Солнечные панели своими руками. Солнечная батарея своими руками: дорогая игрушка или реальная возможность сэкономить? С чего можно собрать солнечной батареи

Ухудшение экологии, рост цен на энергоносители, стремление к автономности и независимости от прихотей государственных мужей - вот лишь несколько факторов, заставляющих самых закоренелых обывателей обращать мечтательные взгляды в сторону альтернативных источников энергии. У большинства наших соотечественников мысли о «зелёной» энергетике так и остаются идеей фикс - сказываются высокие цены на оборудование, и, как следствие, нерентабельность затеи. Но ведь никто не запрещает изготовить установку для получения бесплатной энергии самостоятельно! Сегодня мы расскажем о том, как своими руками построить солнечную батарею и рассмотрим перспективы её использования в быту.

Солнечная батарея: что это такое

Человечество загорелось идеей трансформации солнечного излучения в электрическую энергию с 30-х годов прошлого века. Именно тогда учёные из Академии наук СССР заявили о создании полупроводниковых медно-таллиевых кристаллов, в которых под действием световых лучей начинал протекать электрический ток. Сегодня это явление известно как фотоэлектрический эффект и широко используется как в гелиоэлектрических установках, так и в разнообразных датчиках.

Первые солнечные батареи известны ещё с 50-х годов прошлого века

Сила тока одного фотоэлемента измеряется в микроамперах, поэтому для получения сколь-нибудь значимой электрической мощности их объединяют в блоки . Множество таких модулей и составляют основу солнечной батареи (СБ), которую можно использовать для подключения различных электронных устройств. Если же говорить о законченном устройстве, которое можно установить под открытым небом, то корректнее говорить о солнечной панели (СП) с конструкцией, защищающей сборку фотоэлектрических модулей от внешних факторов.

Надо сказать, что КПД первых электрических гелиосистем не достигал и 10% - сказывались как недостатки полупроводниковой технологии, так и неустранимые потери, связанные с отражением, рассеиванием или поглощением светового потока. Десятилетия упорного труда учёных дали свой результат, и сегодня КПД самых современных солнечных батарей достигает 26%. Что же касается перспективных разработок, то здесь он ещё выше - до 46%! Конечно, внимательный читатель может возразить, что другие генераторы энергии работают с энергоэффективностью 95–98%. Тем не менее не следует забывать, что речь идёт о совершенно бесплатной энергии, величина которой в солнечный день превышает 100 Вт на один кв. м земной поверхности в секунду.

Современные солнечные панели генерируют электроэнергию в промышленных масштабах

Полученная с помощью солнечных панелей электроэнергия может использоваться аналогично той, что получают на обычных электростанциях - для питания различных электронных устройств, освещения, отопления и т. д. Единственное отличие, которое состоит в том, что на выходе фотоэлектронного модуля присутствует постоянный, а не переменный ток, на самом деле является преимуществом. Всё дело в том, что любая гелиосистема работает только в течение светового дня, причём её мощность очень сильно зависит от высоты солнца над горизонтом. Поскольку ночью СБ работать не может, электроэнергию приходится накапливать в аккумуляторах, а они-то все как раз и являются источниками постоянного тока.

Устройство и принцип действия

Принцип действия электрической батареи базируется на таких физических явлениях, как полупроводимость и фотоэлектрический эффект. В основе любого солнечного элемента лежат полупроводники, атомы которых испытывают недостаток в электронах (p-тип проводимости), либо имеют их избыток (n-тип). Другими словами, используется двухслойная структура с n-слоем в качестве катода и p-слоем в качестве анода. Поскольку силы удержания «лишних» электродов в n-слое ослаблены (у атомов не хватает на них энергии), то они легко выбиваются из своих мест при бомбардировке фотонами света. Далее электроны перемещаются в свободные «дырки» p-слоя и через подключённую электрическую нагрузку (или аккумулятор) возвращаются к катоду - вот так и течёт электрический ток, спровоцированный потоком солнечного излучения.

Преобразование солнечной энергии в электрическую возможно благодаря фотоэлектрическому эффекту, который описал в своих работах Эйнштейн

Как уже отмечалось выше, энергия от одного фотоэлемента крайне мала, поэтому их объединяют в модули. Последовательным подключением нескольких таких блоков наращивают напряжение батареи, а параллельным увеличивают силу тока. Таким образом, зная электрические параметры одной ячейки можно собрать батарею требуемой мощности.

Полученную от солнечной батареи электроэнергию можно накапливать в аккумуляторах и после преобразования в напряжение 220 В использовать для питания обычных бытовых прибораз

Для защиты от атмосферного воздействия полупроводниковые модули устанавливают в жёсткий каркас и закрывают стеклом с повышенным светопропусканием. Поскольку солнечную энергию можно использовать лишь в течение светового дня, то для её накопления используются аккумуляторы - расходовать их заряд можно по мере необходимости. Для повышения напряжения и его адаптации в соответствии с потребностями бытовых приборов используются инверторы.

Видео: как работает солнечная панель

Классификация фотоэлектрических модулей

Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой - плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.

Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:

  • монокристаллические;
  • поликристаллические;
  • аморфные.

Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.

Отличить поликристаллические кремниевые модули от монокристаллических несложно - первые имеют более светлый синий оттенок с выраженными «морозными» узорами на поверхности. Кроме того, тип фотоэлектрических пластин можно определить по их форме - монокристалл имеет скруглённые края, тогда как его ближайший конкурент (поликристалл) представляет собой выраженный прямоугольник.

Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.

Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств

Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:

  • теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
  • селенида меди и индия - КПД 15–20%;
  • полимерных соединений - толщина до 100 нм, с КПД - до 6%.

О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.

Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними - будущее солнечной энергетики

Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель - на рынке они пока ещё в дефиците.

Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.

Таблица: КПД современных солнечных батарей

Где можно взять фотоэлементы и можно ли их заменить чем-то другим

Купить пригодные для сборки солнечной панели монокристаллические или поликристаллические пластины сегодня не является проблемой. Вопрос в том, что сама идея самодельного генератора бесплатного электричества предполагает результат, который будет значительно дешевле заводского аналога. Если же покупать фотоэлектрические модули на месте, то много сэкономить не получится.

На зарубежных торговых площадках солнечные элементы представлены в широком ассортименте - можно купить как единичное изделие, так и набор всего необходимого для сборки и подключения солнечной батареи

За разумную цену солнечные элементы можно найти на зарубежных торговых площадках, например, eBay или AliExpress . Там они представлены в широком ассортименте и по вполне доступным ценам. Для нашего проекта подойдут, например, распространённые поликристаллические пластины размером 3х6 дюймов. При идеальных условиях они могут генерировать электрический ток напряжением 0.5 В и силой до 3 А, то есть 1.5 Вт электрической мощности.

Если вы горите желанием максимально сэкономить или испробовать собственные силы, то нет никакой необходимости сразу же покупать хорошие, целые модули - можно обойтись и некондицией. Всё на том же eBay или AliExpress можно найти комплекты пластин с небольшими трещинками, сколами уголков и прочими дефектами - так называемые изделия класса «B». На технических характеристиках фотоэлементов внешние повреждения не сказываются, чего нельзя сказать о цене - бракованные детали можно купить в 2–3 раза дешевле тех, что имеют товарный вид. Поэтому-то их и рационально использовать, чтобы обкатать технологию на своей первой солнечной панели.

Выбирая фотоэлектронные модули, вы увидите элементы различного типа и размера. Не думайте, что чем больше площадь их поверхности, тем выше напряжение они производят. Это не так. Элементы одного типа генерируют одинаковое напряжение независимо от габаритов. Чего не скажешь о силе тока - здесь размер имеет решающее значение.

Хоть в качестве фотоэлементов и можно использовать морально устаревшую компонентную базу, вскрытые диоды и транзисторы имеют слишком низкое напряжение и силу тока - понадобятся тысячи таких устройств

Сразу же хочется предупредить о том, что нет смысла искать аналог среди различных подручных электронных устройств. Да, получить работающий фотоэлектронный модуль можно из мощных диодов или транзисторов, извлечённых из старого радиоприёмника или телевизора. И даже сделать батарею, соединив несколько таких элементов в цепочку. Однако запитать подобной «солнечной панелью» что-либо мощнее калькулятора или светодиодного фонаря не удастся ввиду слишком слабых технических характеристик единичного модуля.

Принцип расчёта мощности батареи

Для расчёта необходимой мощности самодельной электрической гелиосистемы необходимо знать месячное потребление электроэнергии. Определить это параметр легче всего - количество потребляемого электричества в киловатт-часах можно посмотреть по счётчику или узнать, заглянув в счета, которые регулярно присылает энергосбыт. Так, если затраты составляют, например, 200 кВт×ч, то солнечная батарея должна вырабатывать в день примерно 7 кВт×ч электроэнергии.

В расчётах следует учитывать, что солнечные панели генерируют электричество только в светлое время суток, причём их производительность зависит как от угла Солнца над горизонтом, так и погодных условий. В среднем до 70% всего количества энергии вырабатывается с 9 часов утра до 16 часов вечера и при наличии даже небольшой облачности или дымки мощность панелей падает в 2–3 раза. Если же небо затянут сплошные облака, то в лучшем случае вы сможете получить 5–7% от максимальных возможностей гелиосистемы.

По графику энергоэффективности солнечной батареи видно, что основная доля генерируемой энергии приходится на время от 9 до 16 часов

Учитывая всё вышесказанное, можно подсчитать, что для получения 7 кВт×ч энергии при идеальных условиях понадобится массив панелей мощностью не менее 1 кВт. Если же учитывать уменьшение производительности, связанное с изменением угла падения лучей, погодные факторы, а также потери в аккумуляторах и преобразователях энергии, то этот показатель необходимо увеличить как минимум на 50–70 процентов. Если брать в расчёт верхний показатель, то для рассматриваемого примера будет нужна солнечная панель мощностью 1.7 кВт.

Дальнейший расчёт зависит от того, какие фотоэлементы будут использоваться. Например, возьмём упоминаемые ранее поликристаллические элементы 3˝×6˝ (площадь 0,0046 кв. м) с напряжением 5 В и силой тока до 3 А. Чтобы набрать массив фотоэлементов с выходным напряжением 12 В и силой тока, равной 1 700 Вт/12 В = 141 А понадобится соединить 24 элемента в ряд (последовательное соединение позволяет суммировать напряжение) и использовать 141 А/ 3 А = 47 таких ряда (1 128 пластин). Площадь батареи при максимально плотной укладке составит 1 128 х 0.0046 = 5.2 кв. м

Для того чтобы накопить и трансформировать солнечную энергию в привычные 220 Вольт понадобится массив аккумуляторов, контроллер заряда и повышающий инвертор

Для накопления электричества используются аккумуляторы с напряжением 12 В, 24 В или 48 В, причём их ёмкости должно хватать для того, чтобы вместить те самые 7 кВт×ч энергии. Если брать распространённые 12-вольтовые свинцовые батареи (далеко не самый лучший вариант), то их ёмкость должна быть не менее 7 000 Вт×ч/12 В = 583 А×ч, то есть три больших аккумулятора по 200 ампер-часов каждый. Следует учитывать, что КПД аккумуляторных батарей составляет не более 80%, а также то, что при преобразовании напряжения инвертором в 220 В будет теряться от 15 до 20% энергии . Следовательно, придётся докупить как минимум ещё один такой же аккумулятор для компенсации всех потерь.

К вопросу о возможности использования электрических солнечных панелей в целях отопления

Как вы уже могли, наверное, заметить, словосочетание «солнечная батарея» или «солнечная панель» постоянно упоминается в контексте устройства электрической природы. Сделано это неслучайно, поскольку точно так же нередко называют и другие солнечные панели или батареи - геоколлекторы.

