, всего 56мм*21мм у синей и 50мм*22мм у красной:




Вот сравнение с аккумуляторами АА и 18650:


Внешний вид:

Начнем с :


При более детальном рассмотрении можно увидеть контроллер защиты – S8254AA и компоненты балансировки для 3S сборки:


К сожалению, рабочий ток по заявлению продавца всего 8А, но судя по даташитам один мосфет AO4407A рассчитан на 12А (пиковый 60А), а у нас их два:

Еще отмечу, что ток балансировки совсем небольшой (около 40ma) и активируется балансировка, как только все ячейки/банки перейдут в режим CV (вторая фаза заряда).
Подключение:


попроще, ибо не имеет балансира:


Она также выполнена на основе контроллера защиты – S8254AA, но рассчитана на более высокий рабочий ток в 15А (опять же по заявлениям производителя):


Ходя по даташитам на используемые силовые мосфеты, рабочий ток заявлен 70А, а пиковый 200А, хватит даже одного мосфета, а у нас их два:

Подключение аналогичное:


Итого, как мы видим, на обеих платах присутствует контроллер защиты с необходимой развязкой, силовые мосфеты и шунты для контроля проходящего тока, но в синей есть еще и встроенный балансир. Я особо не вникал в схему, но похоже, что силовые мосфеты запараллелены, поэтому рабочие токи можно умножать на два. Важное примечание - максимальные рабочие токи ограничиваются токовыми шунтами! Про алгоритм заряда (CC/CV) эти платки не знают. В подтверждение тому, что это именно платы защиты, можно судить по даташиту на контроллер S8254AA, в котором о зарядном модуле ни слова:


Сам контроллер рассчитан на 4S соединение, поэтому с некоторой доработкой (судя по даташиту) – подпайкой кондера и резистора, возможно, заработает красная платка:


Синюю платку так просто доработать до 4S не получится, придется допаивать элементы балансира.

Тестирование плат:

Итак, переходим к самому главному, а именно к тому, насколько они пригодны для реального применения. Для тестирования нам помогут следующие приспособления:
- сборный модуль (три трех/четырехрегистровых вольтметра и холдер для трех 18650 аккумуляторов), который мелькал в моем обзоре зарядника , правда, уже без балансировочного хвостика:


- двухрегистровый ампервольтметр для контроля тока (нижние показания прибора):


- понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития:


- зарядно-балансировочное устройство iCharger 208B для разряда всей сборки

Стенд простой - плата преобразователь подает фиксированное постоянное напряжение 12,6V и ограничивает зарядный ток. По вольтметрам смотрим, на каком напряжении срабатывают платы и как отбалансированы банки.
Для начала посмотрим главную фишку синей платы, а именно балансировку. На фото 3 банки, заряженные на 4,15V/4,18V/4,08V. Как видим – разбалансировка. Подаем напряжение, зарядный ток постепенно падает (нижний приборчик):


Поскольку платка не имеет каких-либо индикаторов, то окончание балансировки можно оценить только на глаз. Амперметр за час с лишним до окончания уже показывал по нулям. Кому интересно, вот небольшой ролик о том, как работает балансир в этой плате:


В итоге банки отбалансированы на уровне 4,210V/4,212V/4,206V, что весьма неплохо:


При подаче напряжения чуть большего 12,6V, как я понял, балансир неактивен и как-только напряжение на одной из банок достигнет 4,25V, то контроллер защиты S8254AA отключает заряд:


Такая же ситуация и с красной платой, контроллер защиты S8254AA отключает заряд также на уровне 4,25V:


Теперь пройдемся по отсечке при нагрузке. Разряжать буду, как уже упоминал выше, зарядно-балансировочным устройством iCharger 208B в режиме 3S током 0,5А (для более точных замеров). Поскольку мне не очень хочется ждать разряда всей батареи, поэтому я взял один разряженный аккумулятор (на фото зеленый Самсон INR18650-25R).
Синяя плата отключает нагрузку, как только напряжение на одной из банок достигнет 2,7V. На фото (без нагрузки->перед отключением->окончание):


Как видим, ровно на 2,7V плата отключает нагрузку (продавец заявлял 2,8V). Как мне кажется, немного высоковато, особенно если учитывать тот факт, что в тех же шуруповертах нагрузки огромные, следовательно, и просадка напряжения большая. Все же желательно в таких приборах иметь отсечку под 2,4-2,5V.
Красная плата, наоборот, отключает нагрузку, как только напряжение на одной из банок достигнет 2,5V. На фото (без нагрузки->перед отключением->окончание):


Вот здесь вообще все отлично, но нет балансира.

