Рупорная антенна своими руками. Рупорная антенна

Всантиметровом и миллиметровом диапазонах волн широко применяются пирамидальные и конические рупорные антенны (рис.1.10).

Пирамидальные рупоры возбуждаются прямоугольным волноводом, конические – круглым или, через плавный переход, прямоугольным. Если размер рупора В=b- ширине узкой стенки прямоугольного волновода, а размер А произвольный, рупор называется Н-секториальным (расширяется в плоскости вектора). Если расширение делается только в плоскости вектора(А=а – широкой стенке волновода), то рупор Е-секториальный. При расширении в обеих плоскостях – пирамидальный рупор.

Диаграмма направленности рупорной антенны определяется амплитудным и фазовым распределением поля в ее раскрыве. При небольших углах раскрыва рупора и при проведении оценочных расчетов ширины главного лепестка фазовыми искажениями можно пренебречь и воспользоваться данными табл. 3.1.

Размеры оптимального прямоугольного рупора связаны следующими соотношениями:

где
и
- длина оптимального рупора соответственно в плоскостях векторов Е и Н. Если

, то длина рупораRвыбирается равной большему значению из них.

Ширина главного лепестка диаграммы направленности оптимального прямоугольного рупора по уровню половинной мощности в плоскости вектора определяется по эмпирической формуле:

,

а в плоскости вектора :

.

Ширина главного лепестка для оптимального конического рупора соответственно в плоскости векторов ирассчитывается следующим образом:

,

.

Длина оптимального конического рупора связана с его диаметром формулой:

.

Ширину главного лепестка рупорной антенны при другом уровне мощности можно определить из графиков, приведенных, например, в .

Если рупор является облучателем зеркальной антенны, то актуальным становится вопрос определения положения его фазового центра. Для рупорных антенн с максимальной фазовой ошибкой по краю апертуры Ψ max <100º÷120º, что соответствует оптимальным размерам, положение фазового центра для прямоугольного рупора в плоскости вектора Е рассчитывается по формуле:

в плоскости вектора

Аналогично для конического рупора

,
,

где
,
- расстояние от апертуры до фазового центра, соответственно в плоскостях векторови, а Ψ max – максимальная фазовая ошибка на краю апертуры конического

и прямоугольного

,

1.7 Директорные антенны

Директорная антенна представляет собой линейную антенную решетку вибраторов с осевым излучением (рис.1.11). Вибратор, к которому подводится питание, называется активным. Необходимый режим питания пассивных вибраторов, при котором обеспечивается коэффициент замедления близкий к оптимальной величине:
(L– длина антенны), обеспечивается подбором их длин и расстоянийи
. Один из вибраторов настраивается в режим рефлектора, то есть он создает преимущественное излучение в направлении активного вибратора. При обычно выбираемом значении
, его сопротивление должно быть индуктивным, что обеспечивается увеличением длины волны вибратора по сравнению с полуволновым.

Рефлектор, как правило, один, так как последующие будут находится в минимуме поля и не окажут заметного влияния на улучшение характеристик излучения антенны. Конструктивно он выполняется или в виде одиночного стержня или в виде Н-образного вибратора или сетчатой конструкции. Последние две разновидности используются для уменьшения заднего излучения.

Количество директоров может достигать десяти и более. Однако, при увеличении их числа, реактивное (емкостное) сопротивление настройки увеличивается, что требует укорочения директоров. Это приводит, в свою очередь, к уменьшению токов на них, особенно на далеко удаленных от активного вибратора. По этой причине сужение диаграммы направленности директорной антенны с увеличением её длины происходит значительно медленнее, чем у антенн с осевым излучением и элементами, возбуждаемыми с одинаковой интенсивностью, например антенн бегущей волны. Вторым препятствием использования директорных антенн с большим числом директоров является необходимость увеличения фазовой скорости, что приводит к возрастанию требований к точности изготовления антенны, так как оптимальное значение
все меньше отличается от критического замедления
, при котором излучение вдоль антенны вообще отсутствует.

