Очистка воздуха от абразивной пыли, металлической стружки. Консар очистка воздуха системы аспирации оборудование и фильтры coral, altair, heimbach Эффективность очистки от пыли на производстве

мод. «УВП-1200А» и мод. «УВП-2000А».

предназначены для удаления и очистки воздуха от абразивной, металлической и т.п. пыли, мелкой стружки, образующейся при работе заточных, шлифовальных и отрезных станков, может использоваться при работе по камню и стеклу. Установки осуществляют двухступенчатую очистку воздуха (через сухой циклон и блок рукавных фильтров). После очистки, воздух поступает обратно в помещение. Отходы накапливаются в металлическом коробе (внизу установки). Установки для очистки воздуха от абразивной пыли мод. " " и мод. " " имеют ручную систему регенерации фильтров (встряхивание). Конструкция у становок для очистки воздуха от абразивной пыли мод. " " и мод. " " обеспечивает оперативность при подготовке к работе без организации специального места, имеет колёса и может легко перемещаться.

Отличительные особенности:
- в холодное время года тёплый воздух остаётся в помещении;
- не требует специально оборудованного места;
- оперативность при подготовке к работе;
- простота в обслуживании.

Т Е Х Н И Ч Е С К А Я Х А Р А К Т Е Р И С Т И К А УВП-1200А, УВП-2000А

Производительность по воздуху, м 3 /ч

Создаваемое разряжение, Па

Среднемедианный размер улавливаемых частиц, мкм

Емкость пылесборника, м 3

Количество входных патрубков, шт.

Диаметр воздуховодов, мм

Наибольшее расстояние от станков, м

Степень очистки воздуха, %

Уровень шума, дБа

Мощность электродвигателя вентилятора, кВт

Габариты, мм

Масса, кг

ФИЛЬТРОЦИКЛОН ФКЦ

Предназначен для очистки воздуха от крупно-, средне- и мелко дисперсной пыли, образующейся в следующих технологических процессах: шлифование, обработка резанием, точением, обработка литейных форм, пескоструйная и дробеструйная обработка, пересыпка пылящих материалов и т.д. Небольшие габариты в сочетании с высокой производительностью позволяют создавать на базе локальные системы пылеочистки в непосредственной близости от источников пыления.
Применение современных фильтровальных материалов позволяет производить эффективную очистку загрязненного воздуха и осуществлять возврат очищенного воздуха обратно в рабочую зону.

Очистку газообразных выбросов от пыли или тумана на практике осуществляют в различных по конструкции аппаратах , которые можно разделить на четыре основные группы:

1. механические пылеуловители (пылеотстойные или пылеосадочные камеры, инерционные пыле- и брызгоуловители, циклоны и мультициклоны). Аппараты этой группы применяют обычно для предварительной очистки газов;

2. мокрые пылеуловители (полые, насадочные или барботажцые скрубберы, пенные аппараты, трубы Вентури и др.). Эти устройства более эффективны, чем сухие пылеуловители;

3. фильтры (волокнистые, ячейковые, с насыпными слоями зернистого материала, масляные и др.). Наиболее распространены рукавные фильтры;

4. электрофильтры – аппараты тонкой очистки газов–улавливают частицы размером от 0,01 мкм.

Методы очистки. Одной из актуальных проблем на сегодняшний день является очистка воздуха от различного рода загрязнителей. Как раз от их физико-химических свойств необходимо исходить при выборе того или иного метода очистки. Рассмотрим основные современные способы удаления загрязняющих веществ из воздушной среды.

Механическая очистка

Сущность данного метода заключается в механической фильтрации частиц при прохождении воздуха через специальные материалы, поры которых способны пропускать воздушный поток, но при этом удерживать загрязнителя. От размера пор, ячеек фильтрующего материала зависит скорость и эффективность фильтрации. Чем больше размер, тем быстрее протекает процесс очистки, но эффективность его ниже при этом. Следовательно, перед выбором данного метода очистки необходимо изучить дисперсность загрязняющих веществ среды, в которой он будет применяться. Это позволит производить очистку в пределах требуемой степени эффективности и за минимальный период времени.