Update 1: Тест нагрузки:
По току отдачи нам поможет следующий стенд:
- все тот же холдер/держатель для трех 18650 аккумуляторов
- 4-х регистровый вольтметр (контроль общего напряжения)
- автомобильные лампы накаливания в качестве нагрузки (к сожалению, у меня всего 4 лампы накаливания по 65W, больше не имею)
- мультиметр HoldPeak HP-890CN для измерения токов (макс 20А)
- качественные медные многожильные акустические провода большого сечения

Пару слов о стенде: аккумуляторы соединены «вальтом», т.е. как бы друг за другом, для уменьшения длины соединительных проводов, а следовательно и падения напряжения на них при нагрузке будет минимальным:


Соединение банок на холдере («вальтом»):


В качестве щупов для мультиметра выступили качественные провода с крокодилами от зарядно-балансировочного устройства iCharger 208B, ибо HoldPeak’овские не внушают доверие, да и лишние соединения будут вносить дополнительные искажения.
Для начала потестим красную плату защиты, как самую интересную в плане токовой нагрузки. Припаяем силовые и побаночные провода:


Получается что-то типа этого (нагрузочные соединения получились минимальной длины):


Я уже упоминал в разделе о переделке шурика о том, что подобные холдеры не очень предназначены для таких токов, но для тестов пойдет.
Итак, стенд на основе красной платки (по замерам не более 15А):


Коротко поясню: плата держит 15А, но у меня нет подходящей нагрузки, чтобы вписаться в этот ток, поскольку четвертая лампа добавляет еще около 4,5-5А, а это уже за пределами платки. При 12,6А силовые мосфеты теплые, но не горячие, самое то для продолжительной работы. При токах более 15А плата уходит в защиту. Я замерял с резисторами, они добавляли пару ампер, но стенд уже разобран.
Огромный плюс красной платы – нет блокировки защиты. Т.е. при срабатывании защиты ее не нужно активировать подачей напряжения на выходные контакты. Вот небольшой видеоролик:


Немного поясню. Поскольку лампы накаливания в холодном виде имеют низкое сопротивление, да к тому же еще включены параллельно, то платка думает, что произошло короткое замыкание и срабатывает защита. Но благодаря тому, что у платы нет блокировки, можно немного разогреть спиральки, сделав более «мягкий» старт.

Синяя платка держит больший ток, но на токах более 10А силовые мосфеты сильно греются. На 15А платка выдержит не более минуты, ибо через 10-15 секунд палец уже не держит температуру. Благо остывают быстро, поэтому для кратковременной нагрузки вполне подойдут. Все бы ничего, но при срабатывании защиты плата блокируется и для разблокировки необходимо подавать напряжение на выходные контакты. Это вариант явно не для шуруповерта. Итого, ток в 16А держит, но мосфеты очень сильно греются:


Вывод: лично мое мнение таково, что для электроинструмента отлично подойдет обычная плата защиты без балансира (красная). Она имеет высокие рабочие токи, оптимальное напряжение отсечки в 2,5V, да и легко дорабатывается до конфигурации 4S (14,4V/16,8V). Я считаю – это самый оптимальный выбор для переделки бюджетного шурика под литий.
Теперь по синей платке. Из плюсов – наличие балансировки, но рабочие токи все же небольшие, 12А (24А) это для шурика с крутящим моментом 15-25Нм несколько маловато, особенно когда патрон уже почти стопорит при затяжке самореза. Да и напряжение отсечки всего 2,7V, а это значит, что при сильной нагрузке часть емкости батареи останется невостребованной, поскольку на высоких токах просадка напряжения на банках приличная, да и они рассчитаны на 2,5V. И самый большой минус – плата при сработке защиты блокируется, поэтому применение в шуруповерте нежелательно. Синюю платку лучше использовать в каких-нибудь самоделках, но это опять же, лично мое мнение.

