Параметрическое уравнение параболы. Парабола: определение, свойства, построение

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье.

Вконтакте

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы . Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Это интересно! : доказательство

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

Отсюда можно сделать вывод, что в случае если а<0, то вершина кривой будет находиться в верхней полуплоскости , в противном случае – в нижней. При этом точки параболы будут обладать теми же свойствами, что были упомянуты ранее.

Если дана классическая форма записи, то более рациональным будет вычисление значения расположения вершины на оси абсцисс, а через него и последующее значение ординаты. Отметим, что для формы записи (2), ось симметрии параболы, в классическом представлении, будет совпадать с осью ординат.

Важно! При решении заданий с использованием уравнения параболы прежде всего выделите основные значения, которые уже известны. Более того, нелишним будет, если будут определены недостающие параметры. Такой подход заранее даст большее «пространство для маневра» и более рациональное решение. На практике старайтесь использовать запись (2). Она более проста для восприятия (не придется «переворачивать координаты Декарта), к тому же подавляющее количество заданий приспособлено именно под такую форму записи.

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

(5.1).

(5.2).

(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А (, B (, C (. Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10; 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Получается, что координаты на вершине, в точке О, следующие (-1,25; -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2;3), B (3;5), C (6;2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Используя полученные значения, получим следующие уравнение:

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a<0, то ветки» будут направлены вниз. При a>1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c>0, то парабола «ползет» вверх , в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Если коэффициент b>0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.

Полезное видео: как найти вершину параболы

Полезное видео: как легко составить уравнение параболы из графика

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

Введем прямоугольную систему координат, где . Пусть осьпроходит через фокусF параболы и перпендикулярен директрисе, а ось проходит посередине между фокусом и директрисой. Обозначим черезрасстояние между фокусом и директрисой. Тогдаа уравнение директрисы.

Число– называетсяфокальным параметромпараболы. Пусть – текущая точка параболы. Пусть– фокальный радиус точки гиперболы.–расстояние от точки до директрисы. Тогда(чертеж 27 .)

Чертеж 27.

По определению параболы . Следовательно,

Возведем уравнение в квадрат, получим:

(15)

где (15) каноническое уравнение параболы, симметричной относительно оси и проходящей через начало координат.

Исследование свойств параболы

1) Вершина параболы:

Уравнению (15) удовлетворяют числа и, следовательно, парабола проходит через начало координат.

2) Симметрия параболы:

Пусть принадлежит параболе, т.е.верное равенство. Точкасимметрична точкеотносительно оси, следовательно, парабола симметрична относительно оси абсцисс.

    Эксцентриситет параболы:

Определение 4.2. Эксцентриситетом параболы называется число , равное единице.

Так как по определению параболы .

4) Касательная параболы:

Касательная к параболе в точке касания определяется уравнением

Где (чертеж 28. )

Чертеж 28.

Изображение параболы

Чертеж 29.

    С использованием ЭСО- Mathcad:

чертеж 30 .)

Чертеж 30 .

a) Построение без использования ИКТ: Для построения параболы задаем прямоугольную систему координат с центром в точке О и единичный отрезок. Отмечаем на оси ОХ фокус ,так как, проводимтакую, что, и директрису параболы. Выполняем построение окружности в точкеи радиусом равным расстоянию от прямойдо директрисы параболы. Окружность пересекает прямуюв точкахи. Строим параболу так, чтобы она проходила через начало координат и через точкии.(чертеж 31 .)

Чертеж 31.

b)С использованием ЭСО- Mathcad:

Полученное уравнение имеет вид: . Для построения линии второго порядка в программеMathcad приводим уравнение к виду: .(чертеж 32 .)

Чертеж 32.

Чтобы обобщить работу по теории линий второго порядка в элементарной математике и для удобства использования информации о линиях при решении задач, заключим все данные о линиях второго порядка в таблицу № 1.

Таблица №1.