Абсорбционный метод. Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта.

В качестве примеров можно назвать:

· получение минеральных кислот (абсорбция SO3 в производстве серной кислоты, абсорбция оксидов азота в производстве азотной кислоты);

· получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением сульфата кальция);


· других веществ (абсорбция NH3 водой для получения аммиачной воды и др.).

Схемы с многократным использованием поглотителя (циклические процессы) распространены шире. Их применяют для улавливания углеводородов, очистки от SO2 дымовых газов ТЭС, очистки вентгазов от сероводорода железно-содовым методом с получением элементарной серы, моноэтаноламиновой очистки газов от CO2 в азотной промышленности.

В зависимости от способа создания поверхности соприкосновения фаз различают поверхностные, барботажные и распыливающие абсорбционные аппараты.

· В первой группе аппаратов поверхностью контакта между фазами является зеркало жидкости или поверхность текучей пленки жидкости. Сюда же относят насадочные абсорбенты, в которых жидкость стекает по поверхности загруженной в них насадки из тел различной формы.

· Во второй группе абсорбентов поверхность контакта увеличивается благодаря распределению потоков газа в жидкость в виде пузырьков и струй. Барботаж осуществляют путем пропускания газа через заполненный жидкостью аппарат либо в аппаратах колонного типа с тарелками различной формы.

· В третьей группе поверхность контакта создается путем распыления жидкости в массе газа. Поверхность контакта и эффективность процесса в целом определяется дисперсностью распыленной жидкости.

Наибольшее распространение получили насадочные (поверхностные) и барботажные тарельчатые абсорберы. Для эффективного применения водных абсорбционных сред удаляемый компонент должен хорошо растворяться в абсорбционной среде и часто химически взаимодействовать с водой, как, например, при очистке газов от HCl, HF, NH3, NO2. Для абсорбции газов с меньшей растворимостью (SO2, Cl2, H2S) используют щелочные растворы на основе NaOH или Ca(OH)2. Добавки химических реагентов во многих случаях увеличивают эффективность абсорбции благодаря протеканию химических реакций в пленке. Для очистки газов от углеводородов этот метод на практике используют значительно реже, что обусловлено, прежде всего, высокой стоимостью абсорбентов. Общими недостатками абсорбционных методов является образование жидких стоков и громоздкость аппаратурного оформления.

Электрический метод очистки. Данный метод применим для мелкодисперсных частиц. В электрических фильтрах создается электрическое поле, при прохождении через которое частица заряжается и осаждается на электроде. Основными преимуществами данного метода является его высокая эффективность, простота конструкции, легкость в эксплуатации – нет необходимости в периодической замене элементов очистки.

Адсорбционный метод. Основан на химической очистке от газообразных загрязнителей. Воздух контактирует с поверхностью активированного угля, в процессе чего загрязняющие вещества осаждаются на ней. Данный метод в основном применим при удалении неприятных запахов и вредных веществ. Минусом является необходимость систематической замены фильтрующего элемента.

Можно выделить следующие основные способы осуществления процессов адсорбционной очистки:

· После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей.

· После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей.

· После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов.

Фотокаталитическая очистка. Является одним из самых перспективных и эффективных методов очистки на сегодняшний день. Главное его преимущество – разложение опасных и вредных веществ на безвредные воду, углекислый газ и кислород. Взаимодействие катализатора и ультрафиолетовой лампы приводит к взаимодействию на молекулярном уровне загрязнителей и поверхности катализатора. Фотокаталитические фильтры абсолютно безвредны и не требуют замены очищающих элементов, что делает их использование безопасным и весьма выгодным.

Термическое дожигание. Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200 °C. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.

При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные вещества в виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).

Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами.

Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.

Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

Промывочный способ. Осуществляется промывкой жидкостью (водой) потока газа (воздуха). Принцип действия: жидкость (вода) вводимая в поток газа (воздуха) движется с высокой скоростью, дробиться на мелкие капли мелкодисперсную взвесь) обвалакивает частицы взвеси (происходит слияние жидкостной фракции и взвеси) в результате укрупненные взвеси гарантированно улавливаются промывочным пылеуловителем. Конструкция: конструктивно промывочные пылеуловители представлены скрубберами, мокрыми пылеуловителями, скоростными пылеуловителями, в которых жидкость движется с большой скоростью и пенными пылеуловителями, в которых газ в виде мелких пузырьков проходит через слой жидкости (воды).