Возможные схемы применения или как переделать питание шурика на литий:

Итак, как же можно переделать питание любимого шурика с NiCd на Li-Ion/Li-Pol? Эта тема уже достаточно заезжена и решения, в принципе, найдены, но я вкратце повторюсь.
Для начала скажу лишь одно – в бюджетных шуриках стоит лишь плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока (аналог обозреваемой красной платы). Никакой балансировки там нет. Более того, даже в некоторых брендовых электроинструментах нет балансировки. Это же относится ко всем инструментам, где есть гордые надписи «Зарядка за 30 минут». Да, они заряжаются за полчаса, но отключение происходит тогда, как только напряжение на одной из банок достигнет номинала или сработает плата защиты. Не трудно догадаться, что банки будут заряжены не полностью, но разница всего 5-10%, поэтому не столь важно. Главное запомнить, заряд с балансировкой идет, как минимум, несколько часов. Поэтому возникает вопрос, а оно вам надо?

Итак, самый распространенный вариант выглядит так:
Сетевое ЗУ со стабилизированным выходом 12,6V и ограничением тока (1-2А) -> плата защиты ->
В итоге: дешево, быстро, приемлемо, надежно. Балансировка гуляет в зависимости от состояния банок (емкость и внутреннее сопротивление). Вполне рабочий вариант, но через некоторое время разбалансировка даст о себе знать по времени работы.

Более правильный вариант:
Сетевое ЗУ со стабилизированным выходом 12,6V, ограничением тока (1-2А) -> плата защиты с балансировкой -> 3 последовательно соединенных аккумулятора
В итоге: дорого, быстро/медленно, качественно, надежно. Балансировка в норме, емкость батареи максимальная

Итого, будем стараться сделать наподобие второго варианта, вот как можно сделать:
1) Li-Ion/Li-Pol аккумуляторы, платы защиты и специализированное зарядно-балансировочное устройство (iCharger, iMax). Дополнительно придется вывести балансировочный разъем. Минусов всего два – модельные зарядники недешевые, да и обслуживать не очень удобно. Плюсы – высокий ток заряда, высокий ток балансировки банок
2) Li-Ion/Li-Pol аккумуляторы, плата защиты с балансировкой, DC преобразователь с токоограничением, БП
3) Li-Ion/Li-Pol аккумуляторы, плата защиты без балансировки (красная), DC преобразователь с токоограничением, БП. Из минусов только то, что со временем появится разбалансировка банок. Для минимизации разбалансировки, перед переделкой шурика необходимо подогнать напряжение к одному уровню и желательно брать банки из одной партии

Первый вариант сгодится только тем, кто имеет модельное ЗУ, но мне кажется, если им нужно было, то они уже давным давно переделали свой шурик. Второй и третий варианты практически одинаковые и имеют право на жизнь. Необходимо лишь выбрать, что важнее – скорость или емкость. Я считаю, что самый оптимальный вариант – последний, но только раз в несколько месяцев нужно балансировать банки.

Итак, хватит болтовни, переходим к переделке. Поскольку я не имею шурика на NiCd аккумах, поэтому о переделке только на словах. Нам будет нужно:

1) Источник питания:

Первый вариант. Блок питания (БП), как минимум, на 14V или больше. Ток отдачи желателен не менее 1А (в идеале около 2-3А). Нам подойдет блок питания от ноутбуков/нетбуков, от зарядных устройств (выход более 14V), блоки для питания светодиодных лент, видеозаписывающей аппаратуры (DIY БП), например или :


- Понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития, например или :


- Второй вариант. Готовые блоки питания для шуриков с токоограничением и выходом 12,6V. Стоят недешево, как пример из моего обзора шуруповерта MNT - :


- Третий вариант. :


2) Плата защиты с балансиром или без оного. То току желательно брать с запасом:


Если использоваться будет вариант без балансира, то необходимо подпаять балансировочный разъем. Это нужно для контроля напряжения на банках, т.е. для оценки разбалансировки. И как вы понимаете, нужно будет периодически дозаряжать батарею побаночно простым зарядным модулем TP4056, если началась разбалансировка. Т.е. раз в несколько месяцев, берем платку TP4056 и заряжаем поочереди все банки, которые по окончании заряда имеют напряжение ниже 4,18V. Данный модуль корректно отрубает заряд на фиксированном напряжении 4,2V. Данная процедура займет час-полтора, зато банки будут более-менее отбалансированы.
Написано немного сумбурно, но для тех, кто в танке:
Через пару месяцев ставим на зарядку батарею шуруповерта. По окончании заряда достаем балансировочный хвостик и меряем напряжение на банках. Если получается что-то вроде этого – 4,20V/4,18V/4,19V, то балансировка, в принципе не нужна. Но если картина следующая – 4,20V/4,06V/4,14V, то берем модуль TP4056 и дозаряжаем поочереди две банки до 4,2V. Другого варианта, кроме специализированных зарядников-балансиров я не вижу.

3) Высокотоковые аккумуляторы:


Я уже ранее писал пару небольших обзоров о некоторых из них – и . Вот основные модели высокотоковых 18650 Li-Ion аккумуляторов:
- Sanyo UR18650W2 1500mah (20А макс.)
- Sanyo UR18650RX 2000mah (20А макс.)
- Sanyo UR18650NSX 2500mah (20А макс.)
- Samsung INR18650-15L 1500mah (18А макс.)
- Samsung INR18650-20R 2000mah (22А макс.)
- Samsung INR18650-25R 2500mah (20А макс.)
- Samsung INR18650-30Q 3000mah (15А макс.)
- LG INR18650HB6 1500mah (30А макс.)
- LG INR18650HD2 2000mah (25А макс.)
- LG INR18650HD2C 2100mah (20А макс.)
- LG INR18650HE2 2500mah (20А макс.)
- LG INR18650HE4 2500mah (20А макс.)
- LG INR18650HG2 3000mah (20А макс.)
- SONY US18650VTC3 1600mah (30А макс.)
- SONY US18650VTC4 2100mah (30А макс.)
- SONY US18650VTC5 2600mah (30А макс.)

Я рекомендую проверенные временем дешевенькие Samsung INR18650-25R 2500mah (20А макс.), Samsung INR18650-30Q 3000mah (15А макс.) или LG INR18650HG2 3000mah (20А макс.). С другими баночками особо не сталкивался, но лично мой выбор - Samsung INR18650-30Q 3000mah. У Лыж был небольшой технологический дефект и начали появляться фейки с заниженной токоотдачей. Статью о том, как отличить фейк от оригинала могу скинуть, но чуть позже, нужно поискать ее.

Как все это хозяйство соединить:


Ну и пару слов о соединении. Используем качественные медные многожильные провода приличного сечения. Это качественные акустические или обычные ШВВП/ПВС сечением 0,5 или 0,75 мм2 из хозмага (вспарываем изоляцию и получаем качественные проводочки разного цвета). Длина соединительных проводников должна быть минимальной. Аккумуляторы, желательны из одной партии. Перед их соединением желательно зарядить их до одного напряжения, чтобы как можно дольше не было разбалансировки. Пайка аккумуляторов не представляет ничего сложного. Главное иметь мощный паяльник (60-80Вт) и активный флюс (паяльная кислота, например). Паяется на ура. Главное потом протереть место пайки спиртом или ацетоном. Сами аккумуляторы размещаются в батарейном отсеке от старых NiCd банок. Располагать лучше треугольником, минус к плюсу или как в народе «вальтом», по аналогии с этим (один аккум будет расположен наоборот), либо чуть выше хорошее пояснение (в разделе тестирование):


Так, соединяющие аккумуляторы провода, получатся короткими, следовательно, падение драгоценного напряжения в них под нагрузкой будет минимальным. Использовать холдеры на 3-4 аккумулятора не рекомендую, не для таких токов они предназначены. Побаночные и балансировочные проводники не так важны и могут быть меньшего сечения. В идеале, аккумы и плату защиты лучше запихать в батарейный отсек, а понижающий DC преобразователь отдельно в док станцию. Светодиодные индикаторы заряд/заряжено можно заменить своими и вывести на корпус докстанции. При желании можно добавить в батарейный модуль минивольтметр, но это лишние деньги, ибо общее напряжение на АКБ только косвенно скажет об остаточной емкости. Но если есть желание, почему бы и нет. Вот :

Теперь прикинем по ценам:
1) БП – от 5 до 7 долларов
2) DC/DC преобразователь – от 2 до 4 долларов
3) Платы защиты - от 5 до 6 долларов
4) Аккумуляторы – от 9 до 12 долларов (3-4$ штучка)

Итого, в среднем 15-20$ за переделку (со скидками/купонами), либо 25$ без оных.