Конструктивно наиболее удобным являются антенны с числом директоров не более 5-10. Директоры, как и рефлектор, крепятся обычно к металлической продольной штанге, которая не оказывает влияния на поле, так как перпендикулярна ему.

Обычно выбирают
. В этом случае для обеспечения емкостного характера сопротивления директоры должны быть короче полуволновых вибраторов. Их длины уменьшаются по мере удаления от активного вибратора.

Из-за влияния пассивных вибраторов входное сопротивление активного полуволнового вибратора падает до 20-30 Ом, что затрудняет его согласование с питающей линией. По этой причине активный вибратор обычно выполняют петлевым, у которого входное сопротивление примерно в четыре раза выше, чем у обычного. Петлевой вибратор, кроме этого, обладает лучшими частотными свойствами и может крепиться к металлическому стержню в точке нулевого потенциала без изолятора.

В качестве простых излучателей в составе антенных решеток используются директорные антенны с числом элементов (активный вибратор плюс директоры и рефлекторы) от 3 до 7.

При заданной геометрии антенны амплитуды и фазы токов во всех вибраторах, необходимые для расчета ДН, можно рассчитать на основании теории связанных вибраторов, решая систему уравнений Кирхгофа. Задача синтеза директорной антенны является достаточно сложной и обычно решается численными оптимизационными методами.

В настоящее время разработано большое число различных конструкций директорных антенн метрового и дециметрового диапазонов . На рис.1.12 приведена ДН трехэлементной антенны (один активный петлевой вибратор, один рефлектор, один директор) в двух плоскостях. Видно, что диаграмма не имеет боковых лепестков, но имеет значительный задний лепесток. Уровень заднего лепестка (УЗЛ) составляет несколько больше 0,2 (-14дБ). В плоскости вектора Е диаграмма имеет четко выраженные нули, так как вибратор вдоль своей оси не излучает, а в плоскости вектора Н нулей нет. Аналогичный вид имеют и ДН директорных антенн с большим числом элементов.

В таб.1.3 приведены нормированные к длине волны геометрические размеры и основные параметры ДН директорных антенн с одиночным рефлектором, используемых в телевизионном вещании в МВ и ДМВ диапазонах . Длину активного вибратора l a во всех случаях можно брать равной λ/2.

Таблица 1.3

элементов

Коэффициент

усиления по

сравнению с

λ/2 вибратором,

Рупорная антенна представляет собой конструкцию, состоящую из радиоволновода и металлического рупора. Они имеют широкую сферу применения, используются в устройствах измерительной техники и как самостоятельный прибор.

Что это

Рупорная антенна - это устройство, которое состоит из волновода с открытым концом и излучателем. По форме такие антенны бывают Н-секторальными, Е-секторальными, коническими и пирамидальными. Антенны - широкополостные, для них характерен небольшой уровень лепестков. Рупорная конструкция с усилиением простая. Усилитель позволяет ей быть небольшого размера. Например, или линз выравнивает фазу волны и положительно влияет на габариты устройства.

Антенна выглядит как раструб с прикрепленным к нему волноводом. Основным недостатком рупора считают его внушительные параметры. Для того чтобы привести такую антенну в рабочее состояние, она должна располагаться под определенным углом. Именно поэтому в длину рупор больше, чем в сечении. Если попытаться построить такую антенну с диаметром один метр, она бы в длину получилась в несколько раз больше. Чаще всего такие приборы используют в качестве зеркального облучателя или для обслуживания радиорелейных линий.

Особенности

Диаграмма направленности рупорной антенны - это угловое распределение плотности потока мощности или энергии в единицу угла. Определение означает, что прибор широкополосный, имеет питающую линию и небольшой уровень задних лепестков диаграммы. Для того чтобы получить остронаправленное излучение, необходимо сделать рупор длинным. Это не очень практично и считается недостатком данного устройства.