Плазмохимические методы. Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных, коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Недостатком данного метода являются:

· недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлемых энергиях разряда

· наличие остаточного озона, который необходимо разлагать термически либо каталитически

· существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

Гравитационный способ. Основан на гравитационном осаждении влаги и (или) взвешенных частиц. Принцип действия: газовый (воздушный) поток попадает в расширяющуюся осаждающую камеру (емкость) гравитационного пылеуловителя, в которой замедляется скорость потока и под действием гравитации происходит осаждение капельной влаги и (или) взвешенных частиц.

Конструкция: Конструктивно осаждающие камеры гравитационных пылеуловителей могут быть прямоточного типа, лабиринтного и полочного. Эффективность: гравитационный способ очистки газа позволяет улавливать крупные взвеси.

Плазмокаталитический метод. Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 °C), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м³.).

Недостатками данного метода являются:

· большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,

· при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

Центробежный способ

Основан на инерционном осаждении влаги и (или) взвешенных частиц за счет создания в поле движения газового потока и взвеси центробежной силы. Центробежный способ очистки газа относится к инерционным способам очистки газа (воздуха). Принцип действия: газовый (воздушный) поток направляется в центробежный пылеуловитель в котором, за счет изменении направления движения газа (воздуха) с влагой и взвешенными частицами, как правило по спирали, происходит очистка газа. Плотность взвеси в несколько раз больше плотности газа (воздуха) и она продолжает двигаться по инерции в прежнем направлении и отделяется от газа (воздуха). За счет движения газа по спирали создается центробежная сила, которая во много раз превосходит силу тяжести. Конструкция: Конструктивно центробежные пылеуловители представлены циклонами. Эффективность: осаждается сравнительно мелкая пыль, с размером частиц 10 – 20 мкм.

Не стоит забывать об элементарных методах очистки воздуха от пыли, как влажная уборка, регулярное проветривание, поддержание оптимального уровня влажности и температурного режима. При этом периодически избавляться от скоплений в помещении большого количества хлама и ненужных предметов, которые являются «пылесборниками» и не несут в себе никаких полезных функций.

Основные схемы, формулы и т.д., иллюстрирующие содержание : схемы приводятся в тексте

Вопросы для самоконтроля:

1. Что такое атмосфера?

2. Что такое смог? Чем отличается Лос-Анжелевский от Лондонского типа смога?

3. Какие методы очистки атмосферного воздуха Вы знаете?

4. Как классифицируются загрязнения атмосферного воздуха?

5. Как классифицируются источники загрязнения воздуха?

6. Какие основные пути предотвращения загрязнения атмосферы представлены в лекции?

1. Акимова Т.А., Хаскин В.В., Экология. Человек-экономика-биота-среда., М., «ЮНИТИ», 2007

2. Бигалиев А.Б., Халилов М.Ф., Шарипова М.А. Основы общей экологии Алматы, «Қазақ университеті», 2006

3. Кукин П.П., Лапин В.Л., Пономарев Н.Л., Сердюк Н.И. Безопасность жизнедеятельности. Безопасность технологических процессов и производств (ОТ). – М.: Высшая школа, 2002. – 317 с.


ЛЕКЦИЯ 5. Очистка и повторное использование технической воды и промыш­ленных стоков.

Цель:

Изучить современные методы очистки сточных вод

Задачи:

- Изучить жидкую оболочку Земли

Знать экологические проблемы, связанные с нехваткой пресной воды и загрязнением поверхностных вод.

Уметь различать способы очистки сточных вод.

Характеристика водной оболочки Земли. Свойства воды.

Источники и уровни загрязнения гидросферы.

Экологические последствия загрязнения гидросферы.

Сточные воды и их классификация.

Методы водоочистки.


Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью. При этом осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости. В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.