Линии второго порядка в элементарной математике

Название линии 2-го порядка

Окружность

Эллипс

Гипербола

Парабола

Характеристические свойства

Уравнение линии

Эксцентриситет

Уравнение касательной в точке (x 0 ; y 0 )

Фокус

Диаметры линий

Где k- угловой коэффициент

Где k угловой коэффициент

Где k угловой коэффициент

        Возможности использования ИКТ в изучении линий второго порядка

Процесс информатизации, охвативший сегодня все стороны жизни современного общества, имеет несколько приоритетных направлений, к которым, безусловно, следует отнести информатизацию образования. Она является первоосновой глобальной рационализации интеллектуальной деятельности человека за счет использования информационно-коммуникационных технологий (ИКТ).

Середина 90-х годов прошлого века и до сегодняшнего дня, характеризуется массовостью и доступностью персональных компьютеров в России, широким использованием телекоммуникаций, что позволяет внедрять разрабатываемые информационные технологии обучения в образовательный процесс, совершенствуя и модернизируя его, улучшая качество знаний, повышая мотивацию к обучению, максимально используя принцип индивидуализации обучения. Информационные технологии обучения являются необходимым инструментом на данном этапе информатизации образования.

Информационные технологии не только облегчают доступ к информации и открывают возможности вариативности учебной деятельности, ее индивидуализации и дифференциации, но и позволяют по-новому организовать взаимодействие всех субъектов обучения, построить образовательную систему, в которой ученик был бы активным и равноправным участником образовательной деятельности.

Формирование новых информационных технологий в рамках предметных уроков стимулируют потребность в создании новых программно-методических комплексов направленных на качественное повышение эффективности урока. Поэтому, для успешного и целенаправленного использования в учебном процессе средств информационных технологий, преподаватели должны знать общее описание принципов функционирования и дидактические возможности программно- прикладных средств, а затем, исходя из своего опыта и рекомендаций, "встраивать" их в учебный процесс.

Изучение математики в настоящее время сопряжено с целым рядом особенностей и трудностей развития школьного образования в нашей стране.

Появился так называемый кризис математического образования. Причины его состоят в следующем:

В изменении приоритетов в обществе и в науке, то есть в настоящее время идет рост приоритета гуманитарных наук;

В сокращении количества уроков математики в школе;

В оторванности содержания математического образования от жизни;

В малом воздействии на чувства и эмоции учащихся.

Сегодня остается открытым вопрос: «Как же наиболее эффективно использовать потенциальные возможности современных информационных и коммуникационных технологий при обучении школьников, в том числе, при обучении математике?».

Компьютер – отличный помощник в изучении такой темы, как “Квадратичная функция”, потому что, используя специальные программы можно строить графики различных функций, исследовать функцию, легко определить координаты точек пересечения, вычислить площади замкнутых фигур и т.д. Например, на уроке алгебры в 9-м классе, посвящённом преобразованию графика (растяжения, сжатия, переносы координатных осей) можно увидеть лишь застывший результат построения, а на экране монитора прослеживается вся динамика последовательных действий учителя и ученика.

Компьютер, как ни одно техническое средство, точно, наглядно и увлекательно открывает перед учеником идеальные математические модели, т.е. то, к чему должен стремиться ребенок в своих практических действиях.

Сколько трудностей приходится испытывать учителю математики для того, чтобы убедить учеников в том, что касательная к графику квадратичной функции в точке касания практически сливается с графиком функции. На компьютере этот факт продемонстрировать очень просто- достаточно сузить интервал по оси Ох и обнаружить, что в очень маленькой окрестности точки касания график функции и касательная совпадают. Все эти действия происходят на глазах у учеников. Этот пример дает толчок к активным размышлениям на уроке. Использование компьютера возможно как в ходе объяснения нового материала на уроке, так и на этапе контроля. При помощи этих программ, например «My Test», ученик самостоятельно может проверить свой уровень знаний по теории, выполнить теоретико-практические задания. Программы удобны своей универсальностью. Они могут быть использованы и для самоконтроля, и для контроля со стороны учителя.