К одним из самых модернизированных типов антенн относят рупорно-параболические. Их основная особенность и преимущество - низкие боковые лепестки, которые сочетаются с узкой диаграммой направленности. С другой стороны, рупорно-параболические устройства габаритные и тяжелые. Одним из примеров такого типа служит антенна, установленная на космической станции "Мир".

По своим свойствам и техническими характеристикам рупорные приборы ничем не отличаются от установленных приемников в мобильных телефонах. Разница лишь в том, что у последних антенны компактные и скрыты внутри. Однако миниатюрные рупорные антенны могут повреждаться внутри мобильного устройства, поэтому корпус телефонов рекомендуется защищать при помощи чехла.

Типы

Существует несколько типов рупорных антенн:

  • пирамидальная (сделана в форме пирамиды четырехгранника с прямоугольным сечением, используется чаще всего);
  • секторальная (имеет рупор с расширением H или E);
  • коническая (выполнена в виде конуса с круглым сечением, излучает волны круговой поляризации);
  • гофрированная (рупор с широкой полосой пропускания, небольшим уровнем боковых лепестков, используется для радиотелескопов, параболических и спутниковых антенн);
  • рупорно-параболическая (совмещает в себе рупор и параболу, имеет узкую диаграмму направленности, низкий уровень боковых лепестков, функционирует на радиорелейных и космических станциях).

Исследование рупорных антенн позволяет изучить их принцип действия, рассчитать диаграммы направленности и коэффициент усиления антенны на определенной частоте.

Как работает

Рупорные измерительные антенны вращаются вокруг собственной оси, расположенной перпендикулярно плоскости. К выходу прибора подсоединяется специальный детектор с усилением. Если сигналы слабые, в детекторе формируется квадратичная вольтамперная характеристика. Создает электромагнитные волны стационарная антенна, основная задача которой - передача волн рупорной. Для того чтобы снять характеристику направленности, ее разворачивают. Затем снимаются показания с прибора. Антенну поворачают вокруг своей оси и фиксируют все измененные данные. Применяют ее для приема радиоволн и излучения сверхвысоких частот. Устройство обладает огромными плюсами перед проволочными агрегатами, так как способно принять большой объем сигнала.

Где используется

Рупорная антенна используется как отдельный прибор и в качестве антенны для измерительных устройств, спутников и другой техники. Степень излучения зависит от раскрыва рупора антенны. Он определяется размерами его поверхностей. Используется этот прибор как облучатель. Если конструкцию устройства совмещают с отражателем, его называют рупорно-парабалическим. Агрегаты с усилением часто используют для проведения измерений. Применяют антенну как зеркальный или лучевой облучатель.

Внутренняя поверхность рупора может быть гладкой, гофрированной, а образующая - иметь плавную или кривую линию. Разные модификации этих излучающих приборов используют для улучшения их характеристик и функциональности, например для того, чтобы получить осесимметричную диаграмму. Если необходимо скорректировать направленные свойства антенны, в раскрыве устанавливают ускоряющие или замедляющие линзы.

Настройки

Рупорно-параболическая антенна настраивается в волноводной части с помощью диаграмм или штырей. Если понадобится, то такое устройство можно сделать самостоятельно. Антенна принадлежит к апертурному классу. Это означает, что прибор, в отличие от проволочной модели, принимает сигнал апертурой. Чем больше рупор у антенны, тем больше волн она примет. Усиления легко достичь, если увеличить размеры агрегата. К его преимуществам относят широкополосность, простоту конструкции, отличную повторяемость. К недостаткам - при создании одной антенны требуется большое количество расходных материалов.

Для изготовления своими руками пирамидальной антенны рекомендуется использовать недорогие материалы, например оцинковку, прочный картон, фанеру в сочетании с фольгой металлической. Рассчитать параметры будущего устройства допустимо при помощи специального онлайн-калькулятора. Энергия, принятая рупором, попадает в волновод. Если изменять положение штыря, антенна будет функционировать в широком диапазоне. При создании устройства учитывайте, что внутренние стенки рупора и волновода должны быть гладкими, а раструб - жестким по внешней стороне.