Несколько гелиоколлекторов смогут обеспечить дом горячей водой и возьмут на себя часть расходов по отоплению

Возможность прямого преобразования энергии солнечного излучения непосредственно в тепло позволяет значительно повысить производительность таких установок. Так, современные геоколлекторы с селективным покрытием вакуумных трубок имеют КПД 70–80% и вполне могут использоваться как в системах горячего водоснабжения, так и для обогрева помещений.

Конструкция солнечного коллектора с вакуумными трубками позволяет минимизировать теплопередачу во внешнюю среду

Возвращаясь к вопросу о том, можно ли использовать электрическую солнечную панель для питания отопительных приборов, давайте рассмотрим, сколько тепла понадобится, например, для дома в 70 кв. метров. Исходя из стандартных рекомендаций в 100 Вт тепла на 1 кв. м площади помещения, получим затраты 7кВт энергии в час или примерно 70 кВт×ч в сутки (обогревающие приборы ведь не будут включены постоянно).

То есть 10 самодельных батарей общей площадью 52 кв.м. Представляете себе махину шириной, скажем, 4 м и длиной более 13 м, а также блок из 12-вольтовых аккумуляторов суммарной ёмкостью 7200 ампер-часов? Такая система не сможет даже выйти на самоокупаемость до того, как будет выработан ресурс аккумуляторных батарей. Как видите, говорить о целесообразности применения солнечных батарей в целях отопления пока ещё слишком рано.

Выбор места для установки электрической гелиопанели

Выбирать место, где будет установлена солнечная панель, необходимо ещё на этапе проектирования. Это может быть либо обращённый на юг скат крыши, либо открытая площадка на загородном участке. Второе, конечно же, предпочтительнее в силу нескольких причин:

  • установленную внизу солнечную батарею легче обслуживать;
  • на земле проще смонтировать поворотное устройство;
  • исключается дополнительная нагрузка на кровлю и её повреждение при установке гелиосистемы.

Место установки электрической панели должно быть открыто для солнечных лучей в течение всего светового дня, поэтому рядом не должно быть деревьев или построек, тень от которых могла бы падать на её поверхность.

Выбирая место для установки гелиосистемы, обязательно учитывают возможность затенения солнечных батарей окружающими предметами

Второе обстоятельство, вынуждающее искать такую площадку до начала сборки солнечной батареи, связано с определением габаритов панели. Собирая устройство своими руками, мы можем достаточно гибко подходить к выбору его размеров. В итоге можно получить установку, которая идеально впишется в экстерьер.

Приступаем к изготовлению солнечной батареи своими руками

Сделав все необходимые расчёты и определившись с местом для установки солнечной батареи, можно приступать к её изготовлению.

Что понадобится в работе

Кроме купленных фотоэлементов, при постройке электрической гелиопанели понадобятся такие материалы:

  • медный многожильный провод;
  • припой;
  • специальные шины для соединения выводов фотоэлементов;
  • диоды Шоттки, рассчитанные на максимальный ток одной ячейки;
  • припой;
  • деревянные рейки или алюминиевые уголки;
  • фанера или OSB;
  • ДВП или другой жёсткий листовой диэлектрический материал;
  • оргстекло (можно использовать поликарбонат, антибликовые сверхпрозрачные стёкла или поглощающие ИК-лучи оконные стёкла толщиной не менее 4 мм);
  • силиконовый герметик;
  • саморезы;
  • антибактериальная пропитка для дерева;
  • масляная краска.

При выборе стекла для солнечной батареи следует выбирать поглощающие ИК-лучи сорта с максимальным светопропусканием и минимальным светоотражением

Для работы понадобится вот такой нехитрый инструмент:

  • паяльник;
  • ножовка или электролобзик;
  • набор отвёрток или шуруповёрт;
  • малярные кисти.

Если под солнечную панель будет сооружаться дополнительный кронштейн или поворотная опора, то, соответственно, список материалов и инструментов должен пополнить деревянный брус или металлические уголки, стальной пруток, сварочный аппарат и т. д. При установке СБ на земле площадку можно забетонировать или выложить плиткой.

Инструкция по ходу работ

В качестве примера рассмотрим процесс постройки электрической гелиосистемы из рассматриваемых выше солнечных элементов 3х6 дюйма с напряжением 0.5 В и силой тока до 3А. Для заряда 12-вольтового аккумулятора необходимо, чтобы наша батарея «выдавала» не менее 18 В, то есть понадобится 36 пластин. Сборку следует выполнять поэтапно, иначе не избежать ошибок в работе. Следует помнить, что любые переделки, равно как и излишние манипуляции с фотоэлементами могут привести к их повреждению - эти устройства отличаются повышенной хрупкостью.

Для изготовления полноценной солнечной батареи понадобится несколько десятков фотоэлементов

Изготовление корпуса

Корпус солнечной батареи представляет собой плоский ящик, закрытый с одной стороной фанерой, а с другой - прозрачным стеклом. Для изготовления каркаса можно использовать как алюминиевые уголки, так и деревянные рейки. Второй вариант проще в работе, поэтому для изготовления своей первой панели рекомендуем выбрать его.

Приступая к сооружению солнечной панели, сделайте небольшой чертёж - в дальнейшем это поможет сэкономить время и избежать ошибок с размерами

Из реек сечением 20х20 мм собирают прямоугольный каркас с внешними размерами 118х58 см, усиленный одной поперечиной.

Корпус солнечной батареи представляет собой деревянный щит с бортиками высотой не более 2 см - в таком случае они не будут затенять фотоэлементы

В нижних торцах корпуса, а также в распорной планке сверлят вентиляционные устройства. Они будут сообщать внутреннюю полость с атмосферой, благодаря чему стекло не будет запотевать с внутренней стороны. После этого из листа оргстекла вырезают прямоугольник, соответствующую внешним габаритам рамы.

Проделанные в рейках отверстия служат для вентиляции внутреннего пространства панели

Обратную сторону короба зашивают фанерой либо OSB. Корпус обрабатывают антисептиком и окрашивают масляной краской.

Чтобы защитить деревянный корпус от атмосферных воздействий, его окрашивают масляной краской

По размеру внутренних полостей корпуса вырезают 2 подложки для фотоэлементов. Их использование во время монтажа пластин не только сделает работу удобнее, но и снизит риск повреждения хрупкого стекла. Для подложек можно взять любой плотный материал - ДВП, текстолит и т. д. Главное, чтобы он не проводил электрический ток и хорошо противостоял нагреву.

В качестве подложек для фотоэлементов можно использовать любой подходящий диэлектрик, например, перфорированную ДВП

Сборка пластин

Сборку пластин начинают с распаковки. Нередко для сохранности фотоэлементов их собирают в стопку и заливают парафином. В этом случае изделия погружают в ёмкость с водой и подогревают на водяной бане. После того как парафин будет растоплен, пластины следует отделить друг от друга и хорошо просушить.

Удаление воска с пакета пластин лучше всего проводить на водяной бане. Способ, который показан на рисунке,зарекомендовал себя не лучшим образом - при кипении пластины начинают вибрировать и ударяться друг о друга

Фотоэлементы раскладывают на подложке таким образом, чтобы их выводы были направлены в нужную сторону. В нашем случае все 36 пластин соединяются последовательно - это позволит «набрать» нужные нам 18 В. Для простоты монтажа следует паять по 6 пластин, получая 6 отдельных цепочек.

Перед пайкой фотоэлементы раскладывают в цепочки нужной длины

Зная принцип формирования солнечных панелей, вы сможете легко подобрать требуемое напряжение и силу тока. Всё очень просто: сначала собирается группа последовательно соединённых пластин, которая даст нужное напряжение. После этого отдельные блоки соединяют параллельно - при этом будет суммироваться их сила тока. Таким образом, можно получить панель любой мощности.

На токопроводящие дорожки фотоэлементов наносится припой и при помощи маломощного паяльника детали соединяются друг с другом.

Покупая более дешёвые фотоэлементы без выводов, будьте готовы к кропотливой работе по пайке проводников

Собрав все шесть групп, в центр каждой пластины необходимо нанести каплю силиконового герметика. Затем цепочки фотоэлементов разворачивают и аккуратно приклеивают к подложке.

Для фиксации фотоэлементов на подложкке используют силиконовый герметик или резиновый клей

К плюсовому выводу каждой цепочки припаивают диод Шоттки - он защитит аккумулятор от разряда через панель в тёмное время суток или при сильной облачности. Используя специальную шину или медную оплётку, отдельные блоки соединяют в единую цепь.

На схеме электрических подключений элементы солнечной панели обведены пунктирной линией

При последовательном соединении плюсовой вывод должен присоединяться к минусовому контакту, а при параллельном - к одноимённому.

Установка пластин в корпус

Собранные на подложке фотоэлементы укладывают в корпус и фиксируют к фанере при помощи саморезов. Отдельные части солнечной батареи соединяют друг с другом медным проводником. Его можно пропустить через одно из вентиляционных отверстий в поперечине - так не будет создаваться помех при установке стекло.

К «плюсу» и «минусу» припаивают многожильный кабель, который выводят наружу через отверстие в нижней части корпуса - он понадобится для подключения панели к аккумулятору. Для предотвращения повреждения пластин, кабель прочно фиксируют к деревянной раме.

После установки пластин все навесные элементы фиксируют при помощи термоклея или герметика

Сверху солнечную батарею накрывают листом оргстекла, который крепят при помощи уголков или саморезов. Чтобы защитить фотоэлементы от влаги, между рамой и стеклом наносят слой силиконового герметика. На этом сборку можно считать законченной - можно выносить солнечную батарею на крышу и подключать к потребителям.

После укладки и фиксации стеклянного покрытия солнечная панель готова к работе

Эффективность работы солнечной батареи зависит от её ориентации на солнце - максимальная мощность достигается при падении солнечных лучей под прямым углом. Чтобы повысить производительность установки, её размещают на поворотном каркасе. Эта конструкция представляет собой деревянную или металлическую раму, установленную на поворотной горизонтальной оси.

Для максимальной эффективности солнечная панель должна быть сориентирована строго на Солнце. Лучше всего с этой задачей справляются автоматические установки, называемые гелиотрекерами

Для поворота и фиксации рамы можно использовать как механический привод (например, цепную передачу), так и подпорную планку со ступенчатой регулировкой. Наиболее совершенные поворотные устройства оснащают узлом вращения в вертикальной плоскости и системой автоматического слежения за Солнцем. Подобную аппаратуру можно собрать, используя шаговые двигатели и современный микроконтроллер, например, Arduino.

Постройка гелиотрекера в домашних условиях - чрезвычайно сложная задача, поэтому чаще всего умельцы обходятся простым каркасом с наклонной или зафиксированной рамой

Подключение солнечной батареи к системе автономного электроснабжения следует выполнять посредством контроллера заряда. Это устройство не только правильно распределит потоки электрической энергии, но и предотвратит глубокий разряд АКБ, увеличивая срок её эксплуатации. Все подключения, включая присоединение 220-вольтового инвертора, следует выполнять медными проводами сечением не менее 3–4 кв. мм - это позволит избежать оммических потерь энергии.

Контроллер заряда солнечной батареи позволит ей работать с максимальной токоотдачей и предохранит аккумуляторы от чрезмерного разряда

Напоследок хотелось бы порекомендовать следить за солнечной батареей не только по индикаторам и стрелкам приборов. Помните о том, что загрязнённое стекло может снизить производительность установки на 50% и более. Не забывайте проводить регулярную уборку, и собранная своими руками установка отплатит вам киловаттами совершенно бесплатной, а главное, экологически чистой энергии.