Разумная интеграция математики и компьютерных технологий позволит богаче и глубже взглянуть на процесс решения задачи, ход осмысления математических закономерностей. Кроме того, компьютер поможет сформировать графическую, математическую и мыслительную культуру учеников, а также с помощью компьютера можно подготовить дидактические материалы: карточки, листы опроса, тесты и др. При этом давать возможность ребятам самостоятельно разрабатывать тесты по теме, в ходе чего развивается интерес и творческий подход.

Таким образом, есть необходимость в применении по возможности компьютера на уроках математики более широко, чем есть. Использование информационных технологий будет способствовать повышению качества знаний, расширит горизонты изучения квадратичной функции, а значит, поможет найти новые перспективы для поддержания интереса учащихся к предмету и к теме, а значит и к лучшему, более внимательному отношению к нему. Сегодня современные информационные технологии становятся важнейшим инструментом модернизации школы в целом – от управления до воспитания и обеспечения доступности образования.

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

III уровень

3.1. Гипербола касается прямых 5x – 6y – 16 = 0, 13x – 10y – – 48 = 0. Запишите уравнение гиперболы при условии, что ее оси совпадают с осями координат.

3.2. Составьте уравнения касательных к гиперболе

1) проходящих через точку A (4, 1), B (5, 2) и C (5, 6);

2) параллельных прямой 10x – 3y + 9 = 0;

3) перпендикулярных прямой 10x – 3y + 9 = 0.

Параболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры параболы:

Точка F (p /2, 0) называется фокусом параболы, величина p параметром , точка О (0, 0) – вершиной . При этом прямая OF , относительно которой парабола симметрична, задает ось этой кривой.


Величина где M (x , y ) – произвольная точка параболы, называется фокальным радиусом , прямая D : x = –p /2 – директрисой (она не пересекает внутреннюю область параболы). Величина называется эксцентриситетом параболы.

Основное характеристическое свойство параболы : все точки параболы равноудалены от директрисы и фокуса (рис. 24).

Существуют иные формы канонического уравнения параболы, которые определяют другие направления ее ветвей в системе координат (рис. 25).:


Для параметрического задания параболы в качестве параметра t может быть взята величина ординаты точки параболы:

где t – произвольное действительное число.

Пример 1. Определить параметры и форму параболы по ее каноническому уравнению:

Решение. 1. Уравнение y 2 = –8x определяет параболу с вершиной в точке О Оx . Ее ветви направлены влево. Сравнивая данное уравнение с уравнением y 2 = –2px , находим: 2p = 8, p = 4, p /2 = 2. Следовательно, фокус находится в точке F (–2; 0), уравнение директрисы D : x = 2 (рис. 26).


2. Уравнение x 2 = –4y задает параболу с вершиной в точке O (0; 0), симметричную относительно оси Oy . Ее ветви направлены вниз. Сравнивая данное уравнение с уравнением x 2 = –2py , находим: 2p = 4, p = 2, p /2 = 1. Следовательно, фокус находится в точке F (0; –1), уравнение директрисы D : y = 1 (рис. 27).


Пример 2. Определить параметры и вид кривой x 2 + 8x – 16y – 32 = 0. Сделать чертеж.

Решение. Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

x 2 + 8x – 16y – 32 =0;

(x + 4) 2 – 16 – 16y – 32 =0;

(x + 4) 2 – 16y – 48 =0;

(x + 4) 2 – 16(y + 3).

В результате получим

(x + 4) 2 = 16(y + 3).

Это каноническое уравнение параболы с вершиной в точке (–4; –3), параметром p = 8, ветвями, направленными вверх (), осью x = –4. Фокус находится в точке F (–4; –3 + p /2), т. е. F (–4; 1) Директриса D задается уравнением y = –3 – p /2 или y = –7 (рис. 28).