Присоединенным к узкому концу рупора. По форме рупора различают E-секториальные, H-секториальные, пирамидальные и конические рупорные антенны.

Свойства

Рупорные антенны очень широкополосны и весьма хорошо согласуются с питающей линией - фактически, полоса антенны определяется свойствами возбуждающего волновода. Для этих антенн характерен малый уровень задних лепестков диаграммы направленности (до −40 dB) из-за того, что мало затекание ВЧ-токов на теневую сторону рупора. Рупорные антенны с небольшим усилением просты конструктивно, но достижение большого (>25 dB) усиления требуют применения выравнивающих фазу волны устройств (линз или зеркал) в раскрыве рупора. Без подобных устройств антенну приходится делать непрактично длинной.

Применение

Рупорные антенны применяют как самостоятельно, так и в качестве облучателей зеркальных и других антенн. Рупорную антенну, конструктивно совмещенную с параболическим отражателем, часто называют рупорно-параболической антенной. Рупорные антенны с небольшим усилением из-за удачного набора свойств и хорошей повторяемости часто используются в качестве измерительных.

Характеристики и формулы

Усиление рупорной антенны определяется площадью её раскрыва и может быть рассчитано по формуле:

D=4\pi\frac{S}{\lambda^2}\nu, где S=L_EL_H - площадь раскрыва рупора, \nu - КИП (коэффициент использования поверхности рупора), равный 0.6 для случая, когда разность хода центрального и перифирийного лучей менее, но близка к \pi/2, и 0.8 при применении выравнивающих фазу волны устройств.

Ширина главного лепестка ДНА по нулевому излучению в плоскости H:

2\phi_{0H}=170^\circ\frac{\lambda}{L_H}

Ширина главного лепестка ДНА по нулевому излучению в плоскости E:

2\phi_{0E}=115^\circ\frac{\lambda}{L_E}

Так как При равенстве L_E и L_H ДНА в плоскости Н получается в 1.5 раза шире, часто, для получения одинаковой ширины лепестка в обоих плоскостях, выбирают

L_H=1{,}5L_E

Для удержания фазовых искажений в раскрыве рупора в допустимых пределах (не более \pi/2) необходимо, чтобы выполнялось условие (для пирамидального рупора):

\frac{\pi}{4\lambda}\left(\frac{L^2_E}{R_E} + \frac{L^2_H}{R_H} \right)\leqslant\frac{\pi}{2}, где R_E и R_H - высоты граней пирамиды, образующей рупор.

Типы рупорных антенн

  • Пирамидальный рупор - антенны в форме четырехгранной пирамиды, с прямоугольным сечением. Они являются наиболее широко используемым типом рупорных антенн. Излучает линейно-поляризованные волны.
  • Секторальный рупор - пирамидальные рупора с расширением только в одной плоскости Е или Н.
  • Конический рупор - раскрыв в форме конуса с круглым сечением. Используются с цилиндрическими волноводами для получения волны с круговой поляризацией.
  • Гофрированные рупора - раскрыв рупоров с параллельными щелями или канавки, малой по сравнению с длиной волны. Канавки покрывают внутреннюю поверхность рупора, поперек оси.

Гофрированные рупора имеют более широкую полосу пропускания, меньший уровень боковых лепестков и кросс-поляризации. Они широко используются в качестве облучателей для спутниковых параболических антенн и радиотелескопов.

Рупорно-параболическая антенна

Рупорно-параболическая антенна - тип антенны, в которой конструктивно связаны парабола и рупор. Преимуществом этой конструкции по сравнению с рупорной является низкий уровень боковых лепестков и узкая диаграмма направленности. Недостатком - больший вес, чем в параболических антеннах. Примером использования является рупорно-параболическая антенна в космической станции Мир, антенны для радиорелейных станций.