Видео: сборка солнечной панели своими руками

Сегодня нет никаких преград для сборки солнечной панели своими руками. Нет проблем ни с приобретением фотоэлементов, ни с покупкой контроллера или преобразователя энергии. Надеемся, что эта статья станет для вас отправной точкой на пути к автономному дому, и вы наконец-то возьмётесь за дело. Будем ждать от вас вопросов, идей и предложений относительно конструирования и улучшения солнечных батарей. До новых встреч!

Похожие записи:

Похожие записи не найдены.

Многие люди интересуются, как же правильно осуществить преобразование солнечной энергии в электрическую, которая обеспечивает качественную эксплуатацию бытовых предметов, которые эксплуатируются с помощью данной энергии.

Да и к тому же в последнее время альтернативные источники электричества стали пользоваться достаточно большой популярностью, благодаря чему создать солнечные батареи можно и своими руками, если обеспечить к данному делу соответствующий подход.

Как вообще работает данная система?

  • Альтернативный источник электричества представляет собой специальный генератор, который функционирует за счет того, что присутствует фотоэлектрический эффект. Именно он предоставляет возможность солнечную энергию легко и просто преобразовывать в электричество, которое и предоставляет возможность обеспечить практичное и надежное использование.
  • Когда солнечные лучи попадают на специализированные кремниевые панели, которые и являются неотъемлемой частью всей солнечной батареи, образовывается большое количество свободных электронов, благодаря чему в итоге и обеспечивается электрический ток

Основы создания солнечных батарей

  • Но вот перед тем как приступить к созданию требуемой солнечной панели, обратите внимание на то, что нужно правильно подобрать солнечные модули, которые и будут использоваться для обеспечения работоспособности всей системы.
  • А именно это могут быть монокристаллические, поликристаллические и аморфные детали. Но вот среди всего ассортимента наиболее доступными считается первый и второй вариант, поскольку предоставляются соответствующие технические качества и удобства в использовании. Да и к тому же не помешает знать следующие характеристики, которые и помогут сделать выбор:

Поликристаллические панели могут предоставить низкий уровень рабочего КПД, поскольку он составляет не более 8-9 процентов. Но вот они отличаются тем, что могут отлично функционировать даже в условиях повышенной облачности и пасмурной погоды, обеспечивая практичность и удобство.

Что касается эксплуатации современных монокристаллических панелей, то в таком случае КПД составляет 13-14 процентов, но вот любая облачность, в особенности пасмурная погода, существенно снижает уровень мощности солнечной панели, обеспечивая тем самым определенным неудобства для человека.

Как сделать солнечную батарею своими руками


Перед тем как приступить к созданию требуемой солнечной панели, обратите внимание на то, что нужно правильно подобрать солнечные модули, которые и …

Солнечные батареи своими руками в домашних условиях из подручных средств

Одним из способов сократить оплату коммунальных услуг является использование солнечных батарей. Такую батарею можно сделать и установить своими руками.

Что представляет собой солнечная батарея и для чего она используется?

Солнечная батарея - это устройство, принцип работы которого основан на способности фотоэлементов преобразовывать энергию солнца в электричество. Эти преобразователи соединены между собой в общую систему. Получаемый электрический ток накапливается в специальных устройствах - аккумуляторах.

Чем больше площадь панелей, тем больше электрической энергии можно получить

Мощность солнечной батареи зависит от размера поля из фотоэлементов. Но это не означает, что только большие площади способны воспроизвести требуемое количество электроэнергии. Например, всем знакомые калькуляторы могут использовать портативные солнечные батареи, которые вмонтированы в их корпус.

Преимущества и недостатки

К преимуществам солнечной батареи относятся:

  • простота монтажа и обслуживания;
  • отсутствие вреда для окружающей среды;
  • небольшая масса панелей;
  • бесшумная работа;
  • независящие от распределительной сети поставки электрической энергии;
  • неподвижность элементов конструкции;
  • небольшие денежные затраты на изготовление;
  • долгий срок эксплуатации.

В число недостатков солнечной батареи входят:

  • трудоёмкость процесса изготовления;
  • бесполезность в тёмное время суток;
  • потребность в большой площади для установки;
  • восприимчивость к загрязнениям.

Хотя изготовление солнечной батареи является трудоёмким процессом, её можно собрать своими руками.

Инструменты и материалы

Если нет возможности приобрести готовую солнечную батарею для дома, её можно сделать самостоятельно.

Для изготовления солнечной батареи понадобятся:

  • фотоэлементы (для создания гелиопанели);
  • набор специальных проводников (для соединения фотоэлементов);
  • алюминиевые уголки (для корпуса);
  • диоды Шотке;
  • крепёжные метизы;
  • винты для крепежа;
  • лист поликарбоната (прозрачный);
  • силиконовый герметик;
  • паяльник.

Выбор фотоэлементов

Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.

Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.

Важная информация: Желательно приобретать фотоэлементы у одного производителя, так как ячейки разных марок могут иметь существенные различия, что сказывается на эффективности работы и процессе сборки, а также приводит к более высоким затратам энергии при эксплуатации.

При выборе фотоэлементов необходимо обратить внимание на следующее:

  • чем больше ячейка, тем большее количество энергии она производит;
  • элементы одного типа создают одинаковое напряжение (от размера данный показатель не зависит).

Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.

Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.

Поли- и монокристаллические панели легко отличить даже на первый взгляд

Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой - это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборе фотоэлементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.

Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.

Инструкция по изготовлению

Процесс изготовления солнечной батареи состоит из нескольких этапов:

  1. Подготовка фотоэлементов и пайка проводников.
  2. Создание корпуса.
  3. Сборка элементов и герметизация.

Подготовка фотоэлементов и пайка проводников

На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.

С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.

Качество пайки является главным требованием для эффективной работы солнечной батареи

Важная информация: Желательно выполнять процесс пайки на ровной твёрдой поверхности.

Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.

Важная информация: Независимо от того, какой вид подключения вы выбрали, необходимо предусмотреть шунтирующие диоды, которые устанавливаются на клемме «плюс». Идеально подходят диоды Шорке. Они препятствуют разрядке устройства ночью.

Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.

Проверка устройства выполняется на солнечной стороне

Как собрать корпус

  • Подготовить уголки из алюминия с невысокими бортиками.
  • Для метизов предварительно выполняются отверстия.
  • Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи. Важно обратить внимание на отсутствие незаполненных мест.
  • После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется.
  • Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.

Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

Важная информация: Кроме поликарбоната можно использовать оргстекло или антибликовое стекло.

Сборка элементов и герметизация

  • Очистите прозрачный материал от загрязнений.
  • Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
  • На каждый фотоэлемент нанесите монтажный силикон.

Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью

  • После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.

Герметизация конструкции обеспечит плотное прилегание панелей друг к другу

Правила установки

Чтобы получить возможность использовать солнечную батарею по максимуму, рекомендуется при установке устройства придерживаться определённых правил:

  1. Необходимо правильно выбрать место. Если разместить солнечную батарею там, где постоянно присутствует тень, устройство будет малоэффективно. Исходя из этого, не рекомендуется устанавливать прибор около деревьев, желательно выбирать открытое место. Многие монтируют солнечную батарею на крыше дома.
  2. При установке необходимо направлять устройство в сторону солнца. Нужно добиться максимального попадания его лучей на фотоэлементы. К примеру, находясь на севере, следует ориентировать лицевую сторону солнечной батареи на юг.
  3. Большую роль играет определение уклона устройства. Он также зависит от географического положения. Считается, что угол уклона должен составлять широту, в которой устанавливается батарея. При размещении в зоне экватора придётся производить настройку угла наклона по времени года. Коррекция составит 12 градусов, учитывая увеличение и уменьшение летом и зимой соответственно.
  4. Рекомендуется установить солнечную батарею в доступном месте. По мере использования устройства его лицевая сторона накапливает грязь, а в зимнее время её заносит снегом, и в результате выработка энергии снижается. Поэтому необходимо периодически проводить чистку батареи, удаляя налёт с её лицевой панели.

Изготовление устройства из подручных средств

На сегодняшний день умельцами были разработаны способы создания солнечных батарей из подручных материалов, но оправдана ли такая экономия?

Использование старых транзисторов

Для изготовления солнечной батареи можно использовать старые транзисторы. Для этого срезают их крышки, зафиксировав приборы в тисках за ободок. Затем выполняется измерение напряжения под воздействием света. Необходимо определить его на всех выводах прибора с целью обнаружения максимальных значений. Напряжение зависит от мощности транзистора, а также от габаритов кристалла.

Срезать крышку транзистора нужно аккуратно, иначе можно повредить тонкие провода, которые подведены к полупроводниковому кристаллу

После этого можно приступить к изготовлению солнечной батареи. Используя пять транзисторов и, соединив их последовательно, можно получить устройство достаточной для обеспечения работы калькулятора мощности. Каркас собирается из листового пластика. Необходимо просверлить в нём отверстия, нужные для вывода транзистора. Калькулятор на основе такой солнечной батареи работает стабильно, однако нужно, чтобы он находился не дальше 30 см от источника света. Для лучших результатов целесообразно использовать вторую цепочку транзисторов.

Применение диодов

Для сбора солнечной батареи понадобится много диодов. Кроме того, используется плата для подложки. В процессе изготовления применяется паяльник.

Сначала нужно открыть внутренний кристалл, чтобы на него попадали лучи солнца. Для этого верхушка диода срезается и снимается. Нижнюю часть, где находится кристалл, необходимо подогреть над газовой плитой около 20 секунд. Когда расплавится припой кристалла, он легко снимется пинцетом. Аналогичная манипуляция проводится с каждым диодом. Затем кристаллы припаиваются к плате.

Элементы солнечной батареи из диодов соединяются между собой с помощью тонких медных проводов

Для получения 2–4 В достаточно 5 блоков, состоящих из пяти кристаллов, спаянных последовательно. Блоки размещаются между собой параллельно.

Устройство из листов меди

Чтобы изготовить солнечную батарею из листов меди, потребуется:

  • сами медные листы;
  • два зажима «крокодил»;
  • микроамперметр высокой чувствительности;
  • электрическая плита (не менее 1000 Вт);
  • пластиковая бутылка с обрезанным верхом;
  • две ложки поваренной соли;
  • вода;
  • наждачная бумага;
  • ножницы по листовому металлу.
  1. Сначала отрежьте кусок меди, который по размерам соответствует тэну на плите. Поверхность листа очистите от жира и зачистите наждачной бумагой, затем поместите на плиту и нагревайте при максимальной температуре.
  2. Во время образования окиси можно увидеть разноцветные узоры. Необходимо дождаться чёрного цвета, а затем оставить медный лист нагреваться ещё около получаса. По истечении этого промежутка времени плита выключается. Лист остаётся на ней для медленного охлаждения.
  3. Когда чёрная окись отпадёт, необходимо промыть медь под проточной водой.
  4. Затем вырежьте кусок аналогичного размера из целого листа. Обе части разместите в пластиковой бутылке. Важно, чтобы они не соприкасались друг с другом.
  5. Медные пластины прикрепите к стенкам бутылки с помощью зажимов. Провод от чистого листа подключите к положительному выводу измерительного прибора, а от меди с оксидом - к отрицательному.
  6. Соль растворите в небольшом количестве воды. Солёную воду осторожно вливайте в бутылку, стараясь не намочить контакты. Раствора должно быть столько, чтобы он не покрывал пластины полностью. Солнечная батарея готова, можно проводить эксперименты.

При размещении медных пластин в ёмкости нужно аккуратно изогнуть их, чтобы они вместились, но не сломались

Есть ли выгода?

КПД устройства, изготовленного из транзисторов, очень низок. Причина этого состоит в большой площади самого прибора и небольшом размере солнечного элемента (полупроводника). Таким образом, солнечная батарея на основе транзисторов не получила распространения, подобные устройства подходят только для развлечений.