Пример 4. Составить уравнение параболы с вершиной в точке V (3; –2) и фокусом в точке F (1; –2).

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси Ox (одинаковые ординаты), ветви параболы направлены влево (абсцисса фокуса меньше абсциссы вершины), расстояние от фокуса до вершины равно p /2 = 3 – 1 = 2, p = 4. Значит, искомое уравнение

(y + 2) 2 = –2 · 4(x – 3) или (y + 2) 2 = = –8(x – 3).

Задания для самостоятельного решения

I уровень

1.1. Определите параметры параболы и построить ее:

1) y 2 = 2x ; 2) y 2 = –3x ;

3) x 2 = 6y ; 4) x 2 = –y .

1.2. Напишите уравнение параболы с вершиной в начале координат, если известно, что:

1) парабола расположена в левой полуплоскости симметрично относительно оси Ox и p = 4;

2) парабола расположена симметрично относительно оси Oy и проходит через точку M (4; –2).

3) директриса задана уравнением 3y + 4 = 0.

1.3. Составьте уравнение кривой, все точки которой равноудалены от точки (2; 0) и прямой x = –2.

II уровень

2.1. Определить тип и параметры кривой.

Лекции по алгебре и геометрии. Семестр 1.

Лекция 17. Парабола.

Глава 17. Парабола.

п.1. Основные определения.

Определение. Параболой называется ГМТ плоскости равноудаленных от одной фиксированной точки плоскости, называемой фокусом, и одной фиксированной прямой, называемой директрисой.

Определение. Расстояние от произвольной точки М плоскости до фокуса параболы называется фокальным радиусом точки М.

Обозначения: F– фокус параболы,r– фокальный радиус точки М,d– расстояние от точки М до директрисыD.

По определению параболы, точка М является точкой параболы тогда и только тогда, когда
.

По определению параболы, его фокус и директриса есть фиксированные объекты, поэтому расстояние от фокуса до директрисы есть величина постоянная для данной параболы.

Определение. Расстояние от фокуса параболы до ее директрисы называется фокальным параметром параболы.

Обозначение:
.

Введем на данной плоскости систему координат, которую мы будем называть канонической для параболы.

Определение. Ось, проведенная через фокус параболы перпендикулярно директрисе называется фокальной осью параболы.

Построим каноническую для параболы ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, направление на которой выбираем от директрисы к фокусу.

Ось ординат проводим через середину отрезка FNперпендикулярно фокальной оси. Тогда фокус имеет координаты
.

п.2. Каноническое уравнение параболы.

Теорема. В канонической для параболы системе координат уравнение параболы имеет вид:

. (1)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на параболе удовлетворяют уравнению (1). На втором этапе мы докажем, что любое решение уравнения (1) дает координаты точки, лежащей на параболе. Отсюда будет следовать, что уравнению (1) удовлетворяют координаты тех и только тех точек координатной плоскости, которые лежат на параболе.

Отсюда и из определения уравнения кривой будет следовать, что уравнение (1) является уравнением параболы.

1) Пусть точка М(х, у) является точкой параболы, т.е.

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальный радиус данной точки М:

.

Из рисунка 2 мы видим, что точка параболы не может иметь отрицательной абсциссы, т.к. в этом случае
. Поэтому
и
. Отсюда получаем равенство

.

Возведем обе части равенства в квадрат:

и после сокращения получаем:

.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (1) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда подставляем равенство (1) в выражение для фокального радиуса точки М:

, откуда, по определению параболы, следует, что точка М(х, у) лежит на параболе.

Здесь мы воспользовались тем, что из равенства (1) следует, что
и, следовательно,
.

Теорема доказана.

Определение. Уравнение (1) называется каноническим уравнением параболы.

Определение. Начало канонической для параболы системы координат называется вершиной параболы.

п.3. Свойства параболы.

Теорема. (Свойства параболы.)