Настройка антенны

Настройка КСВ антенны производится в её волноводной части или в КВП выбором положения и размеров запитки КВП. Настройка в волноводной части производится штырями или диафрагмами.

Напишите отзыв о статье "Рупорная антенна"

Ссылки

  • Распространение радиоволн антенно-фидерные устройства В. П. Чернышев, Д. И. Шейнман «Связь», 1973.
  • Устройства СВЧ и антенны. Д. И. Воскресенский, В. Л. Гостюхин, В. М. Максимов, Л. И. Пономарёв. Учебник для ВУЗов

Примечания

Отрывок, характеризующий Рупорная антенна

В это время в девичьей не только был известен приезд министра с сыном, но внешний вид их обоих был уже подробно описан. Княжна Марья сидела одна в своей комнате и тщетно пыталась преодолеть свое внутреннее волнение.
«Зачем они писали, зачем Лиза говорила мне про это? Ведь этого не может быть! – говорила она себе, взглядывая в зеркало. – Как я выйду в гостиную? Ежели бы он даже мне понравился, я бы не могла быть теперь с ним сама собою». Одна мысль о взгляде ее отца приводила ее в ужас.
Маленькая княгиня и m lle Bourienne получили уже все нужные сведения от горничной Маши о том, какой румяный, чернобровый красавец был министерский сын, и о том, как папенька их насилу ноги проволок на лестницу, а он, как орел, шагая по три ступеньки, пробежал зa ним. Получив эти сведения, маленькая княгиня с m lle Bourienne,еще из коридора слышные своими оживленно переговаривавшими голосами, вошли в комнату княжны.
– Ils sont arrives, Marieie, [Они приехали, Мари,] вы знаете? – сказала маленькая княгиня, переваливаясь своим животом и тяжело опускаясь на кресло.
Она уже не была в той блузе, в которой сидела поутру, а на ней было одно из лучших ее платьев; голова ее была тщательно убрана, и на лице ее было оживление, не скрывавшее, однако, опустившихся и помертвевших очертаний лица. В том наряде, в котором она бывала обыкновенно в обществах в Петербурге, еще заметнее было, как много она подурнела. На m lle Bourienne тоже появилось уже незаметно какое то усовершенствование наряда, которое придавало ее хорошенькому, свеженькому лицу еще более привлекательности.
– Eh bien, et vous restez comme vous etes, chere princesse? – заговорила она. – On va venir annoncer, que ces messieurs sont au salon; il faudra descendre, et vous ne faites pas un petit brin de toilette! [Ну, а вы остаетесь, в чем были, княжна? Сейчас придут сказать, что они вышли. Надо будет итти вниз, а вы хоть бы чуть чуть принарядились!]
Маленькая княгиня поднялась с кресла, позвонила горничную и поспешно и весело принялась придумывать наряд для княжны Марьи и приводить его в исполнение. Княжна Марья чувствовала себя оскорбленной в чувстве собственного достоинства тем, что приезд обещанного ей жениха волновал ее, и еще более она была оскорблена тем, что обе ее подруги и не предполагали, чтобы это могло быть иначе. Сказать им, как ей совестно было за себя и за них, это значило выдать свое волнение; кроме того отказаться от наряжения, которое предлагали ей, повело бы к продолжительным шуткам и настаиваниям. Она вспыхнула, прекрасные глаза ее потухли, лицо ее покрылось пятнами и с тем некрасивым выражением жертвы, чаще всего останавливающемся на ее лице, она отдалась во власть m lle Bourienne и Лизы. Обе женщины заботились совершенно искренно о том, чтобы сделать ее красивой. Она была так дурна, что ни одной из них не могла притти мысль о соперничестве с нею; поэтому они совершенно искренно, с тем наивным и твердым убеждением женщин, что наряд может сделать лицо красивым, принялись за ее одеванье.
– Нет, право, ma bonne amie, [мой добрый друг,] это платье нехорошо, – говорила Лиза, издалека боком взглядывая на княжну. – Вели подать, у тебя там есть масака. Право! Что ж, ведь это, может быть, судьба жизни решается. А это слишком светло, нехорошо, нет, нехорошо!
Нехорошо было не платье, но лицо и вся фигура княжны, но этого не чувствовали m lle Bourienne и маленькая княгиня; им все казалось, что ежели приложить голубую ленту к волосам, зачесанным кверху, и спустить голубой шарф с коричневого платья и т. п., то всё будет хорошо. Они забывали, что испуганное лицо и фигуру нельзя было изменить, и потому, как они ни видоизменяли раму и украшение этого лица, само лицо оставалось жалко и некрасиво. После двух или трех перемен, которым покорно подчинялась княжна Марья, в ту минуту, как она была зачесана кверху (прическа, совершенно изменявшая и портившая ее лицо), в голубом шарфе и масака нарядном платье, маленькая княгиня раза два обошла кругом нее, маленькой ручкой оправила тут складку платья, там подернула шарф и посмотрела, склонив голову, то с той, то с другой стороны.
– Нет, это нельзя, – сказала она решительно, всплеснув руками. – Non, Marie, decidement ca ne vous va pas. Je vous aime mieux dans votre petite robe grise de tous les jours. Non, de grace, faites cela pour moi. [Нет, Мари, решительно это не идет к вам. Я вас лучше люблю в вашем сереньком ежедневном платьице: пожалуйста, сделайте это для меня.] Катя, – сказала она горничной, – принеси княжне серенькое платье, и посмотрите, m lle Bourienne, как я это устрою, – сказала она с улыбкой предвкушения артистической радости.