Диодам свойственно потреблять ток и самопроизвольно светиться. Поэтому при их использовании для изготовления солнечной батареи часть диодов будет генерировать электричество, а остальные приборы, наоборот, его потреблять. Из этого можно сделать вывод, что эффективность такого устройства низкая.

Чтобы зажечь лампочку от солнечной батареи на основе медных листов, потребуется использовать большое количество материала. К примеру, для работы плиты на 1000 Вт необходимо 1 600 000 м² меди. Для обустройства такого прибора на крыше дома потребуется, чтобы её площадь составляла 282 м². И все усилия пошли бы на обеспечение работы одной печи. На практике использовать такую солнечную батарею нет смысла.

Несмотря на относительную дороговизну, солнечные батареи довольно быстро окупаются. Попробуйте этот экологичный способ выработки энергии, собрав солнечную батарею своими руками.

Солнечные батареи своими руками в домашних условиях из подручных средств, Солнечная батарея своими руками из подручных средств и материалов в


Солнечные батареи своими руками в домашних условиях из подручных средств Одним из способов сократить оплату коммунальных услуг является использование солнечных батарей. Такую батарею

Солнечная батарея своими руками в домашних условиях из подручных средств

О выгодах солнечной энергетики сказано уже немало. Поэтому неудивительно, что многие люди хотели бы установить такие панели на крыше своего дома или на даче. Но цена подобных устройств зачастую довольно высока. В связи с этим возникает вопрос, а можно ли сделать солнечные батареи своими руками? Можно! Причем существует несколько различных методов изготовления, в зависимости от требуемой производительности.

Выбираем «исходники»

Прежде чем приступать к сборке батареи, нужно решить, какие материалы будут использоваться. Основой гелиопанели, естественно, являются фотоэлементы. Наиболее распространены два их вида: из поликристаллического кремния и из монокристаллического. Первые имеют более низкий КПД (порядка 7-9%), но зато практически одинаково эффективны и в солнечную, и в пасмурную погоду. Монокристаллы же более производительны (КПД – около 13%), но хуже работают в облачных условиях. Поэтому самодельные солнечные батареи для дома чаще всего изготавливаются именно из поликристаллов.

Также стоит закупать все необходимые фотоячейки у одного производителя. Дело в том, что изделия разных фирм могут значительно отличаться по эффективности, а это создаст дополнительные сложности при определении общей мощности панели. Кроме того, расчетный срок эксплуатации ячеек также может быть различным. Проще всего приобрести необходимые наборы на аукционах типа eBay, где зачастую продаются уже готовые наборы элементов по вполне приемлемой стоимости. Чтобы собрать солнечные панели из подручных средств своими руками, понадобятся еще и специальные проводники для соединения фотоячеек, и приспособления для пайки. Причем можно купить и слегка поврежденные элементы, поскольку они не теряют своей функциональности, а стоят гораздо дешевле. Правда, у них не очень эстетичный вид.

Для изготовления корпуса панели лучше использовать легкие алюминиевые уголки небольшой высоты. Конечно, можно изготовить и деревянный корпус, но поскольку самодельная солнечная батарея будет постоянно подвергаться погодным воздействиям, дерево может очень быстро прийти в негодность. Кстати, на тех же интернет-аукционах нередко продаются и готовые корпуса для батарей. Габариты панели определяются количеством используемых солнечных ячеек. В качестве внешнего прозрачного покрытия подойдет оргстекло или поликарбонат. Можно взять и прочное закаленное стекло. Лучше если прозрачный материал не будет пропускать ИК-лучи, так как это уменьшит нагрев готовой батареи.

Пайка проводников

Когда все материалы в наличии, можно приступать к сборке солнечной батареи для дома. Прежде всего, необходимо припаять проводники к фотоячейкам. Это достаточно трудоемкий процесс, сопряженный со многими сложностями из-за хрупкой структуры фотоэлементов. Поэтому проще приобрести ячейки с уже припаянными проводниками.

Если же элементы и проводники все же куплены отдельно, то порядок действия таков:

  • нарезать проводники на нужную длину (удобнее всего – по картонной заготовке);
  • аккуратно поместить проводник на ячейку;
  • нанести паяльную кислоту и припой на место пайки;
  • осторожно припаять проводник, ни в коем случае не нажимая на кристалл.

Процесс этот не быстрый, поэтому изготовление таких солнечных батарей потребуют некоторого времени и терпения.

Сборка корпуса и размещение фотоячеек

Чтобы сделать раму нужных размеров понадобятся алюминиевые уголки и крепежные метизы. Не стоит брать высокие уголки, так как они будут затенять фотоэлементы и неоправданно увеличат толщину сделанной батареи. На внутренние грани скрепленных профилей наносится силиконовый герметик, необходимый для герметизации панели из подручных средств. На этот слой укладывается лист прозрачного материала, прижимается и фиксируется. После высыхания силикона стекло дополнительно закрепляется при помощи метизов.

Далее элементы с проводниками размещаются на внутренней плоскости стеклянной поверхности, причем между ними должно быть расстояние порядка 5мм. Это необходимо, чтобы ячейки могли свободно расширяться при температурном воздействии, не нарушая контактов. Такая сборка самодельной солнечной панели – процесс весьма кропотливый, поэтому можно использовать заранее размеченную подложку.

Объединение фотоячеек в одну систему

Все элементы спаиваются в единую конструкцию согласно электрической схеме. Вариантов схем существует несколько («последовательно», с «общей шиной», с выведенной «средней точкой» и т.д.), поэтому лучше заранее выбрать подходящий. Главное – в схеме должны присутствовать шунтирующие диоды, которые устанавливаются на общем «плюсовом» проводнике. Они необходимы для того, чтобы избежать разрядки устройства в ночное время или в результате частичного затемнения. Лучше всего для этих целей подойдут диоды Шотке. Для токовыводящих проводов можно взять обычные кабели в изоляции домашних из силикона. Естественно, они должны быть надежно зафиксированы.

После этого собранная самодельная солнечная батарея должна быть протестирована на ток и напряжение. Далее выполняется фиксация фотоэлементов и герметизация панели. Проще всего нанести на каждую ячейку монтажный силикон и закрыть устройство задней панелью (она может быть выполнена из прочного пластика). Причем если пластик будет прозрачным, это позволит визуально контролировать появление возможных дефектов или трещин в ячейках. Когда силикон застынет, панель надо зафиксировать в алюминиевой раме, а швы конструкции загерметизировать. Для крепления фотоэлементов можно использовать и двустороннюю монтажную ленту. Главное – толщина ленты (или слоя силикона) должна превышать высоту пайки, чтобы избежать повреждения контактов.

Солнечная панель из транзисторов

Можно собрать солнечную панель своими руками и не используя покупные фотоячейки. Например, из транзисторов или диодов. Полученное устройство, конечно, не подойдет для энергообеспечения дома или дачи, но вполне сможет «питать» компактную электронику. Итак, как сделать солнечную панель из транзисторов? Очень просто.

Понадобятся старые транзисторы, лучше – типов «П» или «КТ». Прежде всего, надо аккуратно спилить (или «откусить» пассатижами) верхнюю часть корпуса, чтобы солнечный свет мог попадать на p-n переход. Из транзисторов «П» нужно дополнительно высыпать порошок и «продуть» внутренности. Полученные фотоэлементы объединяются в блоки, для увеличения напряжения выхода используется последовательное соединение, для увеличения тока – параллельное. Таким образом, можно легко сделать солнечную панель из подручных средств с нужными параметрами. Закреплять элементы удобно на текстолитовой подложке методом навесного монтажа.

Можно собрать гелиобатарею для дома и из диодов, например Д223Б. Их не нужно разбирать, достаточно удалить ацетоном краску со стеклянного корпуса. А поскольку размеры таких диодов невелики, плотность монтажа получиться достаточно высокой. Причем впаивать в подложку их надо вертикально, это позволит добиться максимальной освещенности кристалла, а значит, и максимальной производительности.

Все эти солнечные батареи могут использоваться дома для различных целей, в зависимости от их габаритов и мощности. Разумеется, чтобы их сделать, потребуется некоторое время, но зато цена готового устройства окажется значительно ниже промышленного аналога.

Солнечная батарея своими руками в домашних условиях из подручных средств


Солнечная батарея своими руками в домашних условиях – Мебель своими руками

Солнечная батарея своими руками из подручных средств в домашних

Здравствуйте Дорогие читатели блога prosamostroi.ru! В нашем 21-ом веке постоянно происходят какие-либо изменения. Особенно остро они замечаются в технологическом аспекте. Изобретаются более дешёвые источники энергии, повсеместно распространяются различные девайсы, которые должны упростить жизнь людям. Сегодня мы поговорим о такой вещи как солнечная батарея – устройство не прорывное но, тем не менее, которое с каждым годом всё больше и больше входит в жизнь людей. Мы поговорим о том, что представляет собой данное устройство, какими преимуществами и недостатками она обладает. Также уделим внимание тому, как собирается солнечная батарея своими руками.

Солнечная батарея: что это вообще такое и как работает?

Солнечная батарея – это устройство, которое состоит из определённого набора солнечных элементов (фотоэлементов), которые преобразуют солнечную энергию в электроэнергию. Панели большинства солнечных батарея состоят из кремния так как этот материал имеет хороший КПД по “переработке” поступающего солнечного света.

Работают солнечные батареи следующим образом:

Фотоэлектрические кремниевые ячейки, которые запакованы в общую рамку (каркас) принимают на себя солнечный свет. Они нагреваются и частично поглощают поступающую энергию. Данная энергия сразу же освобождает электроны внутри кремния, которые по специализированным каналам поступают в специальный конденсатор, в котором накапливается электричество и перерабатываясь из постоянного в переменное поступает к устройствам в квартире/жилом доме.

Преимущества и недостатки этого вида энергии

Из преимуществ можно выделить следующие:

  • Наше Солнце – экологически чистый источник энергии, который не способствует загрязнению окружающей среды. Солнечные батареи не выбрасывают в окружающую среду различные вредные отходы.
  • Солнечная энергия неисчерпаема (естественно, пока Солнце живо, но это ещё на миллиарды лет вперёд). Из этого следует, что солнечной энергии вам точно хватило бы на всю жизнь.
  • После того, как вы осуществите грамотный монтаж солнечных батарей в дальнейшем вам не потребуется их часто обслуживать. Всё что надо – один два раза в год проводить профилактический осмотр.
  • Внушительный срок службы солнечных батарей. Этот срок начинается от 25-ти лет. Также стоит подметить, что даже в прошествии данного времени они не потеряют в эксплуатационных характеристиках.
  • Установка солнечных батарей может субсидироваться государством. К примеру это активно происходит в Австралии, Франции, Израиле. Во Франции и вовсе возвращается 60% стоимости солнечных панелей.

Из недостатков можно выделить следующие:

  • Пока что солнечные батареи не выдерживают конкуренции, к примеру, если требуется вырабатывать большое количество электроэнергии. Это удачней получается у нефтевой и ядерной промышленности.
  • Производство электроэнергии напрямую зависит от погодных условий. Естественно, когда за окном солнечно – ваши солнечные батареи будут работать на 100% мощности. Когда же будет пасмурный день – этот показатель будет падать в разы.
  • Для производства большого объёма энергии солнечным батареям требуется большая площадь.

Как можно видеть, у данного источника энергии плюсов всё равно больше чем минусов, а минусы не такие страшные как казалось бы.