Выбор метода и аппарата для улавливания аэрозолей в первую очередь зависит от их дисперсного состава табл. 1

Таблица 1. Зависимость аппарата для улавливания от размера частиц

Размер частиц, мкм Аппараты Размер частиц, мкм Аппараты
40 – 1000 Пылеосадительные камеры 20 – 100 Скрубберы
20 – 1000 Циклоны диаметром 1–2 м 0,9 – 100 Тканевые фильтры
5 – 1000 Циклоны диаметром 1 м 0,05 – 100 Волокнистые фильтры
0,01 – 10 Электрофильтры

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный, инерционный и центробежный.

Инерционные пылеуловители . При резком изменении направления движения газового потока частицы пыли под воздействием инерционной силы будут стремиться двигаться в прежнем направлении и после поворота потока газов выпадают в бункер. Эффективность этих аппаратов небольшая. (рис. 1)

Жалюзийные аппараты . Эти аппараты имеют жалюзийную решетку, состоящую из рядов пластин или колец. Очищаемый газ, проходя через решетку, делает резкие повороты. Пылевые частицы вследствие инерции стремятся сохранить первоначальное направление, что приводит к отделению крупных частиц из газового потока, тому же способствуют их удары о наклонные плоскости решетки, от которых они отражаются и отскакивают в сторону от щелей между лопастями жалюзи В результате газы делятся на два потока. Пыль в основном содержится в потоке, который отсасывают и направляют в циклон, где его очищают от пыли и вновь сливают с основной частью потока, прошедшего через решетку. Скорость газа перед жалюзийной решеткой должна быть достаточно высокой, чтобы достигнуть эффекта инерционного отделения пыли. (рис. 2)

Обычно жалюзийные пылеуловители применяют для улавливания пыли с размером частиц >20 мкм.

Эффективность улавливания частиц зависит от эффективности решетки и эффективности циклона, а также от доли отсасываемого в нем газа.

Циклоны . Циклонные аппараты наиболее распространены в промышленности.

Рис. 1 Инерционные пылеуловители: а – с перегородкой; б – с плавным поворотом газового потока;в - с расширяющимся конусом.

Рис. 2 Жалюзийный пылеуловитель (1 – корпус; 2 – решетка)

По способу подвода газов в аппарат их подразделяют на циклоны со спиральными, тангенциальным и винтообразным, а также осевым подводом. (рис. 3) Циклоны с осевым подводом газов работают как с возвратом газов в верхнюю часть аппарата, так и без него.

Газ вращается внутри циклона, двигаясь сверху вниз, а затем движется вверх. Частицы пыли отбрасываются центробежной силой к стенке. Обычно в циклонах центробежное ускорение в несколько сот, а то и тысячу раз больше ускорения силы тяжести, поэтому даже весьма маленькие частицы пыли не в состоянии следовать за газом, а под влиянием центробежной силы движутся к стенке. (рис. 4)

В промышленности циклоны подразделяются на высокоэффективные и высокопроизводительные.

При больших расходах очищаемых газов применяют групповую компоновку аппаратов. Это позволяет не увеличивать диаметр циклона, что положительно сказывается на эффективности очистки. Запыленный газ входит через общий коллектор, а затем распределяется между циклонами.

Батарейные циклоны – объединение большого числа малых циклонов в группу. Снижение диаметра циклонного элемента преследует цель увеличения эффективности очистки.

Вихревые пылеуловители. Отличием вихревых пылеуловителей от циклонов является наличие вспомогательного закручивающего газового потока.

