Какая частота кадров лучше. Оптимальная частота кадров для съемки видео на YouTube канал

В фильме «Хоббит: Нежданное путешествие» Питер Джексон впервые использовал технологию HFR (High Frame Rate). Благодаря новому формату исчезли привычные зрителю размытие при движении, мерцание и затемнение по краям экрана, появились кристальная чёткость и плавность воспроизведения. Режиссёр Джеймс Кэмерон использует HFR в новом фильме «Аватар 2».

3D-кино стало окном в реальность, а HFR избавляет от стекла в нём.

Джеймс Кэмерон

Достоинства HFR для многих людей остаются под вопросом, но испытать технологию на себе должен каждый киноман.

Как добавить HFR-эффект в любое видео

Программа SmoothVideo Project доступна для Windows, Linux и macOS.

Windows

Версия имеет платный и бесплатный варианты распространения. При этом вы можете и не покупать полную версию - вам будут доступны основные функции, без рекламы и ограниченного срока использования. Бесплатная версия SmoothVideo Project для Windows поддерживает проигрыватели Media Player Classic, Windows Media Player, Stereoscopic Player, Daum PotPlayer и прочие плееры .

Linux

Для Linux есть только бесплатная версия без ограничений в использовании, которая поддерживает проигрыватели mvp, SMplayer, Plex Media Player и VLC. Инструкция по установке

MacOS

Версия распространяется на платной основе и поддерживает проигрыватели mpv, Plex Media Player и VLC. Инструкция по установке доступна на английском языке.

SmoothVideo Project Pro предлагает:

  • Тонкую настройку дополнительных параметров.
  • Дополнительный модуль SVPtube, который позволяет смотреть ролики с YouTube с включёнными функциями SVP.
  • Дополнительный модуль SVPlight, с помощью которого можно настроить светодиодную подсветку по технологии Ambilight, чтобы расширить световую зону действия монитора или телевизора.

Настройки SmoothVideo Project

В ознакомительных целях проще установить программу в режиме по умолчанию. Инсталлятор поставит преднастроенный Media Player Classic, необходимые драйверы и программное обеспечение. Если вас устраивает этот плеер, то вам не нужно будет что-либо менять.

SmoothVideo Project - ресурсоёмкая программа. Она нагружает видеокарту компьютера и использует процессорные мощности. При первом запуске программа проведёт тест производительности системы, после чего автоматически установит нужные параметры для просмотра видео. Чтобы улучшить показатели теста, вы можете отключить все программы, которые не работают в постоянном режиме.

Бесплатная версия SmoothVideo Project имеет функциональный минималистичный интерфейс.

  • Ползунком указывается желаемое соотношение между качеством и скоростью воспроизведения.
  • Есть быстрое переключение оптимизации для фильмов и анимации.
  • Можно установить уровень подавления артефактов. Эта функция нужна, если видео при воспроизведении расплывается.

Чаще всего появление артефактов означает, что ваша система не справляется с потоком данных. В этом случае проверьте свою систему на совместимость с программой или измените настройки.

В полной версии программы предоставляется большая свобода действий: можно выставлять желаемую частоту кадров в видео, выбирать шейдеры.

Во всех версиях SmoothVideo Project присутствует отключаемая функция подсветки полей, которая убирает чёрные полосы при просмотре видео в формате, который не подходит вашему телевизору.

Кинопоказ с высокой частотой 48, 60 кадров в секунду

Почему 24 кадра в секунду устарели? История

По сути, скорость съемки и демонстрации 24 кадра в секунду берет свою историю с первой половины 20 века. Именно в момент перехода от формата немого кино на звуковое возникла такая потребность. Немое кино снималось с частотой 16 кадров в секунду. Прибавку 8 кадров в секунду зритель получил не от доброты производителей кинооборудования, это связанно чисто с техническими проблемами. Просто при частоте съемки 16 кадров в секунду невозможно было записать звуковую дорожку приемлемого качества. И 16 и 24 кадра в секунду не обеспечивают необходимую плавность движения. Почему же производители с самого начала не предложили более высокую скорость съемки и демонстрации кинофильмов? Здесь загадок нет просто пленка дорого стоит, а на заре кинематографа это была чуть ли не основная статья расходов. Фильмокопия современной киноленты требовала бы 10000-13000 метров кинопленки (вместо 5000). По этим причинам уже почти век мы смотрим кино в формате 24 кадра в секунду. Т.е. 24 кадра в секунду это компромисс между плавностью картинки и расходом плёнки.