Солнечная батарея своими руками из подручных средств и материалов в домашних условиях

Несмотря на то, что мы живём в современном и быстроразвивающимся мире – покупка и монтаж солнечных батарей остаётся уделом обеспеченных людей. Стоимость одной панели, которая будет вырабатывать всего лишь 100 Ватт варьируется от 6 до 8 тысяч рублей. Это не считая ещё то, что отдельно надо будет покупать конденсаторы, аккумуляторы, контроллер заряда, сетевой инвертор, преобразователь и другие вещи. Но если у вас нет большого количества средств, а хочется перейти на экологически чистый источник энергии то у нас для вас есть хорошие новости – солнечную батарею можно собрать в домашних условиях. И если следовать всем рекомендациям, КПД у неё будет не хуже, чем у собранного в промышленных масштабах варианта. В данной части мы рассмотрим пошаговую сборку. Также уделим внимание материалам, из которых можно собрать солнечные панели.

Это один из самых бюджетных материалов. Если вы собрались делать солнечную батарею для дома из диодов, то помните, что с помощью данных компонентов собираются лишь небольшие солнечные батареи, способные запитать какие-либо незначительные гаджеты. Лучше всего подойдут диоды Д223Б. Это диоды советского образца, которые хороши тем, что имеют стеклянный корпус, из-за размера обладают высокой плотностью монтажа и имеют приятную цену.

После покупки диодов очистите их от краски – для этого достаточно поместить их в ацетон на пару часов. По прошествии данного времени она легко с них снимется.

Затем подготовим поверхность для будущего размещения диодов. Это может быть деревянная дощечка или любая другая поверхность. В ней требуется проделать отверстия на протяжении всей её площади Между отверстиями надо будет соблюдать расстояние от 2 до 4 мм.

После берём наши диоды и вставляем алюминиевыми хвостиками в данные отверстия. После этого хвостики требуется загнуть в отношении друг к другу и спаять для того, чтобы при получении солнечной энергии они распределяли электричество в одну “систему”.

Наша примитивная солнечная батарея готова. На выходе она может давать энергию в пару вольт, что является неплохим показателем для кустарной сборки.

Этот вариант уже будет более серьёзный, чем диодный, но всё равно является образцом суровой ручной сборки.

Для того, чтобы сделать солнечную батарею из транзисторов вам понадобятся для начала сами транзисторы. Благо их можно купить практически на любом рынке или в магазинах электронной техники.

После покупки вам потребуется срезать крышку у транзистора. Под крышкой прячется самый главный и нужный нам элемент – полупроводниковый кристалл.

Затем вставляем их в каркас и спаиваем их между друг другом соблюдая нормы “ввода-вывода”.

На выходе такая батарея может давать мощность, которой хватит на осуществление работы, к примеру, калькулятора или маленькой диодной лампочки. Опять же такая солнечная батарея собирается чисто ради забавы и не представляет собой серьёзный “электропитательный” элемент.

Из алюминиевых банок

Данный вариант уже является более серьёзным в отличие от первых двух. Это тоже невероятно дешёвый и эффективный способ получить энергию. Единственное, на выходе её будет гораздо больше, чем в вариантах из диодов и транзисторов и она будет не электрическая, а тепловая. Всё что вам надо – большое количество алюминиевых банок и корпус. Хорошо подходит корпус из дерева. В корпусе лицевая часть должна быть закрыта оргстеклом. Без него батарея не будет эффективно работать.

Перед началом сборки надо покрасить алюминиевые банки чёрной краской. Это позволит им хорошо притягивать солнечный свет.

Затем с помощью инструментов на дне каждой банки пробиваются три отверстия. Наверху в свою очередь делается звездообразный вырез. Свободные концы загибаются наружу, что необходимо для того, чтобы происходила улучшенная турбулентность нагретого воздуха.

После данных манипуляций банки складываются в продольные линии (трубы) в корпус нашей батареи.

Затем между трубами и стенками/задней стенкой прокладывается слой изоляции (минеральная вата). Затем коллектор закрывается прозрачным сотовым поликарбонатом.

На этом процесс сборки завершён. Последним шагом является установка воздушного вентилятора в качестве двигателя для энергоносителя. Такая батарея хоть и не вырабатывает электричество, зато может эффективно прогреть жилое помещение. Конечно, это будет не полноценный радиатор, но прогрев небольшого помещения такой батарее под силу - например, для дачи отличный вариант. Про полноценные биметаллические радиаторы отопления мы говорили в статье - биметаллические радиаторы отопления какие лучше и прочнее, в которой мы рассматривали подробно строение подобных батарей отопления, их технические характеристики и сравнивали производителей. Советую ознакомиться.

Солнечная батарея своими руками – как сделать, собрать и изготовить?

Отходя от самодельных вариантов мы уделим внимание уже более серьёзным вещам. Сейчас мы поговорим о том, как правильно собрать и изготовить настоящую солнечную батарею своими руками. Да – такое тоже возможно. И хочется вас уверить – она будет не хуже покупных аналогов.

Для начала стоит сказать, что, вероятно, вы не сможете найти на свободном рынке сами настоящие кремниевые панели, которые используются в полноценных солнечных батареях. Да и стоит они будут дорого. Мы же будем собирать нашу солнечную батарею из монокристаллических панелей – варианте более дешёвом, но отлично показывающим себя в плане выработки электрической энергии. Тем более что монокристаллические панели легко найти и стоят они достаточно недорого. Они бывают разных размеров. Самый популярный и ходовой вариант – 3х6 дюймов, который вырабатывает 0,5В в эквиваленте. Таких нам будет достаточно. В зависимости от ваших финансов вы можете купить их хоть 100-200 штук, но сегодня мы соберём вариант, которого хватит на то, чтобы запитать небольшие аккумуляторы, лампочки и прочие небольшие электронные элементы.

Как мы утверждали выше – мы выбрали монокристаллическую основу. Найти её можно где угодно. Самое популярное место, где её продают в гигантских количествах – это торговые площадки Amazon или Ebay.

Главное помните, что там очень легко нарваться на недобросовестных продавцов, так что покупайте только у тех людей, у кого достаточно высокий рейтинг. Если у продавца хороший рейтинг, то вы будете уверены, что ваши панели дойдут до вас хорошо запакованные, не битые и в том количестве, в котором вы заказывали.

Выбор места (система ориентации), проектирование и материалы

После того, как вы дождётесь вашу посылку с основными фотоэлементами, вы должны хорошо выбрать место для установки вашей солнечной батареи. Ведь вам нужно будет, чтобы она работала на 100% мощности, не так ли? Профессионалы в этом деле советуют проводить установку в то место, где солнечная батарея будет направлена чуть ниже небесного зенита и смотреть в сторону Запада-Востока. Это позволит практически весь день “ловить” солнечный свет.

Изготовление каркаса солнечной батареи

  • Для начала вам требуется изготовить основание солнечной батареи. Оно может быть деревянное, пластиковое или алюминиевое. Лучше всего себя показывает дерево и пластик. Оно должно быть достаточного размера, чтобы в ряд поместить все ваши фотоэлементы, но при этом они не должны будут болтаться внутри всей конструкции.
  • После того, как вы собрали основание солнечной батареи вам потребуется просверлить множество отверстий на его поверхности для будущего выведения проводников в единую систему.
  • Кстати не забудьте, что всё основание требуется сверху закрыть оргстеклом для защиты ваших элементов от погодных условий.

Пайка элементов и подключение

После того, как ваше основание будет готово вы можете размещать ваши элементы на его поверхности. Фотоэлементы размещаете вдоль всей конструкции проводниками вниз (просовываете их в наши просверленные отверстия).

Затем их требуется спаять между собой. В интернете есть множество схем, по которым происходит пайка фотоэлементов. Главное – соединить их в своеобразную единую систему для того, чтобы они все вместе могли собирать полученную энергию и направлять её в конденсатор.

Последним шагом будет припайка “выводного” провода, который будет подключён к конденсатору и выводить в него получаемую энергию.

Это финальный шаг. После того как вы убедитесь в том, что все элементы собраны верно, сидят плотно и не болтаются, хорошо закрыты оргстеклом – можно приступать к монтажу. В плане монтажа солнечную батарею лучше крепить на прочное основание. Отлично подойдёт металлический каркас, укреплённый строительными шурупами. На нём солнечные панели будут сидеть прочно, не шататься и не поддаваться никаким погодным условиям.

На этом всё! Что мы имеем в итоге? Если вы сделали солнечную батарею, состоящую из 30-50 фотоэлементов, то этого будет вполне достаточно для того, чтобы быстро зарядить ваш мобильный телефон или зажечь небольшую бытовую лампочку, т.е. у вас на выходе получилось полноценное самодельное зарядное устройство для зарядки аккумулятора телефона, уличного дачного светильника, либо небольшого садового фонарика. Если же вы сделали солнечную панель, к примеру, в 100-200 фотоэлементов, то тут уже может идти речь о “запитке” некоторых бытовых приборов, например, кипятильника для нагрева воды. В любом случае – такая панель будет дешевле покупных аналогов и сохранит вам деньги.

Что лучше – купить или сделать солнечную батарею?

Давайте в этой части подытожим всё, что мы узнали в этой статье. Во-первых, мы разобрались с тем, как собрать солнечную батарею в домашних условиях. Как можно видеть, солнечная батарея своими руками при соблюдении инструкций собирается весьма быстро. Если вы будете пошагово следовать различным мануалам, то вы сможете собрать отличные варианты для обеспечения вас экологически чистой электроэнергией (ну или варианты, рассчитанные на запитку мелких элементов).

Но всё же, что лучше – купить или сделать солнечную батарею? Естественно, лучше её купить. Дело в том, что те варианты, которые изготавливаются в промышленных масштабах предназначены для того, чтобы работать так, как им следует работать. При ручной сборке солнечных панелей нередко можно допустить различные ошибки, которые приведут к тому, что они просто не будут работать должным образом. Естественно, промышленные варианты стоят больших денег, но зато вы получаете качество и долговечность.

Но если вы уверены в своих силах, то при правильном подходе вы соберёте солнечную панель, которая будет не хуже промышленных аналогов. В любом случае, будущее уже рядом и скоро солнечные панели смогут позволить себе все слои. А там, может быть, произойдёт полный переход к использованию солнечной энергии. Удачи!

Солнечная батарея своими руками из подручных средств в домашних


Солнечная батарея своими руками из подручных средств в домашних Солнечная батарея своими руками из подручных средств в домашних Здравствуйте Дорогие читатели блога

Комфортность проживания в домах и квартирах современного человека с годами требует все большего количества электроэнергии. Но в современных условиях себестоимость каждой единицы электроэнергии неуклонно повышается, что, соответственно, сказывается и на затратах. Поэтому вопрос о переходе на альтернативные источники электроэнергии является наиболее актуальным. Одним из способов обеспечить независимость в получении электроэнергии является возможность применять для этих целей солнечные батареи для дома.

Эффективная альтернатива или всеобщее заблуждение?

Разговоры об автономном питании бытовых приборов и освещении в домах с использованием солнечной энергии ведутся еще с середины прошлого века. Развитие технологий и всеобщий прогресс позволили приблизить эту технологию к обыкновенному потребителю. Утверждение о том, что использовать солнечные батареи для дома станет довольно эффективным способом замены традиционных энергосетей, можно было бы считать бесспорным, если бы не пара существенных «но».

Основным требованием эффективности использования гелиевых батарей является количество солнечной энергии. Устройство солнечной батареи позволяет эффективно пользоваться энергией нашего светила только в регионах, где большую часть года солнечно. Необходимо также принимать во внимание и широту, на которой монтируются солнечные батареи, - чем выше широта, тем меньшей силой обладает луч солнца. В идеале можно добиться эффективности около 40%. Но это в идеале, а на практике все несколько иначе.

Следующий момент, на который стоит обратить внимание, - необходимость использования достаточно больших площадей, позволяющих смонтировать автономные солнечные батареи. Если батареи планируется размещать на дачном участке, загородном доме, коттедже, то здесь проблем не будет, а вот живущим в многоквартирных домах думать об этом придется серьезно.

Солнечная батарея - что это такое?