Update 2, еще несколько способов переделки шурика:

Следующий вариант (подсказали по комментам, спасибо I_R_O и cartmannn ):
Использовать недорогие 2S-3S зарядные устройства типа (это производитель того же iMax B6) или всевозможные копии B3/B3 AC/imax RC B3 () или ()
Оригинальный SkyRC e3 имеет зарядный ток на каждую банку 1,2А против 0,8А у копий, должен быть точен и надежен, но в два раза дороже копий. Совсем недорого можно купить на том же . Как я понял по описанию, он имеет 3 независимых зарядных модуля, что-то сродни 3 модулей TP4056. Т.е. SkyRC e3 и его копии не имеют балансировки как таковой, а просто заряжают банки до одного значения напряжения (4,2V) одновременно, поскольку у них не выведены силовые разъемы. В ассортименте SkyRC есть действительно зарядно-балансировочные устройства, например, но ток балансировки всего 200ma и стоит уже в районе 15-20 долларов, зато умеет заряжать лифешки (LiFeP04) и токи заряда до 3А. Кому интересно, могут ознакомиться с модельным рядом .
Итого, для данного варианта необходимо любое из вышеперечисленных 2S-3S зарядных устройств, красная или аналогичная (без балансировки) плата защиты и высокотоковые аккумуляторы:


Как по мне, очень хороший и экономичный вариант, наверно, я бы остановился на нем.

Еще один вариант, предложенный камрадом Volosaty :
Использовать так называемый «Чешский балансир»:

Где он продается лучше спросить у него, я первый раз о нем услышал, :-). По токам ничего не подскажу, но судя по описанию, ему необходим источник питания, поэтому вариант не такой бюджетный, но вроде как интересный в плане зарядного тока. Вот ссылка на . Итого, для данного варианта необходимы: источник питания, красная или аналогичная (без балансировки) плата защиты, «чешский балансир» и высокотоковые аккумуляторы.

Преимущества:
Я уже ранее упоминал о преимуществах литиевых источников питания (Li-Ion/Li-Pol) над никелевыми (NiCd). В нашем случае сравнение лицом к лицу – типичная батарея шурика из NiCd аккумов против литиевой:
+ высокая плотность энергии. У типичной никелевой батареи 12S 14,4V 1300mah запасенная энергия 14,4*1,3=18,72Wh, а у литиевой батареи 4S 18650 14,4V 3000mah - 14,4*3=43,2Wh
+ отсутствие эффекта памяти, т.е. можно заряжать их в любой момент, не дожидаясь полного разряда
+ меньшие габариты и вес при одинаковых параметрах с NiCd
+ быстрое время заряда (не боятся больших токов заряда) и понятная индикация
+ низкий саморазряд

Из минусов Li-Ion можно отметить только:
- низкая морозостойкость аккумуляторов (боятся отрицательных температур)
- требуется балансировка банок при заряде и наличие защиты от переразряда
Как видим, преимущества лития налицо, поэтому зачастую имеет смысл переделки питания…

Вывод: обозреваемые платки неплохи, должны подойти для любой задачи. Если бы у меня был шурик на NiCd банках, для переделки я бы выбрал красную платку, :-)…

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Переделка аккумулятора шуруповёрта на литиевые элементы

Многие владельцы шуруповёртов хотят переделать аккумуляторы от них на литиевые аккумуляторные элементы. На эту тему написано много статей и в настоящем материале хотелось бы суммировать информацию по этому вопросу. В первую очередь рассмотрим доводы в пользу переделки шуруповёрта на литиевые батареи и против нее. А также рассмотрим отдельные моменты самого процесса замены аккумуляторов.