Необходимость перехода на 48, 60 кадров в секунду

Не для кого не является секретом тот факт, что при просмотре динамичной сцены на большом экране зритель может наблюдать эффект стробирования изображения, объекты на киноэкране двигаются рывками. Этот эффект связан низкой частотой смены кадров в современном кинематографе, всего 24 кадра в секунду. Эффект очень заметен как в 3D так и в 2D картинах. Простым доказательством того, что наш мозг воспринимает информацию гораздо быстрее служит демонстрация 3D контента в режиме триплфлэш (каждый кадр демонстрируется поочередно три раза для левого и правого глаза). Это является стандартом для современных кинотеатров и по сути проверено на миллионах зрителей. Опытным путем было доказано, что именно демонстрация 3D 24 кадра в секунду с разбивкой 2х72 Гц позволяет практически полностью уменьшить утомляемость для подавляющего числа зрителей. К сожалению, данный режим снимает только утомляемость от переключения между изображениями для левого и правого глаза, но не делает движения плавными.

Скрытые причины для перехода на 48, 60 кадров в секунду

Естественно эффект стробирования проявлялся бы в полной мере если бы о нем не знали кинопроизводители. Просто при кинопроизводстве избегаются нежелательные режимы (или минимизируются) съемки в которых данный эффект проявляется особенно заметно. Здесь не факультет кинооператоров и мы не будем углубляться в данную тему. Просто нужно принять как факт 24 кадра в секунду не позволяют нам насладится плавностью и четкостью движений в динамичной сцене, а кинопроизводителю реализовать свои замыслы в полной мере.

Наглядный пример.

Современное оборудование для демонстрации с частотой 48, 60 fps

Итак, основная причина использования частоты 24 кадра в секунду это кинопленка. В мире цифрового кинематографа таких ограничений практически нет. Уже сегодня ведущие мировые производители кинооборудования, как для кинопроизводства, так и для кинопроката, в состоянии обеспечить качественный кинопоказ с частотой 60 кадров в секунду для 2D и 3D контента. Все цифровые кинопроекторы Barco второй серии позволяют произвести их апгрейд для демонстрации с высокой частотой смены кадров. Также современные серверы GDC и DoReMi обеспечивают такую возможность. Фактически, для массового перехода на демонстрацию с высокой частотой смены кадров нужна сильная рука и похоже такая рука уже нашлась.

Именно Джеймс Кэмерон является движущей силой в технологическом продвижении кинематографа,именно после его показа фильма Аватар в 3D формате началась эра показа фильмов в 3D,его можно сравнить с ледоколом за которым все идут,и он не боится ставить эксперементы.Его фильм Аватар стал самым кассовым за всю историю кинематографа.

Аватар 2 в формате 3D 60 кадров в секунду

В своем интервью Wall St. Journal Джеймс Кэмерон заявил: "Я буду добиваться, чтобы в кинопроекции произошли радикальные изменения. Прежде всего, мы будем снимать свой фильм с частотой 48, а может и 60 кадров в секунду. Это позволит наконец избавиться от раздражающих глаз артефактов, которые и вызывают болезненные ощущения у многих зрителей. Это все из-за пресловутых 24 кадров в секунду, 3D к этому не имеет никакого отношения". В настоящее время команда Кэмерона активно продвигает идею перехода на демонстрацию с высокой частотой кадров. По всему миру проводятся презентации новой технологии. Для этого в студийных условиях были сняты ролики с частотой 24, 48, 60 и 120 кадров в секунду. В съемках принимали участие профессиональные актеры. Все делалось как на съемках настоящего кинофильма. Данные демонстрационные материалы наглядно демонстрируют преимущества и недостатки той или иной технологии. Учитывая всю серьезность данной компании можно с уверенностью прогнозировать, что Аватар 2 выйдет в 2014 году именно в формате 60 кадров в секунду.

Пример:фрагмент фильма Аватар 48,60 FPS

Уже состоялся показ фильма Hobbit с частотаой кадров 48 fps ,некоторыми он был воспринят не однозначно,оно и понятно,ведь все привыкли к определённым стандартам и новое всегда кажется необычным и непривычным,однако большая чатота кадров позволяет увеличить плавность и чёткость картинки особенно в динамических сценах ещё и в 3D ,просто потрясающе смотрятся фильмы о природе и спортивные передачи где важна каждая деталь.
Если показ Аватра 2 с большей чаcтотой кадров будет принят также хорошо как показ первого Аватра в 3D то возможно кинемотограф сделает качественный скачёк в технологиях.