Устройство солнечной батареи основано на способности фотоэлементов преобразовывать солнечную энергию в электричество. Соединенные в общую систему, эти преобразователи создают многоячеистое поле, каждая ячейка которого под воздействием солнечной энергии становится источником электрического тока, который затем аккумулируется в специальных устройствах - аккумуляторах. Разумеется, что мощность такого устройства тем выше, чем больше данное поле. То есть чем больше в нем фотоэлементов, тем большее количество электроэнергии оно способно произвести.

Но это не значит, что только огромные площади, на которых возможна установка солнечных батарей, могут обеспечить необходимой электроэнергией. Существует множество гаджетов, которые имеют возможность работать не только от привычных всем автономных источников питания - батареек, аккумуляторов - но и использовать энергию солнца. В конструкции таких приборов вмонтированы портативные солнечные батареи, дающие возможность как подзаряжать устройство, так и работать автономно. Например, обычный карманный калькулятор: в солнечную погоду, положив его на стол, можно обеспечить подзарядку батареи, что продлевает срок ее службы на долгие годы. Существует масса различных устройств, где такие батареи используются: это и ручки-фонарики, и фонарики-брелоки и т. д.

На дачных и загородных участках в последнее время стало модным использовать для освещения фонарики на солнечных батареях. Экономичное и несложное устройство обеспечивает освещение вдоль садовых дорожек, на террасах и во всех необходимых местах, используя электроэнергию, накопленную в светлое время суток, когда светит солнце. Экономные лампы освещения способны расходовать эту энергию достаточно долгое время, что и обеспечивает большой интерес к таким устройствам. Освещение на солнечных батареях используется и в домах, коттеджах, а также подсобных помещениях.

Типы автономных солнечных батарей

Существует два типа преобразователей солнечной энергии, обусловленных устройством самой батареи, - пленочные и кремневые. К первому виду относятся тонкопленочные батареи, в которых преобразователи представляют собой пленку, изготовленную по особой технологии. Еще их называют полимерными. Такие батареи устанавливаются в любом доступном месте, но обладают несколькими недостатками: им нужно много места, низкий коэффициент полезного действия и при даже средней облачности их энергоэффективность падает на 20 процентов.

Кремневый тип солнечных батарей представлен монокристаллическими и поликристаллическими устройствами, а также аморфными кремниевыми панелями. Монокристаллические батареи состоят из множества ячеек, в которых встроены кремневые преобразователи, соединенные в общую схему и заполненные силиконом. Просты в эксплуатации, с высоким (до 22%) КПД, водонепроницаемые, легкие и гибкие, но для эффективной работы требуют прямого солнечного потока. Облачная погода может стать причиной полного прекращения выработки электроэнергии.

Поликристаллические батареи от монокристаллических отличаются количеством преобразователей, размещенных в каждой ячейке и установленных разнонаправленно, что обеспечивает их эффективную работу даже при рассеянном свете. Это наиболее распространенный вид батарей, которые применяются и в городских условиях, хотя их КПД несколько ниже, чем у монокристаллических.

Аморфные кремниевые источники питания, несмотря на свою низкую энергоэффективность - около 6%, тем не менее считаются более перспективными. Они поглощают солнечный поток в двадцать раз больше, чем кремниевые, и намного эффективнее в пасмурные дни.

Все это промышленные устройства, которые имеют свою - и в настоящее время не очень демократичную - цену. А возможно ли собирать солнечные батареи своими руками?

Общий принцип выбора и компоновки деталей для солнечных батарей

В связи с последними требованиями к производству электрической энергии, которые направлены на переход с традиционного сырья, используемого при его производстве, тема солнечных источников питания принимает все более практическое значение. Массовое производство элементов для создания собственной электрической сети уже предлагает потребителю различные варианты обеспечения автономной электроэнергией. Но пока еще стоимость автономного солнечного источника питания достаточна высока и недоступна для массового потребителя.

Но это не значит, что нельзя смастерить солнечные батареи своими руками. При этом просто необходимо определиться со способом сборки такого устройства. Или, приобретая отдельные элементы, компоновать их самостоятельно, или делать все составные части собственноручно.

Из чего, собственно, состоит система питания, основанная на преобразовании солнечной энергии в электрический ток? Основным, но не последним из ее элементов, является солнечная батарея, конструкция которой была рассмотрена выше. Вторым элементом в схеме является контроллер солнечной батареи, задача которого состоит в контроле зарядки аккумуляторных батарей электрическим током, полученным в солнечных батареях. Следующей частью домашней солнечной электростанции является батарея электрических аккумуляторов, в которой и накапливается электричество. И последним элементом «солнечной» электрической цепи будет инвертор, позволяющий полученное электричество небольшого вольтажа использовать для бытовых приборов, рассчитанных на 220 В.

Рассматривая каждый элемент домашней гелиоэлектростанции отдельно, можно увидеть, что каждый ее элемент может быть приобретен в розничной сети, на электронных аукционах и т. д. или собран собственноручно. И даже контроллер солнечной батареи своими руками можно изготовить - при наличии определенных навыков и теоретических знаний.

Теперь что касается задач, которые ставятся перед собственной электростанцией. Они просты и сложны одновременно. Простота их в том, что солнечная энергия используется для определенных целей: освещения, отопления или полного обеспечения потребностей жилища. Сложность - в правильном расчете требуемой мощности и соответствующем подборе комплектующих частей.

Начинаем собирать солнечную панель

Сейчас можно найти массу предложений о том, как и из чего можно собрать солнечные панели. Способов много, и выбрать можно по своему предпочтению. В данном материале рассматриваются базовые принципы, которые необходимо использовать, изготавливая солнечные батареи своими руками.

Прежде всего, нужно определиться с мощностью, которую необходимо получить, и решить, на каком напряжении будет работать сеть. Существует два варианта сетей на солнечной энергии - с постоянным током и переменным. Переменный ток более предпочтителен из-за возможности разнесения потребителей электроэнергии на значительное расстояние - более 15 метров. Это как раз для небольшого дома. Не вдаваясь глубоко в расчеты и отталкиваясь от опыта тех, кто уже пользуется солнечной энергией на своих дачах, можно с уверенностью говорить о том, что на широтах Москвы - а опускаясь южнее, эти показатели будут, естественно, выше - один квадратный метр солнечных панелей может производить до 120 ватт в час. Это если при сборке использовать поликристаллические элементы. Они более привлекательны по цене. А суммарную мощность вполне реально определить, сложив всю потребляемую мощность каждого отдельного электроприбора. Очень приблизительно можно сказать, что для семьи из 3-4 человек, требуется около 300 киловатт в месяц, которые могут быть получены от солнечных панелей в 20 кв. метров.

Также можно встретить описание сетей на солнечной энергии, использующих панели из 36 элементов. Каждая из панелей имеет мощность около 65 Ватт. Солнечная батарея для дачи или небольшого частного дома может состоять из 15 таких панелей, которые способны вырабатывать до 5 кВт в час общей электрической мощности, имея собственную мощность в 1 кВт.

Солнечные панели своими руками

А теперь о том, как сделать солнечную батарею. Первым, что придется приобрести, будет набор преобразующих пластин, количество которых зависит от мощности самодельной гелиоэлектростанции. Для одной батареи нужно будет 36 штук. Можно воспользоваться набором Solar Cells, а также приобрести поврежденные элементы или с дефектами - это скажется лишь на внешнем виде батареи. Если они рабочие, то на выходе получится почти 19 Вольт. Спаивать их нужно с учетом на расширение - оставляя зазор до пяти миллиметров между ними. Устройство солнечной батареи своими руками требует предельной внимательности при исполнении пайки фотопластинок. Если пластинки приобретались без проводников, то их необходимо напаивать вручную. Процесс сложный и ответственный. Если работа выполняется паяльником на 60 Вт, лучше всего последовательно с ним подключить простую стоваттную лампочку.

Схема солнечной батареи очень проста - каждая пластина спаивается с другими последовательно. Стоит отметить, что пластины очень хрупкие, и их спайку желательно проводить с использованием какого-нибудь каркаса. При распайке фотопластинок также необходимо помнить о том, что в цепь нужно вставить предохранительные диоды, предотвращающие разряд фотоэлементов при затемнении или снижении освещенности. Для этого шины половинок панели выводятся на клеммник, создавая среднюю точку. Эти диоды предотвращают также разряд аккумуляторов ночью.

Качество пайки - основное требование к безупречной работе солнечных батарей. Перед установкой подложки необходимо все места пайки протестировать. Выводить ток рекомендуется с использованием проводов малого сечения. Например, акустическим кабелем с силиконовой изоляцией. Все проводники необходимо закрепить герметиком.

Затем стоит определиться с поверхностью, на которую эти пластины будут крепиться. Вернее, с материалом для ее изготовления. Самым подходящим по характеристикам и легкодоступным является стекло, которое имеет максимальную пропускную способность светового потока по сравнению с оргстеклом или карбонатом.

Следующим шагом станет изготовление короба. Для этого используется алюминиевый уголок или деревянный брус. В каркас на герметик сажается стекло - желательно тщательное заполнение всех неровностей. Следует заметить, что герметик должен высохнуть полностью - во избежание загрязнения фотопластинок. Затем на стекло крепится готовый лист из спаянных фотоэлементов. Способ крепления может быть различный, но солнечные батареи для дома, отзывы о которых распространены, закреплялись в основном с помощью прозрачной эпоксидной смолы или герметика. Если эпоксидку наносят равномерно на всю поверхность стекла, после чего на нее помещают преобразователи, то герметиком крепят в основном на каплю посредине каждого элемента.

Для подложки используется различный материал, который также крепится на герметик. Это могут быть и древесно-стружечные плиты небольшой толщины или лист ДВП. Хотя можно, опять же, залить и эпоксидной смолой. Корпус батареи должен быть герметичным. Сделанная таким способом солнечная батарея своими руками, схема сборки которой оговаривалась выше, даст 18-19 Вольт, обеспечив зарядку 12-вольтового аккумулятора.

Можно ли сделать преобразователь солнечной энергии своими руками?

Мастеровые люди, обладающие обширными познаниями в электронике, могут сделать фотоэлементы для преобразования солнечной энергии в электрическую и самостоятельно. Для этого используются кремневые диоды, вернее их кристаллы, освобожденные из корпусов. Процесс этот трудоемкий, и начинать его или нет, каждый решает самостоятельно. Можно брать диоды, использующиеся в мостовых схемах выпрямителей напряжения и стабилизаторах - Д226, КД202, Д7 и др. Находящийся в этих диодах полупроводниковый кристалл при попадании на него солнечного света становится точно так же как и фотопластинка. Но добраться до него и при этом его не повредить - довольно сложный и кропотливый процесс.

Всем, кто решится заняться созданием элементов для преобразователя самостоятельно, стоит запомнить следующее - если удалось аккуратно разобрать и спаять батарею, состоящую всего из двадцати диодов марки КД202 по схеме из параллельно соединенных 5 групп, то можно получить напряжение около 2 В с током до 0,8 Ампера. Этой мощности хватит лишь на питание небольшого радиоприемника, имеющего в своей схеме всего один или два транзистора. Но чтобы из них получилась полноценная солнечная батарея для дачи, нужно очень сильно постараться. Огромный труд, большие площади, громоздкость конструкции делает это занятие бесперспективным. Но для маленьких приборов и гаджетов это вполне подходящая конструкция, которую могут сделать все, кто любит заниматься электротехникой.

Можно ли использовать светодиоды для солнечных панелей?