В аппарате соплового типа запыленный газовый поток закручивается лопаточным завихрителем и движется вверх, подвергаясь при этом воздействию трех струй вторичного газа, вытекающих из тангенциально расположенных сопел. Под действием центробежных сил частицы отбрасываются к периферии, а оттуда в возбуждаемый струями спиральный поток вторичного газа, направляющий их вниз, в кольцевое межтрубное пространство. Вторичный газ в ходе спирального обтекания потока очищаемого газа постепенно полностью проникает в него. Кольцевое пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей безвозвратный спуск пыли в бункер. Вихревой пылеуловитель лопаточного типа отличается тем, что вторичный газ отбирается с периферии очищенного газа и подается кольцевым направляющим аппаратом с наклонными лопатками. (рис. 5)

Рис. 3 Основные виды циклонов (по подводу газов): а – спиральный; б – тангенциальный; в-винтообразный; г, д – осевые

Рис. 4. Циклон: 1 – входной патрубок; 2 – выхлопная труба; 3 – цилиндрическая камера; 4 – коническая камера; 5 – пылеосадительная камера

В качестве вторичного газа в вихревых пылеуловителях может быть использован свежий атмосферный воздух, часть очищенного газа или запыленные газы. Наиболее выгодным в экономическом отношении является использование в качестве вторичного газа запыленных газов.

Как и у циклонов, эффективность вихревых аппаратов с увеличением диаметра падает. Могут быть батарейные установки, состоящие из отдельных мультиэлементов диаметром 40 мм.

Динамические пылеуловители . Очистка газов от пыли осуществляется за счет центробежных сил и сил Кориолиса, возникающих при вращении рабочего колеса тягодутьевого устройства.

Наибольшее распространение получил дымосос-пылеуловитель. Он предназначен для улавливания частиц пыли размером >15 мкм. За счет разности давлений, создаваемых рабочим колесом, запыленный поток поступает в «улитку» и приобретает криволинейное движение. Частицы пыли отбрасываются к периферии под действием центробежных сил и вместе с 8–10% газа отводятся в циклон, соединенный с улиткой. Очищенный газовый поток из циклона возвращается в центральную часть улитки. Очищенные газы через направляющий аппарат поступают в рабочее колесо дымососа-пылеуловителя, а затем через кожух выбросов в дымовую трубу.

Фильтры. В основе работы всех фильтров лежит процесс фильтрации газа через перегородку, в ходе которого твердые частицы задерживаются, а газ полностью проходит сквозь нее.

В зависимости от назначения и величины входной и выходной концентрации фильтры условно разделяют на три класса: фильтры тонкой очистки, воздушные фильтры и промышленные фильтры.

Рукавные фильтры представляют собой металлический шкаф, разделенный вертикальными перегородками на секции, в каждой из которых размещена группа фильтрующих рукавов. Верхние концы рукавов заглушены и подвешены к раме, соединенной с встряхивающим механизмом. Внизу имеется бункер для пыли со шнеком для ее выгрузки. Встряхивание рукавов в каждой из секций производится поочередно. (рис 6)

Волокнистые фильтры. Фильтрующий элемент этих фильтров состоит из одного или нескольких слоев, в которых однородно распределены волокна. Это фильтры объемного действия, так как они рассчитаны на улавливание и накапливание частиц преимущественно по всей глубине слоя. Сплошной слой пыли образуется только на поверхности наиболее плотных материалов. Такие фильтры используют при концентрации дисперсной твердой фазы 0,5–5 мг/м 3 и только некоторые грубоволокнистые фильтры применяют при концентрации 5–50 мг/м 3 . При таких концентрациях основная доля частиц имеет размеры менее 5–10 мкм.

Различают следующие виды промышленных волокнистых фильтров:

– сухие – тонковолокнистые, электростатические, глубокие, фильтры предварительной очистки (предфильтры);

– мокрые – сеточные, самоочищающиеся, с периодическим или непрерывным орошением.

Процесс фильтрации в волокнистых фильтрах состоит из двух стадий. На первой стадии уловленные частицы практически не изменяют структуры фильтра во времени, на второй стадии процесса в фильтре происходят непрерывные структурные изменения вследствие накопления уловленных частиц в значительных количествах.

Зернистые фильтры . Применяются для очистки газов реже, чем волокнистые фильтры. Различают насадочные и жесткие зернистые фильтры.

Полые газопромыватели. Наиболее распространены полые форсуночные скрубберы. Они представляют колонну круглого или прямоугольного сечения, в которой осуществляется контакт между газом и каплями жидкости. По направлению движения газа и жидкости полые скрубберы делят на противоточные, прямоточные и с поперечным подводом жидкости. (рис. 7)

Насадочные газопромыватели представляют собой колонны с насадкой навалом или регулярной. Их используют для улавливания хорошо смачиваемой пыли, но при невысокой концентрации.