Одна из самых злободневных тем, которая постоянно всплывает в игровой и видео-индустрии – какую скорость передачи кадров можно считать оптимальной. По одну сторону баррикад стоят поборники традиций, которые считают, что 24 кадра в секунду для фильмов и 30 кадров в секунду для игр – это магические числа, и превышать эти значения нет никакого смысла. С другой стороны, существует масса объективных свидетельств несостоятельности этой теории, и целая армия квакеров употребляющих seta sv_fps «120».

В этой статье авторства Саймона Кука из Microsoft Xbox Advanced Technology Group мы постараемся объяснить, почему человеческому глазу приятнее более высокая скорость передачи кадров.

Обсуждение этого вопроса может быть немного проблематичным, так как человеческий глаз представляет собой невероятно сложный инструмент, который производит независимую обработку изображения еще до того, как сигнал достигнет мозга. Нам нравится думать, что то, что мы видим, является непреложной истиной, и вся наша визуальная система построена на этом утверждении. Тем не менее, это заблуждение. Чувствительность глаза к цвету, движению, свету и ускорению/замедлению уникальна для каждого человека. Ситуация еще больше осложняется тем фактом, что мы часто сравниваем наши глаза с камерами и говорим о зрении так же, как если бы мы говорили о компьютерной графике, однако ни одна из этих аналогий не описывает истинных процессов, которые позволяют глазам получать и обрабатывать информацию. На сайте представлен короткий ролик , который показывает разницу между 60 и 30 кадрами в секунду при разной скорости движения объекта.

При всем при этом, если человеку предоставляется возможность поиграть в игру с более высокой скоростью передачи кадров, он ей непременно воспользуется. Порой предпочтение отдается скорости передачи кадров даже выше 60 кадров в секунду (60 Гц); все зависит от множества потенциальных причин, включая жанр игры, ее графику, технические особенности и скорость геймплея.

Теория Саймона Кука заключается в том, что подобное предпочтение высокой скорости передачи кадров объясняется одним интересным механическим аспектом нашего зрения: даже если зафиксировать взгляд на одной неподвижной точке, сетчатка все равно не будет полностью неподвижной. Колебания сетчатки, которые в научных кругах называют микротремором глаза, происходят со средней частотой 83,68 Гц, а область сдвига составляет примерно 150-250 нм, что примерно соответствует размеру 1-3 фоторецепторов в сетчатке.

В чем смысл этих колебаний? Кук считает, что ему это известно. Легкое колебание сетчатки помогает вам увидеть одну и ту же сцену с двух немного разных ракурсов. Между тем, в самом глазе существует два разных типа ганглионарных клеток сетчатки: клетки с on-центром, которые откликаются, когда центр рецепторного поля освещен, и клетки с off-центром, которые откликаются, когда центр рецепторного поля не освещен.

Благодаря колебаниям сетчатки свет попадает как на клетки с on-центром, так и на клетки с off-центром, стимулируя оба типа клеток. Кук считает, что это улучшает нашу способность видеть очертания объектов. По словам ученого, все это также как-то связано с эффектом «зловещей долины».

Если теория Кука верна, это значит, что человеческая сетчатка увеличивает разрешение окружающего мира, как и видеокарты и игровые консоли, которые используют внутренние ресурсы для создания более четкой картинки, которую они затем выдают на дисплей. Представленное ниже изображение является примером того, как несколько вариантов изображения из одного источника при объединении дают более качественные результаты.

Но эта возможность извлекать дополнительную информацию из увиденного зависит от того, с какой скоростью нам подается информация. Если частота выборки (30 Гц, 30 кадров в секунду) ниже половины частоты микротремора сетчатки, то изображения не сменяются достаточно быстро, чтобы глаз мог извлечь дополнительную информацию.