Для начала следует задуматься, а нужна ли мне эта переделка? Ведь это будет откровенный «самопал» и в ряде случаев может привести к выходу из строя как аккумулятора, так и самого шуруповёрта. Поэтому, давайте, рассмотрим все за и против этой процедуры. Возможно, что после этого некоторые из вас решат отказаться от переделки Ni─Cd на литиевые элементы.

Доводы «за»

Начнём с преимуществ:

  • Энергетическая плотность литий─ионных элементов значительно выше, чем у никель─кадмиевых, которые по умолчанию используются в шуруповёртах. То есть, аккумулятор на литиевых банках будет иметь меньший вес, чем на кадмиевых при той же ёмкости и выходном напряжении;
  • Зарядка литиевых аккумуляторных элементов происходит значительно быстрее, чем в случае Ni─Cd. Для их безопасной зарядки потребуется около часа;
  • У литий─ионных аккумуляторов отсутствует «эффект памяти». Это значит, что их необязательно полностью разряжать перед тем, как ставить на зарядку .

Теперь о недостатках и сложностях .

Доводы «против»

  • Литиевые аккумуляторные элементы нельзя заряжать выше 4,2 вольта и разряжать ниже 2,7 вольта. В реальных условиях этот интервал ещё более узкий. Если выйти за эти пределы аккумулятор можно вывести из строя. Поэтому, кроме самих литиевых банок вам потребуется подключить и установить в шуруповёрт контроллер заряда-разряда ;
  • Напряжение одного элемента Li─Ion 3,6─3,7 вольта, а для Ni─Cd и Ni─MH это значение 1,2 вольта. То есть, возникают проблемы со сборкой аккумуляторной батареи для шуруповёртов с номиналом по напряжению 12 вольт. Из трёх литиевых банок, соединённых последовательно, можно собрать АКБ номиналом 11,1 вольта. Из четырёх ─ 14,8, из пяти ─ 18,5 вольта и так далее. Естественно, что и пределы напряжения при заряде-разряде также будут другие. То есть, могут возникнуть проблемы совместимости переделанной батареи с шуруповёртом;
  • В большинстве случаев в роли литиевых элементов для переделки используются банки стандарта 18650. По размерам они отличаются от Ni─Cd и Ni─MH банок. Кроме того, нужно будет место для контроллера заряда-разряда и проводов. Всё это нужно будет уместить в стандартном корпусе АКБ шуруповёрта. Иначе работать им будет крайне неудобно;
  • Зарядное устройство для кадмиевых аккумуляторов может не подойти для зарядки батареи после её переделки. Возможно, потребуется доработка ЗУ или использование универсальных зарядок ;
  • Литиевые аккумуляторы теряют работоспособность при отрицательных температурах. Это критично для тех, кто использует шуруповёрт на улице;
  • Цена литиевых аккумуляторов выше кадмиевых.

Замена аккумуляторов в шуруповёрте на литиевые

Что нужно прикинуть перед началом работ?

Нужно определиться с количеством элементов в батарее, что в итоге решает величину напряжения. Для трёх элементов потолок будет 12,6, а для четырёх ─ 16,8 вольта. Речь идёт о переделке широко распространённых аккумуляторов с номиналом 14,4 вольта. Лучше выбрать 4 элемента, поскольку при работе напряжение довольно быстро просядет до 14,8. Различие в несколько вольт не отразится на работе шуруповёрта.

Кроме того, большее количество литиевых элементов даст большую ёмкость. А значит, большее время работы шуруповёрта.



Далее нужно правильно выбрать сами литиевые элементы. Форм-фактор без вариантов – 18650. Основное, на что нужно смотреть, это разрядный ток и ёмкость. По статистике при штатной работе шуруповёрта потребляемый ток находится в диапазоне 5─10 ампер. Если резко нажать на кнопку запуска, то ток может на несколько секунд подскочить до 25 ампер. То есть, вам нужно выбирать литиевые с максимальным значением разрядного тока 20─30 ампер. Тогда при кратковременном увеличении тока до этих величин, аккумулятор не будет повреждён.

Номинальное напряжение литиевых элементов 3,6─3,7 вольта, а ёмкость в большинстве случаев составляет 2000─3000 мАч. Если позволяет корпус аккумулятора, можете взять не 4, а 8 элементов. По два соединить их в 4 параллельные сборки, а затем уже их подключить последовательно. В результате вы сможете нарастить ёмкость АКБ. Но далеко не в каждый корпус удастся упаковать 8 банок 18650.