Излучение происходит из открытого конца волновода. Для канализации электромагнитной энергии используется волноводы прямоугольного или круглого типа.

Однако волноводы могут быть использованы не только для канализации электромагнитной энергии, но и для ее излучения.

Открытый конец волновода можно рассматривать как простейшую антенну СВЧ.

Открытый конец волновода представляет собой площадку с электромагнитным полем.1

Особенности электромагнитного поля в открытом конце волновода.

1. Волна не является поперечной типа ТЕМ. (имеет более сложную структуру).

2. Кроме падающей волны присутствует отраженная.

3. Наряду с основным типом волны на конце волновода присутствуют высшие типы волн.

Кроме того поле присутствует не только в раскрыве волновода, но и на внешней поверхности вследствие затекания на эту поверхность токов с конца волновода.


Учет этих факторов очень усложняет задачу определения поля излучения из открытого конца волновода, и ее строгое математическое решение встречает большие трудности. По этой причине обычно применяют приближенные методы решения. Для этого решения задачу разбивают на две задачи: внутреннюю и внешнюю.

1) Внутренней задачей является нахождения поля в раскрыве волновода.

2) Внешней задачей является нахождение поля излучения по известному полю в раскрыве.

Рассмотрим прямоугольный волновод.

Основной тип волны .

Рис. 45. Прямоугольный волновод (а) и структура поля в нем при волне типа : в плоскости xOy (б); в плоскости xOz (в); в плоскости yOz (г).

;

;

.

Напряженность падающего электромагнитного поля в середине раскрыва волновода.

Длина волны в волноводе.

Длина волны в свободном пространстве.

Комплексный коэффициент отражения.

Поле в дальней зоне:

Волновое сопротивление фронта волны на открытом конце волновода.

Волновое сопротивление среды равно .

С учетом найденных отношений поля в главных плоскостях

Площадь раскрыва волновода.



Диаграмма направленности открытого конца прямоугольного волновода.

Рис. 46. Диаграмма направленности излучения из открытого конца прямоугольного волновода при

Как видно из рисунков ширина диаграммы направленности большая. Для получения более острой диаграммы направленности сечение волновода можно плавно увеличивать, превращая волновод в рупор. В этом случае структура поля в волноводе в основном сохраняется.