Если вы следите за полемикой в области так называемого микро-«заикания» и задержки кадров в играх, то знаете, что одна из причин, по которой микро-«заикание» является менее интуитивным объективным показателем производительности по сравнению со скоростью передачи кадров, – это снижение преимущества более низкого времени смены кадров по мере того, как постоянная скорость передачи кадров приближается к 60 кадрам в секунду. Уменьшение задержки кадров с 33,3 мс (30 кадров в секунду) до 25 мс (40 кадров в секунду) более заметно, чем увеличение количества кадров в секунду с 40 до 60, и это несмотря на то, что во втором случае происходит более значительный сдвиг.

Если Кук прав, этот феномен объясняется тем, что собственная супер-разрешающая способность глаза наиболее эффективно работает на отметке примерно 43 кадра в секунду. Еще одним интересным аспектом наблюдений ученого является то, что более высокая скорость передачи кадров при более низком разрешении может обеспечить лучшие результаты, чем популярный в наши дни показатель 1080p @ 30 fps. Поверят ли в это разработчики или нет – пока что вопрос открытый. Большинство тайтлов для Xbox не смогли добиться показателя 1080p @ 30 fps и предпочли , нежели опускаться до свойственного прошлому поколению показателя 720p.

Если вы хотите увидеть наглядное сравнение картинки при 60 и 30 кадрах в секунду, посетите специальный веб-сайт , где выложено по паре игровых сцен в формате MP4. Это не YouTube-ролики, и мы подтверждаем, что видео слева действительно имеет частоту 30 кадров в секунду, а видео справа – 60 кадров в секунду.

К сожалению, пока нет никаких признаков того, что исследования Кука будут использованы в игровой индустрии, даже если их подвергнут тщательному анализу. Игровая индустрия зациклена на разрешении, а не на скорости передачи кадров, и если показатель 720p @ 60 fps в наше время политически недееспособен, то практически нет надежды на то, что показатель 1080p @ 60 fps ( @ 30 fps) имеет больше шансов на жизнь в будущих игровых продуктах. Конечно, у игр на ПК есть преимущество, так как перечисленные выше режимы там доступны, однако для их использования могут потребоваться довольно мощные видеокарты. ПК-мониторы с активированной вертикальной синхронизацией поддерживают только частоту обновления экрана 60 Гц, но если скорость передачи кадров в игре упадет, то монитор автоматически снизит частоту обновления до 30 Гц или 20 Гц. Таким образом, панели с частотой обновления 120 Гц могут скомпенсировать падение частоты обновления и положительным образом использовать возможности нашей сетчатки.

Подобные исследования и понимание человеческой физиологии могут сыграть важную роль в попытках извлечь максимум из возможностей нашего зрения. Новое поколение умных контактных линз, приборы ночного видения, периферийные устройства типа Oculus Rift – существует масса крупных исследовательских проектов, которые посвящены беспрецедентному взаимодействию технологий и человеческого зрения. Я считаю, что самыми жизнеспособными окажутся те проекты, которые будут максимально приближены к природным навыкам наших глаз и смогут наиболее точно имитировать функции человеческого зрения.

Если сравнить два процессора i3 7300 и i5 7400, то разница показателя FPS будет отличаться незначительно, а иногда i3 отличается большим фреймрейтом чем i5. Тем не менее на практике по ощущениям, разница крайне значительная в пользу i5. Другими словами счетчик FPS не показатель плавности в играх. Это проблема, т.к. все мы привыкли судить именно по FPS.

FPS (Frames Per Second) — это число кадров полностью отрисованных за 1 секунду. FPS = кадры в секунду. Предположим что кадров было нарисовано 50. По простой формуле можно посчитать что каждый кадр рисовался 20 мс (1сек/50кадров). Это значение проще называть время кадра , т.е. время в течении которого показывается кадр. Проблема в том, что например если в течении секунды, 5 кадров будут показаны за 100 мс, а остальные 45 кадров со временем 11,1 мс, то в течении секунды будет показаны всё те же 50 кадров. Счетчик кадров покажет 50 FPS.

Естественно 50 кадров которые выводятся равномерно и 50 кадров с периодическими долгими кадрами, ощущаются кардинальным образом поразомну. По счетчику FPS этого совершенно не видно.

Что бы стабильно по 5 раз в секунду были просадки по времени кадра обычно не бывает. Но когда процессор работает на 100%, то любые сторонние задачи (антивирус, открытый браузер и т.д.) могут вызвать затыки в работе. Например общий фреймрейт составляет 50 кадров, но раз в несколько секунд происходят затыки на 100 мс. Что отжирает всего навсего 4 кадра в секунду по счетчику, но делает игру полностью не играбельной и лучше иметь хорошие 25 кадров, чем те 46 с микрофризами. В таких условиях будет очень хорошо видно как игра фризится и становится очень не комфортной.