И последний подготовительный этап – это выбор контроллера. По своим характеристикам он должен соответствовать по номинальному напряжению и току разряда. То есть, если вы решили собирать батарею 14,4 вольта, то выбираете контроллер с этим напряжением. Рабочий ток разряда обычно выбирается в два раза меньше, чем предельно допустимый ток.


Выше мы установили, что предельно допустимый кратковременный ток разряда для литиевых элементов 25─30 ампер. Значит, контроллер заряда-разряда должна быть рассчитана на 12─15 ампер. Тогда защита будет срабатывать при увеличении тока до 25─30 ампер. Не забывайте также о габаритах платы защиты. Её вместе с элементами нужно будет уместить в корпус АКБ шуруповёрта.


На Али купить можно, например, . Но я этот разъем не покупал, а нашел в своих исторически сложившихся закромах. Думаю, что и большинство читателей смогут найти, порывшись в старом компьютерном железе. «Папа» тоже нужен, он есть на старых модемных и прочих CОМ-port шнурках.
Почему написана эта заметка. Каждый раз, встречая на муське (и других форумах) статьи (и особенно последующие дискуссии) о переделке аккумуляторов шуруповертов на Li-Ion аккумуляторы, я задумываюсь о том, что шуруповертов в домашних хозяйствах нашей необъятной страны все-таки существенно больше, чем радиолюбителей с прямыми руками и просто людей которые умеет использовать паяльник по прямому назначению.
Ну, грустно читать все эти многоэкранные обсуждения ( , … и т.д.), в которых предлагается покупать какие то ценой в чуть меньше 2 тысяч рублей (для больших токов). Достаточно посмотреть на размеры этих плат и размеры мощных полевиков на платах, чтобы интуитивно понять, что что-то тут не так.
В одном из обсуждений, человек даже собрался покупать. Мысль хорошая, но не из-за аккумулятора же для шуруповерта. Естественно, все можно сделать существенно проще и дешевле и без ущерба качеству зарядки.
Далее я пропускаю все абзацы про то, зачем вообще переводить шуруповерт на литий, про выбор . Собственно, текст того что я хочу сказать я уже излагал в обсуждении на муське в на данную тему.

Универсальный рецепт для переделки шуруповертов, пылесосов и всего прочего, причем с любым напряжением от 12 до…
Покупаем удлиннитель с N розетками на 220 В, покупаем N сетевых адаптеров (вилок) на 0,5...1,0А с Usb выходом, можно купить самые-самые китайские по 50 рублей (сейчас где-то около 70 рублей). покупаем N usb разъемов на Али и там же N платок TP4056 (15 рублей). Получаем N гальванически развязанных «зарядок» для одного Li-ION с выходом 0.5....1.0 A. Далее без всяких ненужных плат выравнивания и лишних мощных транзисторов паяем последовательную батарею Li-ION и все ее точки (крайние и промежуточные) выводим на разъем DB-9 (хватит на 4 или 5 последовательных банок, тут есть тонкость, лучше совместных участков зарядных проводов избегать). Паяем кабель: Выходы TP4056 -> DB-9. Все!!! Ограничение по току - определяется типом аккумулятора. Каждый акк. заряжается всегда полностью до 4.2В. Дешевле не придумаешь. Окончание зарядки - все LED на TP4056 зеленые (вариант - синие). Сетевой «размножитель» можно не покупать, а просто засунуть платки адаптера TP4056 (N-пар) в какой-нибудь большой старый адаптерный корпус и в этот же корпус поставить такой же DB-9.

Шуруповерт никаким образом нельзя переразрядить, в силу особенностей его применения (пылесос, по-видимому, можно). Он просто «тянуть» перестает. Поэтому никаких индикаторов и защиты от переразряда не требуется. Даже если включать шуруповерт с полностью разряженными аккумуляторами - ну, упадет напряжение на аккумуляторе под нагрузкой до (ниже) 2-х вольт. Ничего страшного. При снятии нагрузки (именно кратковременной) напряжение на банке восстановится до 2,5...3.0 вольт. Не почувствовать этот момент никак нельзя.