1. В канонической для параболы системе координат, в полосе

нет точек параболы.

2. В канонической для параболы системе координат вершина параболы О(0; 0) лежит на параболе.

3. Парабола является кривой, симметричной относительно фокальной оси.

Доказательство. 1, 2) Сразу же следует из канонического уравнения параболы.

3) Пусть М(х, у) – произвольная точка параболы. Тогда ее координаты удовлетворяют уравнению (1). Но тогда координаты точки
также удовлетворяют уравнению (1), и, следовательно, эта точка также является точкой параболы, откуда и следует утверждение теоремы.

Теорема доказана.

п.4. Построение параболы.

В силу симметрии достаточно построить параболу в первой четверти, где она является графиком функции

,

а затем отобразить полученный график симметрично относительно оси абсцисс.

Строим график этой функции, учитывая, что данная функция является возрастающей на промежутке
.

п.5. Фокальный параметр гиперболы.

Теорема. Фокальный параметр параболы равен длине перпендикуляра к ее оси симметрии, восстановленного в фокусе параболы до пересечения с параболой.

Доказательство. Так как точка
является точкой пересечения параболы
с перпендикуляром
(см. рис.3), то ее координаты удовлетворяют уравнению параболы:

.

Отсюда находим
, откуда и следует утверждение теоремы.

Теорема доказана.

п.6. Единое определение эллипса, гиперболы и параболы.

Используя доказанные свойства эллипса и гиперболы, и определение параболы можно дать единое для всех трех кривых определение.

Определение. ГМТ плоскости, для которых отношение расстояния до одной фиксированной точки плоскости, называемой фокусом, к расстоянию до одной фиксированной прямой, называемой директрисой, есть величина постоянная, называется:

а) эллипсом, если эта постоянная величина меньше 1;

б) гиперболой, если эта постоянная величина больше 1;

в) параболой, если эта постоянная величина равна 1.

Эта постоянная величина, о которой идет речь в определении, называется эксцентриситетом и обозначается , расстояние от данной точки до фокуса есть ее фокальный радиусr, расстояние от данной точки до директрисы обозначается черезd.

Из определения следует, что те точки плоскости, для которых отношение есть величина постоянная образуют эллипс, гиперболу или параболу, взависимости от величины этого отношения.

Если
, то мы получаем эллипс, если
, то мы получаем гиперболу, если
, то мы получаем параболу.

п.7. Касательная к параболе.

Теорема. Пусть
– произвольная точка параболы

.

Тогда уравнение касательной к этой параболе

в точке
имеет вид:

. (2)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой четверти. Тогда уравнение параболы имеет вид:

и ее можно рассматривать как график функции
.

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
.

Найдем производную функции
и ее значение в точке касания:

,
.

Здесь мы воспользовались тем, что точка касания
является точкой параболы и поэтому ее координаты удовлетворяют уравнению параболы, т.е.

.

Подставляем найденное значение производной в уравнение касательной:

,

откуда получаем:

.

Так как точка
принадлежит параболе, то ее координаты удовлетворяют ее уравнению, т.е.
, откуда получаем

или
.

Отсюда следует

.

Теорема доказана.

п.8. Зеркальное свойство параболы.

Теорема. Касательная к параболе образует равные углы с ее осью симметрии и с фокальным радиусом точки касания.

Доказательство. Пусть
– точка касания,– ее фокальный радиус. Обозначим черезNточку пересечения касательной с осью абсцисс. Ордината точкиNравна нулю и точкаNлежит на касательной, следовательно, ее координаты удовлетворяют уравнению касательной. Подставляя координаты точкиNв уравнение касательной, получаем:

,

откуда абсцисса точки Nравна
.

Рассмотрим треугольник
. Докажем, что он равнобедренный.

Действительно,
. Здесь мы воспользовались равенством, полученным при выводе канонического уравнения параболы:

.