В реальности это может выглядеть следующим образом. Например у вас 50 FPS, но половина кадров может быть ближе к 30 мс, а вторая половина ближе к 10 мс. В среднем получается 20 мс и 50 FPS, а ощущается это все не на 50 FPS. Больше всего это касается двухядерных процессоров.

Что бы словами описать работу процессора обеспечивающего комфортный уровень плавности, следует в меньшей степени уделять внимание цифрам, а в большей степени таким критериям как плавность, равномерность времени кадра, наличие микрофризов и общая комфортность.

Frame Time (время кадра) лучше отражает плавность в играх, чем FPS. На практике это можно увидеть в программе . Ниже приведены три графика среднего времени кадра и FPS. Верхний, это Pentiuum G4560, средний i5 7400 и нижний i7 7700 с частотой 4,9 ГГц. На графиках показан один и тот же отрезок игры Watch Dogs 2 , это съезд по центральной дороге в городе — это самое требовательное к процессору место, которое удалось найти.

Когда график времени кадра резко ползет вверх — это уменьшение плавности игры. Когда ползет вниз — это увеличение плавности.

Когда процессора не хватает игре и игре надо например подгрузить следующие кварталы в городе, то на недостаточных процессорах начинаются просадки. Это видно на графиках — i5 и i7 хватает игре, время кадра плавно падает и плавно растет в зависимости от происходящего. На четырех поточном Pentium ситуация совсем иная — постоянно что-то куда-то прыгает, тем самым заставляя обращать на это внимание. То есть проблема не в том что низкий фреймрейт (FPS), а проблема в том, что он постоянно меняется. Такое поведение в играх называется неравномерность фреймрейта.

Второй эффект, который не отражают циферки FPS — это распределение времени кадра в секунду. Назовем это неравномерность времени кадра. То есть время кадра постоянно скачет и при достижении определенных амплитуд проявляется в виде микрофризов. Такое явление встречается на всех трех процессорах, но на i5 и i7 значительно реже чем на Pentium.

Выводы

FPS не показатель плавности в играх и что бы лучше понимать насколько плавной и комфортной будет игра на том или ином процессоре, нужно меньше смотреть в сторону FPS и больше в сторону распределения времени кадра в секунде. Так как на практике может быть так, что за одни и те же деньги один процессор покажет по счетчику FPS меньше кадров чем другой процессор, но распределение времени кадра будет равномерным в отличии от второго процессора, то не смотря на более низкий FPS, первый процессор для игр будет более комфортным.

Разговоры о реальной необходимости больших значений FPS в играх и мониторах с повышенной частотой обновления ведутся уже давно. Многие считают, что гонка за герцами и кадрами в секунду не имеет смысла, особенно когда частота монитора не превышает 60 Гц. сайт объяснит, почему больше - это в любом случае лучше и кому это поможет.

На что способен человек

С самого начала развития кинематографа и анимации появился миф о том, что 24 кадра в секунду - максимум, что может распознать человек. Якобы делать больше нет абсолютно никакого смысла, и визуально плавность анимации никак не изменится.

Для человека слайдшоу превращается в анимацию уже на частоте примерно 15 кадров в секунду. Но чем выше частота кадров, тем лучше воспринимается картинка. А 24 кадра никак не связаны с физиологией. В основе такого формата больше лежит экономические и технические моменты - киноплёнка тех времён и оборудование для воспроизведения были наилучшими по соотношению цена-качество.

С развитием технологий люди создали новые носители, аналоговые передачи сменились цифровыми: мы смогли перейти на 30 кадров в секунду и больше. Например, система IMAX воспроизводит 48 кадров в секунду, а трансляции игр на Twitch - до 60 FPS. И только скажите, что не замечаете, как картинка на 60 кадров в секунду становится плавнее, чем на 30!

После 60 FPS разницу на большей частоте при просмотре видео уловить сложнее. Тут больше зависит от индивидуального восприятия каждого человека. Например, в американских ВВС проходил тест среди пилотов истребителей. И те умудрялись не просто заметить самолёт, который отображался за один кадр в видеоряде с частотой 220 кадров в секунду, но и назвать его модель. Так что точного ответа на вопрос, сколько кадров распознаёт человек, не существует.