Рис. 5 Вихревые пылеуловители: а – соплового типа: б – лопаточного типа; 1 – камера; 2– выходной патрубок; 3 – сопла; 4– лопаточный завихритель типа «розетка»; 5 – входной патрубок; 6– подпорная шайба; 7 – пылевой бункер; 8 – кольцевой лопаточный завихритель

Рис. 6 Рукавный фильтр: 1 – корпус; 2 –встряхивающее устройство; 3 – рукав; 4 – распределительная решетка

Газопромыватели с подвижной насадкой имеют большое распространение в пылеулавливании. В качестве насадки используют шары из полимерных материалов, стекла или пористой резины. Насадкой могут быть кольца, седла и т.д. Плотность шаров насадки не должна превышать плотности жидкости. (рис. 8)

Скрубберы с подвижной шаровой насадкой конической формы (КСШ) . Для обеспечения стабильности работы в широком диапазоне скоростей газа, улучшения распределения жидкое и уменьшения уноса брызг предложены аппараты с подвижной шаровой насадкой конической формы. Разработано два типа аппаратов: форсуночный и эжекционный

В эжекционном скруббере орошение шаров осуществляет жидкостью, которая всасывается из сосуда с постоянным уровнем газами, подлежащими очистке.

Тарельчатые газопромыватели (барботажные, пенные). Наиболее распространены пенные аппараты с провальными тарелками или тарелками с переливом. Тарелки с переливом имеют отверстия диаметром 3–8 мм. Пыль улавливается пенным слоем, который образуется при взаимодействии газа и жидкости.

Эффективность процесса пылеулавливания зависит от величины межфазной поверхности.

Пенный аппарат со стабилизатором пенного слоя . На провальной решетке устанавливается стабилизатор, представляющий собой сотовую решетку из вертикально расположенных пластин, разделяющих сечение аппарата и пенный слой на небольшие ячейки. Благодаря стабилизатору происходит значительное накопление жидкости на тарелке, увеличение высоты пены по сравнению с провальной тарелкой без стабилизатора. Применение стабилизатора позволяет существенно сократить расход воды на орошение аппарата.

Газопромыватели ударно-инерционного действия . В этих аппаратах контакт газов с жидкостью осуществляется за счет удара газового потока о поверхность жидкости с последующим пропусканием газожидкостной взвеси через отверстия различной конфигурации или непосредственным отводом газожидкостной взвеси в сепаратор жидкой фазы. В результате такого взаимодействия образуются капли диаметром 300–400 мкм.

Рис. 7 Скрубберы: а – полый форсуночный: б – насадочный с поперечным орошением: 1 – корпус; 2– форсунки; 7 – корпус; 2– форсунка; 3 –оросительное устройство; 4– опорная решетка; 5 – насадка; 6 – шламосборник


Рис. 8. Газопромыватели с подвижной насадкой: а – с цилиндрическим слоем: 1 – опорная решетка; 2– шаровая насадка; 3– ограничительная решетка; 4 – оросительное устройство; 5 – брызгоуловитель; б и в - с коническим слоем форсуночный и эжекционный: 1 – корпус; 2– опорная решетка; 3– слой шаров; 4– брызгоуловитель; 5 – ограничительная решетка; 6 – форсунка; 7 – емкость с постоянным уровнем жидкости

Г азопромыватели центробежного действия . Наиболее распространены центробежные скрубберы, которые по конструктивному признаку можно разделить на два вида: 1) аппараты, в которых закрутка газового потока осуществляется при помощи центрального лопастного закручивающего устройства; 2) аппараты с боковым тангенциальным или улиточным подводом газа.

Скоростные газопромыватели (скрубберы Вентури). Основной частью аппаратов является труба-распылитель, в которой обеспечивается интенсивное дробление орошаемой жидкости газовым потоком, движущимся со скоростью 40–150 м/с. Имеется также каплеуловитель.