Светодиодная солнечная батарея является чистым вымыслом. Из светодиодов собрать даже небольшую солнечную микропанель практически невозможно. Вернее, создать можно, но стоит ли? С помощью солнечного света вполне реально получить на светодиоде около 1,5 вольта напряжения, но при этом сила сгенерированного тока очень мала, а для его генерации требуется только очень сильное солнце. И еще - светодиод при подаче на него напряжения сам выделяет лучевую энергию, то есть светится. А значит, те его собратья, на которые попал солнечный свет большей силы, будут вырабатывать электричество, которое этот светодиод сам же и будет потреблять. Все правильно и просто. И разобраться при этом в том, какие светодиоды производят, а какие потребляют энергию, просто невозможно. Даже если использовать десятки тысяч светодиодов - а это непрактично и неэкономично - толку никакого не будет.

Отапливаем дом солнечной энергией

Если про реальную возможность обеспечить бытовые электроприборы «солнечным» током уже говорилось выше, то для обогрева жилья солнечной энергией существуют два варианта. И чтобы использовать солнечные батареи для отопления дома, нужно знать некоторые требования, обязательные для выполнения этой задачи.

В первом варианте использование солнечной энергии для отопления происходит с помощью иной системы, нежели обычная электрическая сеть. Устройство для отопления дома, использующее солнечную энергию, называется гелиосистема и состоит из нескольких приборов. Основным рабочим устройством является вакуумный коллектор, который превращает солнечный свет в тепло. Он состоит из множества стеклянных трубок небольшого диаметра, в которые помещена жидкость с очень низким порогом нагрева. Нагреваясь, эта жидкость в дальнейшем передает свое тепло воде в баке-накопителе объемом не менее 300 литров воды. Затем эта нагретая вода подается на отопительные панели, выполненные из тонких медных труб, которые, в свою очередь, отдают полученное тепло, прогревая воздух в помещении. Вместо панелей можно, конечно, использовать и традиционные радиаторы, но эффективность их намного ниже.

Конечно, для отопления можно использовать и солнечные панели, но в этом случае нужно будет согласиться с тем, что на нагревание воды в бойлере с помощью ТЭНов потребуется львиная доля генерируемой батареями энергии. Простые расчеты показывают, что для нагревания бойлером 100 литров воды до 70-80 ⁰С требуется порядка 4 часов. За это время водяной котел с нагревателями на 2 кВт мощности потребит около 8 кВт. Если солнечные батареи в суммарной мощности смогут вырабатывать до 5 кВт в час, то проблем с энергообеспечением в доме не будет. Но если солнечные панели имеют площадь меньше 10 кв. метров, то такие мощности для полноценного обеспечения электрической энергией не подойдут.

Использование вакуумного коллектора для отопления дома оправдано в том случае, когда это полноценный жилой дом. Схема работы такой гелиосистемы обеспечивает теплом все жилище в течение круглого года.

И все-таки это работает!

В конце концов, солнечные батареи, своими руками собранные энтузиастами, являются вполне реальными источниками питания. И если использовать в цепи 12-вольтные аккумуляторы с током не менее 800 А/час, оборудование по превращению напряжения из низкого в высокое - инверторы, а также контроллеры напряжения на 24 В с рабочим током до 50 Ампер и простой «бесперебойник» с током до 150 Ампер, то получится очень приличная электростанция, работающая на солнечных лучах, которая способна обеспечить потребности в электроэнергии жильцов частного дома. Естественно, при определенных погодных условиях.

К сожалению, солнечные батареи недешевы, поэтому самодельную солнечную батарею можно собрать самому. Для

Для изготовления солнечной батареи используем простые инструменты и недорогие подручные материалы, чтобы сделать мощную и самое главное дешевую солнечную батарею.

Что такое солнечная батарея? и с чем ее едят.

Солнечная батарея, это контейнер, состоящий из солнечных элементов.

Солнечные элементы, делают всю работу по преобразованию солнечной энергии в электричество. К сожалению, для получения мощности, достаточной для практического применения, солнечных элементов надо довольно много.
Кроме того, солнечные элементы очень хрупкие. Поэтому их и объединяют в Солнечную батарею.
Солнечная батарея содержит достаточное количество солнечных элементов для получения высокой мощности и защищает элементы от повреждения.

Трудности, возникающие при самостоятельном изготовлении солнечной батареи:

Главное препятствие в изготовлении солнечной батареи - это покупку солнечных элементов за разумную цену.

Новые солнечные элементы очень дороги и их сложно найти в нормальном количестве за любые деньги.

Дефектные и поврежденные солнечные элементы есть в наличии на интернет аукционе eBay и других местах гораздо дешевле.

Солнечные элементы «второго сорта» возможно, могут быть использованы для изготовления солнечной батареи.


Для того чтобы изготовить солнечную батарею максимально дешевой, используем дефектные элементы, и закупаем их например на eBay.

Для изготовления солнечной батареи я купил несколько блоков монокристаллических солнечных элементов размером 3х6 дюйма.
Чтобы сделать солнечную батарею, необходимо соединить последовательно 36 таких элементов.
Каждый элемент генерирует порядка 0,5В. 36 элементов, соединенных последовательно дадут нам около 18В, которые будут достаточны для зарядки батарей на 12В. (Да, такое высокое напряжение действительно необходимо для эффективной зарядки 12В аккумуляторов).

Солнечные элементы этого типа тонкие как бумага, хрупкие и ломкие как стекло. Их очень легко повредить. Продавец этих элементов окунул наборы из 18 шт. в воск для стабилизации и доставки без повреждений. Воск - это головная боль при его удалении. Если у вас есть возможность, ищите элементы, не покрытые воском. Но помните, что они могут получить больше повреждений при транспортировке.

Заметьте, что мои элементы уже имеют припаянные проводники. Ищите элементы с уже припаянными проводниками. Даже с такими элементами вам нужно быть готовым много поработать паяльником. Если же вы купите элементы без проводников, приготовьтесь работать паяльником раза в 2-3 больше. Короче, лучше переплатить за уже припаянные провода.

Также я купил пару наборов элементов без заливки воском у другого продавца. Эти элементы пришли упакованные в пластиковую коробку. Они болтались в коробке и немного обкололись по бокам и углам. Незначительные сколы не имеют особого значения. Они не смогут снизить мощность элемента настолько, чтобы об этом надо было беспокоиться. Купленных мной элементов должно хватить на сборку двух солнечных батарей. Зная, что возможно сломаю парочку при сборке, поэтому купил чуть больше.

Солнечные элементы продаются самого широкого спектра форм и размеров. Вы можете использовать более крупные или мелкие, чем мои 3х6 дюймов. Только помните:

Элементы одного типа производят одинаковое напряжение независимо от их размера. Поэтому для получения заданного напряжения всегда потребуется одинаковое количество элементов.
- Большие по размеру элементы могут генерировать больший ток, а меньшие по размеру, соответственно - меньший ток.
- Общая мощность вашей батареи определяется как ее напряжение умноженное на генерируемый ток.

Использование больших по размеру элементов позволит получить большую мощность при том же напряжении, но батарея получится крупнее и тяжелее. Использование меньших элементов позволит уменьшить и облегчить батарею, но не сможет обеспечить такую же мощность.

Также стоит отметить, что использование в одной батарее элементов разных размеров - плохая идея. Причина в том, что максимальный ток, генерируемый вашей батареей, будет ограничен током самого маленького элемента, а более крупные элементы не будут работать в полную силу.

Солнечные элементы, на которых я остановил выбор, имеют размер 3х6 дюйма и способны генерировать ток примерно 3 ампера. Я планирую соединить последовательно 36 таких элементов, чтобы получить напряжение чуть больше 18 вольт. В результате должна получиться батарея, способная выдавать мощность порядка 60 ватт на ярком солнце.

Звучит не сильно впечатляюще, но все же это лучше чем ничего. При чем, это 60Вт каждый день, когда светит солнце. Эта энергия будет идти на зарядку аккумулятора, который будет использоваться для питания светильников и небольшой аппаратуры всего несколько часов после наступления темноты.

Корпус солнечной батареи представляет собой неглубокий ящик из фанеры, чтобы борта не затеняли солнечные элементы, когда солнце светит под углом. Сделать его мо он из фанеры толщиной 3/8 дюйма с бортиками из реек толщиной 3/4 дюйма. Бортики приклеены и привинчены на место.

Батарея будет содержать 36 элементов размером 3х6 дюймов.
Разделяем их на две группы по 18 шт. просто для того, чтобы их было проще паять в будущем. Отсюда и центральная планка посередине ящика.

Небольшой набросок, показывающий размеры солнечной батареи.

Все размеры указаны в дюймах. Бортики толщиной 3/4 дюйма идут вокруг всего листа фанеры. Такой же бортик идет по центру и делит батарею на две части.

Вид одной из половин моей будущей батареи.

В этой половине будет размещена первая группа из 18 элементов. Обратите внимание на небольшие отверстия в бортиках. Это будет нижняя часть батареи (на фото верх находится внизу). Это вентиляционные отверстия, предназначенные для выравнивания давления воздуха внутри и снаружи солнечной батареи и служащие для удаления влаги. Эти отверстия должны быть только внизу батареи, иначе дождь и роса попадут внутрь. Такие же вентиляционные отверстия должны быть сделаны в центральной разделительной планке.

Не обязательно использовать именно перфорированные листы ДВП, просто у меня оказались такие под рукой. Пойдет любой тонкий, жесткий и не проводящий ток материал.


Чтобы защитить батарею от погодных неприятностей, лицевую сторону закрываем оргстеклом.

На фото два листа оргстекла соединенные на центральной перегородке. Сверлим отверстия вокруг кромки, чтобы посадить оргстекло на шурупы. Будьте осторожны, сверля отверстия возле кромки оргстекла. Не давите сильно - иначе сломается, а коли уж сломаете, то приклейте отломавшийся кусок и просверлите недалеко от него новое отверстие.

Красим все деревянные части солнечной батареи в 2-3 слоя, чтобы защитить их от воздействия окружающей среды. Ящик и подложки красим с 2-х строн внутри и снаружи.

Основа для солнечной батареи готова, и самое время подготовить солнечные элементы.

Как и было сказано выше, удаление воска с солнечных элементов - это настоящая головная боль.

Для эффективного удаления воска с солнечных элементов, используйте следующий способ:

1) Купаем солнечные элементы в горячей воде, чтобы растопить воск и отделить элементы друг от друга. Не дайте воде закипеть, иначе пузырьки пара будут сильно бить элементы один о другой. Кипящая вода также может быть слишком горячей, в элементах могут быть нарушены электрические контакты.

Рекомендую погружать элементы в холодную воду, а потом медленно их нагревать, чтобы исключить неравномерный нагрев. Пластиковые щипцы и лопатка помогут отделить элементы, когда воск растает. Постарайтесь сильно не тянуть за металлические проводники - могут порваться.

На фото показана финальная версия «установки» которую я использовал.
Первая «горячая ванна» для растапливания воска находится на заднем плане справа. На переднем плане слева - горячая мыльная вода, а справа - чистая горячая вода. Температуры во всех кастрюлях ниже температуры кипения воды. Сначала в дальней кастрюле растапливаем воск, переносим элементы по одному в мыльную воду, чтобы удалить остатки воска, после чего промываем в чистой воде.

2) Выкладываем элементы для просушки на полотенце. Вы можете менять мыльную воду и воду для промывки почаще. Только не сливайте использованную воду в канализацию, т.к. воск затвердеет и засорит сток. Этот процесс удалил практически весь воск с солнечных элементов. Только на некоторых остались тонкие пленки, но это не помешает пайке и работе элементов. Промывка растворителем, возможно, удалит остатки воска, но это может быть опасно и зловонно.

Несколько разделенных и очищенных солнечных элементов сушатся на полотенце. После разделения и удаления защитного воска из-за своей хрупкости они стали удивительно сложными в обращении и хранении, оставляем их их в воске до тех пор, пока вы не будете готовы установить их в солнечную батарею.

Делаем основу для солнечной батареи. У меня же пришло уже время установить их.