На что способен монитор

Сейчас у большей части мониторов частота обновления равна 60 Гц. Но технологии ушли вперёд, и мы уже можем делать матрицы, которые будут выдавать и 120 Гц, и 144, и даже 240. Но зачем? Мониторы с большой частотой стоят значительно дороже, а пользу ощущают далеко не все. У современного видео частота не превышает 60 кадров в секунду, а значит, и спрос на мониторы с большей частотой обновления невелик.

Но если мы говорим об играх, то они выдают гораздо большие значения FPS, чем видеоконтент. В Counter-Strike: Global Offensive, например, частота и вовсе не ограничена. А самые искушённые игроки ощущают лаги меньше чем при 300 FPS. Чтобы эти кадры в секунду использовались с максимальной эффективностью, нужен монитор с большей частотой обновления.

Приведём простой пример. В первом случае вы сидите и смотрите со стороны, как кто-то играет в CS:GO на мониторе с частотой обновления 144 Гц и с 300 FPS, а рядом сидит человек с монитором на 60 Гц и 60 FPS в игре. Очевидной разницы в изображении для вас не будет никакой. Но если вы сядете на места игроков, то вы сразу почувствуете, что всё происходит чётче, плавнее и точнее.

Это можно доказать и на цифрах. При частоте 60 Гц кадр меняется каждые 16 мс, а при 144 Гц - каждые 6 мс. Несмотря на то что почти трёхкратная разница вообще не будет заметна глазу, мелкая моторика человека после нескольких лет оттачивания мастерства игры использует эти 10 мс для более точного наведения прицела на голову. Это невозможно объяснить словами, только прочувствовать. Все киберспортсмены, кстати, требуют от организаторов использовать мониторы со 144 Гц.

Во-первых, разница между любым профессиональным игроком и его оппонентом настолько мизерна, что даже такие мелочи могут решить исход сражения. Во-вторых, они играют на такой частоте везде - дома, на буткемпе и на других турнирах. За долгое время они привыкли к 144 Гц. На меньшей частоте они не просто не смогут реализовать свой потенциал и будут чувствовать сильный дискомфорт. Им будет казаться, что всё тормозит и лагает.

Кадры лишними не бывают

Может ли монитор с 60 Гц отобразить больше 60 кадров в секунду? Нет, не может. Другой вопрос, что именно он отобразит. Вывод изображения на экран и рендер кадров на компьютере не происходят одновременно. Существует небольшая задержка, которая называется Input Lag. Когда вы двигаете мышкой или нажимаете клавишу, на экране это применится только в следующем кадре.

Если вы играете на 60 FPS, то минимальная разница между движением и отображением составит примерно 16 мс. Если же частота в два раза больше, то перед показом следующего кадра система успевает зарендерить два, а на экран будет выведен более актуальный. Итого, задержка сокращается вдвое. Исходя из этого напрашивается вывод: больше FPS - это всегда хорошо, вне зависимости от того, какая у монитора частота обновления.

Техника не чит, а инструмент

Что будет, если дать обычному человеку самую крутую кисть, краски, холст и попросить его написать шедевр прямо здесь и сейчас? Очевидно, ничего у него не выйдет. Для того чтобы достичь результата, нужна практика, тренировка и сноровка. Если за тысячу часов в CS:GO на мониторе 60 Гц и с 60 FPS вы так и остались сильвером, то никакие мониторы и показатели FPS не сделают из вас чемпиона мейджора. На результат слишком сильно влияет человеческий фактор - форма, настроение, состояние, реакция и масса других особенностей. Ни в коем случае нельзя сводить всё к техническим аспектам.

Всё зависит от потребностей и возможностей. Некоторых устраивает даже 30 FPS и они не видят смысла тратить несколько тысяч долларов на мощный компьютер с самым новым железом и тем более на монитор с частотой 120 Гц и больше. Другие же чувствуют плохую отзывчивость управления даже на 60 Гц, хотя ни разу не пробовали большую частоту. А на топовом уровне всё должно быть самое лучшее - скилл игроков и условия, в которых они выступают. Для того чтобы они могли реализовать свой потенциал на максимум, им нужны инструменты с максимально возможными характеристиками. Профессионалы в курсе, как реализовывать эти собранные по крупицам миллисекунды, а у равных по скиллу соперников именно они решают исход сражения.