Электрофильтры. Очистка газа от пыли в электрофильтрах происходит под действием электрических сил. В процессе ионизации молекул газов электрическим разрядом происходит заряд содержащихся в них частиц. Ионы абсорбируются на поверхности пылинок, а затем под воздействием электрического поля они перемещаются и осаждаются к осадительным электродам.

Для обезвреживания отходящих газов от газообразных и парообразных токсичных веществ применяют следующие методы: абсорбции (физической и хемосорбции), адсорбции, каталитические, термические, конденсации и компримирования.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам: 1) по абсорбируемому компоненту; 2) по типу применяемого абсорбента; 3) по характеру процесса – с циркуляцией и без циркуляции газа; 4) по использованию абсорбента – с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические); 5) по использованию улавливаемых компонентов – с рекуперацией и без рекуперации; 6) по типу рекуперируемого продукта; 7) по организации процесса – периодические и непрерывные; 8) па конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов: концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком – невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции. Термические методы применяют для обезвреживания газов от легко окисляемых токсических примесей.



Трудности очистки воздуха на производстве

Очистка воздуха на производстве является весьма сложной задачей, поскольку предполагает устранение из него сразу всех известных типов загрязняющих веществ. Загрязняющие вещества подразделяются на следующие типы:

  • Газы;
  • Аэрозоли (механические частицы, взвешенные в воздухе);
  • Органические соединения.

Нужно удалить их все, доведя воздух до требуемых санитарных и технологических норм. Это связано с необходимостью применения комплексных систем механической, физической и химической очистки.

При очистке воздуха на производстве наибольшую сложность представляет удаление и нейтрализация органических соединений. Под органическими соединениями принято понимать микроорганизмы и продукты их жизнедеятельности, представляющие собой сложные биохимические молекулярные структуры, рассеянные в воздухе в виде сгустков различной дисперсности.

Удаление газов и аэрозолей тоже связано с немалыми трудностями, особенно, если учесть, что мы говорим об очистке воздуха на производстве, а значит масштабы загрязнения очень велики. Затраты на оборудование сопоставимы с его размерами. А ведь ему требуется еще и обслуживание, которое отличается значительной сложностью, и потому неизбежно влечет к новым, стабильно высоким тратам!

Очистка воздуха на производстве с использованием передовых технологий

Решить вопрос очистки воздуха на производстве трудно еще и потому, что каждое предприятие имеет уникальный состав загрязнения, а значит, универсальных решений тут быть не может. Так думали еще совсем недавно, пока в продаже не появились первые установки «PlazmaiR Industry», способные очищать воздух от всех трех разновидностей загрязняющих веществ, устраняя их одинаково эффективно.

Упомянутая технология очистки воздуха на производстве стала настоящим открытием, причем не только в России, но и на Западе, где к вопросам устранения вредных производственных факторов подходят с традиционно высокой ответственностью. На данный момент установки «PlazmaiR» не имеют аналогов за рубежом, поэтому их просто не с чем сравнить.

Здесь нужно добавить, что принцип работы этих установок, не ориентирован исключительно для очистки воздуха на производстве, поэтому область их применения не ограничена только промышленностью. Установки «PlazmaiR» могут применяться в жилых и общественных зданиях, например, ресторанах или супермаркетах, добиваясь ничуть не меньшего результата!

Очистка воздуха на производстве установками «PlazmaiR Industry»

Высокая эффективность установок «PlazmaiR Industry», применяемых для очистки воздуха на производстве, обусловлена комплексным подходом к задаче. Конструкционно установки «PlazmaiR» состоят из трех блоков, каждый из которых устраняет загрязняющие вещества определенного типа:

  • Блок механической фильтрации (предварительная очистка);
  • Блок физического разложения (плазменная очистка);
  • Блок нормализации газового состава воздуха (каталитическая очистка).

Для очистки воздуха на производстве, связанном с высокой влажностью в технологических помещениях, необходимо использовать установки «PlazmaiR» с дополнительно установленными модулями осушения. Если воздух в технологических помещениях насыщен парами агрессивных веществ, нужны установки, изготовленные из высокостойких материалов.