Рисуем сетку на каждой основе, для упрощения процесса установки каждого элемента.
Выкладываем элементы по этой сетке обратной стороной вверх, так их можно спаять вместе. Все 18 элементов для каждой половины батареи должны быть соединены последовательно, после чего обе половины также должны быть соединены последовательно для получения требуемого напряжения.

Спаивать элементы между собой поначалу сложно. Начинайте только с двух элементов. Разместите соединительные проводники одного из них так, чтобы они пересекали точки пайки на обратной стороне другого. Обязательно убедиться, что расстояние между элементами соответствует разметке.

Для пайки используем маломощный паяльник и прутковый припой с сердцевиной из канифоли.

Повторять пайку пришлось до тех пор, пока не получилась цепочка из 6-ти элементов. Соединительные шины от сломанных элементов я припаял к обратной стороне последнего элемента цепочки. Таких цепочек я сделал три, повторив процедуру еще дважды. Всего 18 элементов для первой половины батареи.

Три цепочки элементов должны быть соединены последовательно. Поэтому среднюю цепочку поворачиваем на 180 градусов по отношению к двум другим. Ориентация цепочек получилась правильной (элементы все еще лежат обратной стороной вверх на подложке). Следующий шаг - приклеивание элементов на место.

Приклеивание элементов потребует некоторой сноровки. Наносим небольшую каплю силиконового герметика в центре каждого из шести элементов одной цепочки. После этого переворачиваем цепочку лицевой стороной вверх и размещаем элементы по разметке, которую нанесли раньше. Легонько прижмите элементы, надавливая по центру, чтобы приклеить их к основе. Сложности возникают в основном при переворачивании гибкой цепочки элементов. Вторая пара рук тут не повредит.

Не наносите слишком много клея и не приклеивайте элементы нигде кроме центра. Элементы и подложка, на которой они смонтированы, будут расширяться, сжиматься, гнуться и деформироваться при изменении температуры и влажности. Если вы приклеите элемент по всей площади, он со временем сломается. Приклеивание только в центре дает элементам возможность свободно деформироваться отдельно от основы. Элементы и основа могут деформироваться по-разному и элементы не сломаются.

Вот полностью собранная половина батареи. Была использована медная оплетку от кабеля для соединения первой и второй цепочки элементов.

Можно использовать специальные шины или даже обычные провода. Просто у меня под рукой была медная оплетка от кабеля. Такое же соединение делаем с обратной стороны между второй и третьей цепочкой элементов. Каплей герметика я прикрепил провод к основанию, чтобы он не «гулял» и не гнулся.

Тест первой половины солнечной батареи на солнце.

При слабом солнце в дымке эта половина генерирует 9,31В. Ура! Работает! Теперь мне нужно сделать еще одну такую же половину батареи.

После того как обе основы с элементами будут готовы, их можно будет установить их на место в подготовленную коробку и соединить.
Каждая из половин помещается на свое место. Для крепления основы с элементами внутри батареи используем 4 небольших шурупа.

Провод для соединения половин батареи пропускаем через одно из вентиляционных отверстий в центральном бортике. Тут тоже пара капель герметика поможет закрепить провод на одном месте и предотвратить его болтание внутри батареи.

Каждая солнечная батарея в системе должна быть снабжена блокирующим диодом, соединенным последовательно с батареей.

Диод нужен для предотвращения разряда аккумуляторов через батарею ночью и в пасмурную погоду. Я использовал диод Шоттки на 3,3А. Диоды Шоттки имеют гораздо более низкое падение напряжения, чем обычные диоды. Соответственно, будут меньше потери мощности на диоде. Набор из 25 диодов марки 31DQ03 на eBay можно купить всего за пару баксов.

Диоды подсоединяем к солнечным элементам внутри батареи.

Сверлим отверстие в днище батареи ближе к верху, чтобы вывести провода наружу. Провода завязаны на узел, чтобы предотвратить их вытягивание из батареи, и закреплены все тем же герметиком.

Важно дать герметику высохнуть до того, как мы будем крепить оргстекло на место. Советую, опираясь на предыдущий опыт. Испарения из силикона могут образовать пленку на внутренней поверхности оргстекла и элементов, если вы не дадите силикону высохнуть на открытом воздухе.

Солнечная батарея в работе. Перемещаем ее пару раз в день для сохранения ориентации на солнце, но это не такая уж и большая сложность.

Подсчитаем стоимость изготовления солнечной батареи:

Считаем только стоимость основных материалов, подручные (куски дерева, провода

1) Солнечные элементы купленные на eBay 74.00$ (~ 2300 руб.)
2) Деревяшки - 15$ (~ 460 руб.)
3) Оргстекло 15$(~ 460 руб.)
4) Шурупы и саморезы - 2$ (~ 60 руб.)
5) Силиконовый герметик - 3.95$ (~ 150 руб.)
6) Провода 10$(~ 300 руб.)
7) Диоды 2 $(~60 руб.)
8) Краска 5$(~ 150 руб.)

Итого $126.95 (~ 3640 рублей)

Для сравнения, аналогичная по мощности солнечная батарея промышленного производства стоит порядка 300-600$ (~ 9000-18000 рублей.

Книга в помощь

Ветрогенераторы, солнечные батареи и другие полезные конструкции.

Альтернативные источники энергии - ветер и солнце являются постоянно возобновляемыми, практически вечными видами энергии.
В данной книге автор раскрывает особенности современных преобразователей энергии солнца и ветра, их выбора, строения и установки. Целая глава книги посвящена нетрадиционным радиоэлектронным конструкциям.
Издание предназначено для широкого круга читателей, стремящихся к самостоятельному техническому творчеству, интересующихся радиотехникой, нетрадиционными источниками питания, солнечными батареями и ветрогенераторами в эпоху всеобщей экономии и оптимизации издержек.
В приложениях даны справочные данные и другая полезная информация.

Купить книгу на ozon.ru

Спрос на альтернативные источники энергии возрастает с каждым днём. Народные умельцы активно осваивают способы, как изготовить солнечную батарею своими руками.

Подготовительная стадия: что надо знать о солнечных батареях

Для самостоятельного изготовления солнечной батареи можно использовать как специально закупленные заготовки, так и по максимуму использовать материал, имеющийся в домашней мастерской – диоды, транзисторы, фольгу.

Солнечные батареи не могут в большинстве случаев заменить полноценную электростанцию и дать рабочее напряжение 220 В для работы мощных электроприборов. Ограничения возникают по причине их высокой стоимости и большой площади свободного пространства для монтажа.

Часто их применяют как дополнительный источник энергии и для не электрифицированных дачных участков.

КПД солнечных батарей зависит от погодных условий, интенсивности потока солнечных лучей, угла падения светового потока.

Небольшое количество ясных дней в конкретном регионе, сильная затенённость земельного участка, может быть причиной экономической нерентабельности новой установки: срок окупаемости будет больше, чем срок службы (до 30 лет).

Место для установки солнечной батареи для вашего дома должно быть хорошо освещённым, желательно находится выше уровня земли (на крыше), а сама конструкция иметь возможность коррекции положения в пространстве, чтобы лучи солнца падали перпендикулярно поверхности фотоэлементов.

Как самостоятельно сконструировать солнечную батарею

Чтобы собрать солнечную батарею надо:

  • Изготовить каркас – рамку из алюминиевых уголков или деревянных реек. Форму корпуса, и соответственно, форму солнечной батареи выбирать можно любую. Надо подготовить подложку из ДВП и защитное стекло в размер.
  • Спаять солнечные элементы. Самый ответственный этап: от качественной спайки зависит итоговый КПД батареи. 3. Уложить пластину в каркас и загерметизировать – завершающий этап работы.

Главная часть солнечной батареи составляют фотоэлементы, которые преобразовывают энергию дневного светила в электрическую.

Промышленность выпускает 3 вида пластин: монокристаллические, поликристаллические и тонкоплёночные (аморфные). Только 2 первых доступны по цене и закупаются как заготовки для будущих домашних экспериментов.

Различие между ними состоит в КПД – до 14% и 9% соответственно, долговечности – 30 и 20 лет службы, и чувствительности к интенсивности солнечного света.

Только батареи с поликристаллическими проводниками не снижают выработку электроэнергии в пасмурную погоду.

Имеет смысл закупать уценённые фотоэлементы второго сорта – для промышленных целей они не подходят, а существующие дефекты не ухудшают качество самоделок.

Приобретённые фотоэлементы требуется спаять между собой. Отдельный элемент даёт 0.5 В напряжения, обычно домашние умельцы ориентируются на номинальное напряжение готового изделия 18 В.

Правильно объединяя цепь, легко добиться нужных потребительских свойств: параллельное соединение увеличивает силу тока, последовательное – напряжение.

На рабочем столе должен быть паяльник, флюс и припой. Олово проволочное, флюс бескислотный, оставляющий минимум жирных следов.

Кремниевые пластины укладываются на защитное стекло, оставляя зазор 5 мм: при нагревании фотоэлементы расширяются. При спайке важно соблюдать полярность – дорожки с отрицательным знаком и положительным различить не сложно.

Обратите внимание!

Лучше приобретать солнечные элементы с уже припаянными плоскими проводниками к солнечным элементам, а самостоятельно только объединять их в цепь. Крайние элементы цепи выводятся на общую шину.

Дополнительно следует припаять диода Шоттки 31DQ03 или аналогичный, чтобы не допустить саморазряда батареи в неактивном состоянии.

Сердцевина солнечной батареи готова, осталось уложить её в подготовленный корпус. После этого по центру каждого отдельного фотоэлемента наносится одна капля термостойкого герметика (если капель несколько, то при расширении от нагревания пластина может лопнуть) и аккуратно накрывается подложкой, затем крышкой.

При помощи силикона следует загерметизировать стыки, и изделие готово.Что может быть альтернативой промышленным фотоэлементам

Фото солнечных батарей из подручных радиодеталей удивляют своей оригинальностью, хотя технические характеристики имеют не очень впечатляющие.

Обратите внимание!

Для домашнего производства электричества можно использовать разнообразный материал:

  • Транзисторы типа КТ или П, внутри которых расположен полупроводниковый кремниевый элемент. С них срезается металлическая крышка, и открывшееся пластина способна выполнить функции фотоэлемента, её напряжение 0,35 В.
  • Диоды Д223Б. Их преимущества перед другими – напряжение 0,35 В при компактных размерах, удобный корпус, лёгкое очищение от ненужной краски при помощи ацетона для последующей работы.
  • Медная фольга.

Чтобы она приобрела свойства преобразовывать солнечную энергию в электрическую, необходимо осуществить специальную обработку:

  • Обезжирить.
  • Обработать наждачной бумагой с целью удаления защитной оксидной плёнки и возможной коррозии. Прокалить на газовой горелке до образования оксида меди – пластина меняет цвет на чёрный и нагревается после этого полчаса.
  • Заготовка после медленного охлаждения аккуратно промывается под проточной водой с целью удаления черной пленки.

Искомый полупроводник – пластина с тонким слоем медной окиси. В отличие от первых двух вариантов, для дальнейшей работы паяльные работы здесь не нужны.

Требуется поместить соленый раствор 2 кусочка фольги одинакового размера, но разных по свойствам – обработанный и первоначальный вариант.

Соприкасаться они не должны, зажать «крокодильчиками» с проводами. Положительный полюс – к чистой меди, отрицательный – к оксиду. Солёный раствор в прозрачной ёмкости на 2-3 см не доходит до верхней части пластин.

Купить солнечные батареи в виду достаточно высокой цены безболезненно для семейного бюджета может не каждый. Проявите себя в техническом творчестве, порадуйте домочадцев и удивите гостей результатами своего труда.

Обратите внимание!

Фото солнечной батареи своими руками