Плавное увеличение сечения волновода улучшает согласования его со свободным пространством.

Рис. 47.Основные типы электромагнитных рупоров.

Наибольшее распространение получили секториальные и пирамидальный рупора.

Рассмотрим продольное сечение прямоугольного рупора плоскостью E или H.

Рис. 48. Продольное сечение прямоугольного рупора.

Раскрыва рупора

Ширина раскрыва рупора.

Длина рупора.

Вершина рупора.

Исследование рупора как правило ведется приближенными методами из-за математических сложностей.

Первоначально определяется поле в раскрыве. При решении этой задачи рупор предполагается бесконечно длинным, а его стенки идеально – проводящими.

После решения внутренней задачи обычным методом решается внешняя задача, т.е. находится поле излучения.

H – плоскостной секториальный рупор.

Для нахождения структуры поля в рупоре используем цилиндрическую систему координат .

Волна будет иметь компоненты .

Рис. 49. Цилиндрическая система координат для анализа секториальных рупоров.

Решая систему уравнений Максвелла и используя асимптотические выражения функций Ганкеля для больших значений аргумента , получаем следующие значения для составляющих поля

(1)

.

Здесь напряженность электрического поля в точке рупора с координатами причем .

Формулы (1) показывают, что при больших составляющая и поле в рупоре представляет собой поперечную электромагнитную цилиндрическую волну. Вследствие того, что у большинства применяемых рупоров раскрыв плоский, а волна в рупоре цилиндрическая, поле в раскрыве не будет синфазным.

Для определения фазовых искажений в раскрыве рассмотрим продольное сечение рупора. Дуга окружности с центром в вершине рупора проходит по фронту волны и, следовательно, является линией равных фаз. В произвольной точке , имеющей координату , фаза поля отстает от фазы в середине раскрыва (в точке ) на угол

Рис. 50. К определению фазовых искажений в раскрыве рупора.

Так как обычно в рупорах , то можно ограничиться первым членом разложения

Формула (2) и является приближенными. Ими можно пользоваться, когда или . В применяемых рупорах эти условия обычно выполняются.

Иногда удобно максимальные фазовые ошибки в раскрыве рупора определять через его длину и половину угла раскрыва .

Формула верна при любых и .

Из формулы видно, что при заданной поле в раскрыве будет тем меньше отличаться от синфазного, чем больше длина рупора . Габаритные ограничения требуют нахождения компромиссного решения, т.е. определения такой длины рупора, при которой максимальный фазовый сдвиг в его раскрыве не будет превышать некоторой допустимой величины. Эта величина обычно определяется наибольшим значением коэффициента направленного действия, которое можно получить от рупора заданной длины. Для секториального рупора максимально допустимый фазовый сдвиг составляет , что соответствует следующему соотношению между оптимальной длиной рупора, размером раскрыва и длиной волны :

Для определения распределения амплитуд поля в раскрыве рупора примем

Таким образом, поле в раскрыве секториального рупора окончательно представим выражениями

Диаграмма направленности в плоскости

Характерные зависимости коэффициента направленного действия от относительного раскрыва рупора для различных длин рупора приведены ниже.

Рис. 51. Зависимость КНД Н – секториального рупора от относительной ширины раскрыва

при различной длине рупора.

Для того чтобы исключить зависимость коэффициента направленного действия от оси ординат отложено произведение . Из графиков видно, что для каждой длины рупора существует определенный раскрыв рупора , при котором коэффициент направленного действия максимален. Уменьшение его при дальнейшим увеличение объясняется резким возрастанием фазовых ошибок в раскрыве.

Рупор, который при заданной длине имеет максимальный коэффициент направленного действия, называется оптимальным. Из кривых, изображенных на рис.3 видно, что при точки максимума кривых соответствует равенству

Если длину рупора взять больше , то при той же площади раскрыва коэффициента направленного действия возрастает, но не очень сильно. Точкам максимума коэффициента направленного действия соответствует коэффициент использования площади раскрыва .