Все установки «PlazmaiR Industry», используемые для очистки воздуха на производстве, производятся компанией «Перспектива» на территории России, без привлечения подрядчиков. Выпускаемое ею оборудование адаптировано к эксплуатации в условиях нашей страны, а его обслуживание обходится значительно дешевле, нежели обслуживание прочих промышленных систем очистки воздуха.

Пыль образуется/скапливается практически везде и всегда - и с этой печальной истиной каждый из нас сталкивался в быту. На производстве же всё обстоит ещё хуже, поскольку любая перевалка твёрдого сырья либо готового продукта (не говоря уже о механической обработке) сопряжена с образованием того или иного количества пыли. Эта пыль может различаться по размеру и фракционному составу частиц, плотности и т.д., но главное - по степени её потенциальной опасности.

Отнюдь не все представляют, что если речь идёт о мелкодисперсной пыли от любых горючих материалов (частицы муки, сахарная пудра, древесная пыль и т.п.), то при превышении определённой объёмной концентрации взвеси такой пыли в воздухе она превращается в готовый боеприпас объёмного взрыва, только и ожидающий своего детонатора. Курсы по ТБ сохранили для нас массу поучительных историй про вызванные пылью взрывы в пекарнях, мукомольных заводах, деревообрабатывающих производствах и т.д. - любознательный читатель сможет найти массу подобных документальных историй в Сети.

Как борются с пылью на производствах

Существует множество типов различного рода пылеулавливающих аппаратов, к наиболее распространённым из которых относятся:

  • циклоны - устройства для средней/грубой очистки воздуха от неслипающейся и неволокнистой пыли за счёт центробежной сепарации во вращающемся потоке воздуха;
  • ротоклоны (ротационные пылеуловители) - разновидность центробежных вентиляторов, служащая для очистки воздуха от крупнодисперсной пыли, за счёт сил инерции;
  • механические фильтры - устройства, использующие сетчатые и пористые материалы с различных характеристическим размером ячеек/отверстий для отделения частиц пыли от проходящего сквозного потока воздуха (в ассортименте фильтры для систем промышленной аспирации можно посмотреть тут - http://ovigo.ru/ochistka-vozduxa-ot-pyili/);
  • скрубберы - устройства, использующие для очистки воздуха его промывку распылённой жидкостью;
  • электрофильтры - устройства, построенные в основном вокруг использования т.н. "коронного разряда" в газах и используемые для осаждения особо мелкой пыли путём придания ей электрического заряда;
  • ультразвуковые фильтры - устройства тонкой очистки, использующие ультразвуковое воздействие высокой интенсивности для коагуляция взвеси особо мелких частиц.

Разумеется, список выше не является исчерпывающим - и заинтересованному читателю следует обратиться к спецлитературе для получения более подробной информации.

Специфика пылеулавливающих аппаратов

Важно понимать, что практически любая пыль является сложной, полидисперсной системой, макроскопические свойства которой могут очень существенно изменяться из-за внешних факторов. Так, изменение влажности воздуха может как усилить пылеобразование, так и поспособствовать агломерации частиц, а простое изменение скорости несущего их потока может повлиять на величину накапливаемого объёмного трибоэлектрического заряда. Было бы большой ошибкой считать, что пылеулавливающие аппараты для одних типов пыли/условий можно легко использовать при других обстоятельствах с той же эффективностью. На практике же подавляющее большинство пылеулавливающих аппаратов и аспирационных установок сначала проходит стадию инженерно-математических расчётов и моделирования, таким образом оптимизируясь под конкретного потребителя и специфику его производственных условий. Отсюда следует, что при заказе таких аппаратов необходимо общаться с инженерно-техническим персоналом потенциального поставщика, рассказывая о стоящей задаче в совокупности имеющихся условий. Например, в случае планируемого роста производственной деятельности систему изначально следует проектировать модульно, т.е. с возможностями посекционного наращивания производительности установки. Разумеется, что наиболее оптимальные методы пылеулавливания и эффективные виды установок потребителю смогут подсказать только профессионалы - однако для этого их обязательно нужно своевременно снабдить точной технической информацией.