А дальше, просто на фотографиях, покажу, как это сделано. У меня 4 шуруповерта. Два на даче (18V), дома (18V) и на работе (12V). Если делать с платами защиты/контроллерами заряда, то будет полное финансовое разорение, особенно с учетом того, что в 18V шуруповерты требуются платы на 5 последовательно соединенных аккумуляторов (они реже встречаются и дороже). Комментарии, я думаю, тут практически не требуются. Показан вариант на 4 литиевых аккумулятора для 12V шуруповерта.

Это мой шуруповерт. В аккумулятор установлен разъем DB9F.


Это зарядное устройство с 4-мя гальванически развязанными каналами. На выходе все четыре канала «объединяются» в разъеме DB9M.






Четыре платы ЗУ LI-Ion с Али на микросхеме TP4056. Я находил по 12 рублей (20 штук). Ссылку потерял.


Естественно, все это можно засунуть в единую коробочку, на выходе которой будет только разъем DB9M, но иметь 4 гальванически развязанных отдельных канала зарядки очень удобно. Например, у меня переделано питание тестера с «Кроны» на два последовательно включенных литиевых аккумулятора от одноразовых электронных сигарет. Заряжаю той же зарядкой, двумя каналами.
Такую конструкцию сможет повторить любой, далекий от электроники, домашний умелец.
Небольшое примечание/уточнение. Аккумуляторы в корпусе шуруповертного аккумулятора мы соединяем последовательно. Четыре штуки для 12, 14, 16V шуруповертов и 5 штук для 18V аккумуляторов. 18 - вольтовый шуруповерт совершенно нормально работает и от четырех Li-Ion аккумуляторов, но только на свежезаряженных аккумуляторах. Придется его гораздо чаще подзаряжать. На разъем DB9.1 и DB9.2 выведены + и - первого аккумулятора отдельными проводами, которые припаяны непосредственно к полюсам аккумулятора. На DB9.3 выведен отдельным проводом + второго аккумулятора и т.д.… По электрической схеме контакт 2 и 3 DB9 это одна и та же точка. Однако это не совсем так с точки зрения платы заряда на TP4056. Следует избегать в цепи заряда совместных участков проводников, потому что при разных токах от двух плат заряда в конкретный момент времени может появиться ошибка в десятки/сотни милливольт. Провода в цепи зарядки желательно ставить диаметром побольше (ну, и в основной цепи разряда, естественно, тоже). Для шуруповерта с аккумулятором 18V при таком подключении потребуется 10 контактов. У меня в качестве 10-го контакта задействован металлический корпус разъема DB9.
Еще картинка. Вариант для аккумулятора на 18 Вольт, 5 каналов.


Как купить маленькие дешевые (40...70 рублей) сетевые адаптеры на Али, чтобы они реально выдавали один ампер - это отдельная тема. Я покупал адаптеры лотами по 5 и 10 штук. Ссылку дать не могу, потому что странички на которых были приобретены показанные на фотографиях адаптеры, к сожалению, уже не существуют. Помню, что у продавца на страничке была картинка с нагрузочными резисторами и USB доктором, на котором было написано 0,98 А. Не обманул, ток такой на выходе действительно присутствовал, правда он сопровождался пульсациями с размахом полтора вольта. Пришлось допаивать внутрь танталовые конденсаторы. Одной емкости 220 мкФ, 6.3...10V на выходе таких адаптеров вполне достаточно, чтобы адаптер по характеристикам приблизился к фирменной зарядке от эппла (получаются пульсации 50...150 mV).

Вместо кота.


Вот такой неплохой USB-doctor можно сделать из купленного на Алиэкспрессе . Он чуть лучше большинства «докторов» первого поколения по падению напряжения на токоизмерительном шунте. Точно я не замерял, но цифра порядка 70 милливольт/1А. Такое падение напряжения сравнимо с . У остальных (и у ) падение на шунте больше 100 мВ. Точные цифры, на самом деле, получить не так просто как бы хотелось, потому что каждый лишний USB контакт в цепи «съедает» около 30 мВ/1,0 А протекающего тока.
На больших зарядных токах старые варианты «докторов», включенные в цепь, могут сами по себе снижать ток зарядки смартфона/планшета даже с короткими и качественными USB шнурками.