Если длину рупора непрерывно увеличивать, то в пределе при мы получим синфазное поле в раскрыве рупора. Коэффициент использования синфазной площадки с косинусоидальным распределением амплитуды поля равен . Таким образом увеличение длины рупора по сравнению с его оптимальной длиной не может повысить коэффициент направленного действия более чем на

Коэффициент полезного действия рупорных антенн вследствие малых потерь практически может быть принят за единицу.

E-плоскостной секториальный рупор.

Поле в раскрыве плоскостного секториального рупора

(1)

Здесь ; расстояние от горловины рупора.

Из формулы (1) видно, что основным отличием поля в плоскостном рупоре от поля в волноводе является цилиндрическая форма волны. Вследствие этого в раскрыве рупора будут фазовые искажения, аналогичные искажениям в плоскостном рупоре.

Если угол раскрыва рупора невелик, то можно положить . В этом случае напряженность электрического поля в раскрыве может быть представлена:

Поле излучения секториального рупора в плоскости

(2)

Из этой формулы следует, что диаграмма направленности в плоскости плоскостного рупора такая же, как у открытого конца волновода.

Поле в плоскости :

(3) . . рупоров.

В этом случае формулу удобно представить в виде:

величины, стоящие в круглых скобках, непосредственно отложены по осям ординат на указанных графиках.

Рупорная антенна

Рупорная антенна – это антенна, которая состоит из металлического рупора и радиоволновода, присоединенного к рупору. Рупорные антенны используются при направленном излучении и приеме радиоволн СВЧ-диапазона.

Кроме этого, рупорные антенны применяются как самостоятельные антенны в устройствах и приборах измерительной техники, спутниках связи и т. д. Диаграмма излучения антенны зависит от распределения поля в наибольшем сечении раструба, т. е. раскрыва рупора. Раскрыв определяется формой и геометрическими размерами поверхностей рупора. По форме различаются секториальный рупор, конический, пирамидальный и т. д. Кроме этого, бывают модификации рупорных антенн, такие как антенны с поверхностью в виде плавной кривой, с гладкой внутренней поверхностью и т. д. Подобные модификации улучшают электрические характеристики рупорной антенны. Они используются для получения диаграммы излучения с низкой мощностью боковых лепестков, с симметричной осью и т. д. Для коррекции свойств направлений рупорной антенны в раскрыв рупора помещают ускоряющие или замедляющие линзы. В частных случаях, чтобы рупорная антенна лучше согласовывалась с радиоволноводом, в них встраивают подстроечные элементы и согласующие секции, при этом рупор имеет параболическую образующую поверхность. Рупор антенны имеет поперечное сечение, которое увеличивается с одного конца раструба до другого. Благодаря сечению создается плавный переход от волновода к свободному пространству волнового сопротивления.

В рупорно-параболической антенне рупор излучает волны, падающие на сегмент параболоида. Отражаясь от сегмента, волны излучаются через раскрыв раструба. Чтобы получить плоские волны, фокус рефлектора должен быть смещен с фазовым центром рупора.

Рупорная антенна работает на прием, она вращается вокруг своей оси, которая располагается перпендикулярно плоскости. В плоскости характеристика направленности снимается. Кристаллический детектор с усилителем подключается к выходу рупорной антенны. При слабых сигналах в детекторе образуется квадратичная вольтамперная характеристика, в связи с этим квадрат напряженности поля соответствует показаниям индикатора. Источником электромагнитных волн является антенна, которая работает на передачу, она стационарна и находится на приличном расстоянии от рупорной антенны. Чтобы снять характеристику направленности антенны, ее поворачивают на определенный угол. После этого показания на приборе, прилегающем к антенне, фиксируются. Антенна поворачивается на угол, и ее данные фиксируются до тех пор, пока рупорная антенна не повернется на 360°, т. е., пока не совершит полный оборот вокруг своей оси.