В равнобедренном треугольнике углы при основании равны. Отсюда

, ч.т.д.

Теорема доказана.

Замечание. Доказанную теорему можно сформулировать в виде зеркального свойства параболы.

Луч света, выпущенный из фокуса параболы, после отражения от зеркала параболы, идет параллельно оси симметрии параболы.

Действительно, так как угол падения луча на касательную равен углу отражения от нее, то угол между касательной и отраженным лучом равен углу между касательной и осью абсцисс, откуда следует, что отраженный луч параллелен оси абсцисс.

Замечание. Это свойство параболы получило широкое применение в технике. Если параболу вращать вокруг ее оси симметрии, то получим поверхность, которая называется параболоидом вращения. Если выполнить отражающую поверхность в форме параболоида вращения и в фокусе поместить источник света, то отраженные лучи идут параллельно оси симметрии параболоида. Так устроены прожектора и автомобильные фары. Если же в фокусе поместить устройство принимающее электромагнитные колебания (волны), то они отражаясь от поверхности параболоида попадают в это принимающее устройство. По такому принципу работают спутниковые тарелки.

Существует легенда, что в древности один полководец выстроил своих воинов вдоль берега, придав их строю форму параболы. Солнечный свет, отражаясь от начищенных до блеска щитов воинов собирался в пучок (в фокусе построенной параболы). Таким образом были сожжены корабли неприятеля. Некоторые источники приписывают это Архимеду. Так или иначе, но арабы называли параболоид вращения "зажигательным зеркалом".

Кстати, слово "focus" латинское и в переводе означает огонь, очаг. С помощью "зажигательного зеркала" можно в солнечный день разжечь костер и вскипятить воду. Так что становится понятным происхождение этого термина.

Слово "фокус" означает также некоторый трюк или хитрый прием. Раньше цирк назывался балаганом. Так еще балаганные артисты использовали зеркальное свойство эллипса и зажигая свет в одном фокусе эллипса они разжигали что-нибудь лекговоспламеняющее, помещенное в другом его фокусе. Это зрелище также стали называть фокусом. (Читайте замечательную книжку Виленкина Н.Я. "За страницами учебника математики")

п.9. Полярное уравнение эллипса, гиперболы и параболы.

Пусть на плоскости дана точка F, которую мы назовем фокусом и прямаяD, которую мы назовем директрисой. Проведем через фокус прямую перпендикулярную директрисе (фокальная ось) и введем полярную систему координат. Полюс поместим в фокус, а в качестве полярного луча возьмем ту часть прямой, которая не пересекает директрису (см. рис.5).

Пусть точка М лежит на эллипсе, гиперболе или параболе. В дальнейшем будем называть зллипс гиперболу или параболу просто кривой.

Теорема. Пусть
– полярные координаты точки кривой (эллипса, гиперболы или параболы). Тогда

, (3)

где р – фокальный параметр кривой, – эксцентриситет кривой (для параболы полагаем
).

Доказательство. Пусть Q– проекция точки М на фокальную ось кривой, В – на директрису кривой. Пусть полярный уголточки М является тупым, как на рисунке 5. Тогда

,

где по построению,
– расстояние от точки М до директрисы,и

. (4)

С другой стороны, по единому определению эллипса, гиперболы и параболы отношение

(5)

равно эксцентриситету соответствующей кривой для любой точки М на данной кривой. Пусть точка
– точка пересечения кривой с перпендикуляром к фокальной оси, воостановленного в фокусеFи А – ее проекция на директрису. Тогда

, откуда
. Но
, откуда

и, подставляя в равенство (4), получаем

или, учитывая равенство (5),

откуда и следует доказываемое равенство (3).

Заметим, что равенство (4) остается верным и в случае, когда полярный угол точки М является острым, т.к. в этом случае точкаQнаходится правее фокусаFи

Теорема доказана.

Определение. Уравнение (3) называется полярным уравнением эллипса, гиперболы и параболы.