Стрелы времени: как устроены атомные часы. Атомные часы: устройство для измерения времени спутниковых и навигационных систем

Высокоточные атомные часы, которые совершают ошибку в одну секунду за 300 миллионов лет. Эти часы, заменившие старую модель, которая допускала ошибку в одну секунду за сто миллионов лет, теперь задают стандарт американского гражданского времени. «Лента.ру» решила вспомнить историю создания атомных часов.

Первый атом

Для того чтобы создать часы, достаточно использовать любой периодический процесс. И история появления приборов измерения времени ─ это отчасти история появления либо новых источников энергии, либо новых колебательных систем, используемых в часах. Самыми простыми часами являются, вероятно, солнечные: для их работы необходимо только Солнце и предмет, который отбрасывает тень. Недостатки этого способа определения времени очевидны. Водяные и песочные часы тоже не лучше: они пригодны лишь для измерения сравнительно коротких промежутков времени.

Самые древние механические часы были найдены в 1901 году рядом с островом Антикитера на затонувшем корабле в Эгейском море. Они содержат около 30 бронзовых шестерен в деревянном корпусе размером 33 на 18 на 10 сантиметров и датируются примерно сотым годом до нашей эры.

В течение почти двух тысяч лет механические часы были самыми точными и надежными. Появление в 1657 году классического труда Христиана Гюйгенса «Маятниковые часы» («Horologium oscillatorium, sive de motu pendulorum an horologia aptato demonstrationes geometrica») с описанием устройства отсчета времени с маятником в качестве колебательной системы, стало, вероятно, апогеем в истории развития механических приборов такого типа.

Однако астрономы и мореплаватели все равно использовали звездное небо и карты для определения своего местоположения и точного времени. Первые же электрические часы изобрел в 1814 году Фрэнсис Роналдс . Однако первый такой прибор был неточным из-за чувствительности к изменениям температуры.

Дальнейшая история часов связана с использованием в устройствах разных колебательных систем. Представленные в 1927 году сотрудниками Лабораторий Белла кварцевые часы использовали пьезоэлектрические свойства кристалла кварца: при воздействии на него электрического тока кристалл начинает сжиматься. Современные кварцевые хронометры могут обеспечить точность до 0,3 секунды в месяц. Однако, поскольку кварц подвержен старению, с течением времени часы начинают идти с меньшей точностью.

С развитием атомной физики ученые предложили использовать в качестве колебательных систем именно частицы вещества. Так появились первые атомные часы. Идею о возможности использования атомных колебаний водорода для измерения времени предложил еще в 1879 году английский физик лорд Кельвин , однако только к середине XX века это стало возможным.

Репродукция картины Губерта фон Геркомера (1907)

В 1930-х годах американский физик и первооткрыватель ядерного магнитного резонанса Исидор Раби начал работать над атомными часами с цезием-133, однако начало войны помешало ему. Уже после войны в 1949 году в Национальном комитете стандартов США с участием Гарольда Лайонсона были созданы первые молекулярные часы, использующие молекулы аммиака. Но первые такие приборы измерения времени не были точными, как современные атомные часы.

Относительно малая точность была связана с тем, что из-за взаимодействия молекул аммиака между собой и со стенками емкости, в которой находилось это вещество, изменялась энергия молекул, и их спектральные линии уширялись. Этот эффект очень похож на трение в механических часах.

Позднее, в 1955 году, Луи Эсссен из Национальной физической лаборатории Великобритании представил первые атомные часы на цезии-133. Эти часы накапливали ошибку в одну секунду за миллион лет. Прибор получил название NBS-1 и стал считаться цезиевым эталоном частоты.

Принципиальная схема атомных часов состоит из кварцевого генератора, контролируемого дискриминатором по схеме обратной связи. В генераторе используются пьезоэлектрические свойства кварца, тогда как в дискриминаторе происходят энергетические колебания атомов, так что колебания кварца отслеживаются сигналами от переходов с разных энергетических уровней в атомах или молекулах. Между генератором и дискриминатором находится компенсатор, настроенный на частоту атомных колебаний и сравнивающий ее с частотой колебаний кристалла.

Атомы, используемые в часах, должны обеспечивать стабильные колебания. Для каждой частоты электромагнитного излучения существуют свои атомы: кальция, стронция, рубидия, цезия, водорода. Или даже молекулы аммиака и йода.

Эталон времени

С появлением атомных приборов измерения времени стало возможным использовать их в качестве универсального эталона для определения секунды. С 1884 года Гринвичское время, считавшееся мировым стандартом, уступило место эталону атомных часов. В 1967 году решением 12-й Генеральной конференции мер и весов одну секунду определили как продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Такое определение секунды не зависит от астрономических параметров и может воспроизводиться в любой точке планеты. Цезий-133, используемый в эталоне атомных часов, ─ единственный стабильный изотоп цезия со 100-процентной распространенностью на Земле.

Атомные часы используются и в спутниковой системе навигации; они необходимы для определения точного времени и координат спутника. Так, в каждом спутнике системы GPS установлены по четыре комплекта таких часов: два рубидиевых и два цезиевых, которые обеспечивают точность передачи сигнала в 50 наносекунд. На российских спутниках системы ГЛОНАСС тоже установлены цезиевые и рубидиевые атомные приборы измерения времени, а на спутниках разворачивающейся европейской геопозиционной системы Galileo ─ водородные и рубидиевые.

Точность водородных часов ─ самая высокая. Она составляет 0,45 наносекунды за 12 часов. По всей видимости, использование Galileo таких точных часов выведет эту навигационную систему в лидеры уже в 2015 году, когда на орбите будет 18 ее спутников.

Компактные атомные часы

Hewlett-Packard стала первой компанией, которая занялась разработкой компактных атомных часов. В 1964 году ею был создан цезиевый прибор HP 5060A размером с большой чемодан. Компания и дальше развивала это направление, но с 2005 года продала свое подразделение, разрабатывающее атомные часы, компании Symmetricom.

В 2011 году специалисты Лаборатории Дрейпера и Сандийских национальных лабораторий разработали, а компания Symmetricom выпустила первые миниатюрные атомные часы Quantum. На момент выпуска они стоили порядка 15 тысяч долларов, были заключены в герметичный корпус размером 40 на 35 на 11 миллиметров и весили 35 граммов. Потребляемая мощность часов составляла менее 120 милливатт. Первоначально они были разработаны по заказу Пентагона и предназначались для обслуживания навигационных систем, функционирующих независимо от систем GPS, например, глубоко под водой или землей.

Уже в конце 2013 года американская компания Bathys Hawaii представила первые «наручные» атомные часы. В качестве основного компонента в них используется чип SA.45s производства компании Symmetricom. Внутри чипа располагается капсула с цезием-133. В конструкцию часов также входят фотоэлементы и маломощный лазер. Последний обеспечивает нагревание газообразного цезия, в результате чего его атомы начинают переходить с одного энергетического уровня на другой. Измерение времени как раз и производится за счет фиксирования такого перехода. Стоимость нового прибора составляет около 12 тысяч долларов.

Тенденции к миниатюризации, автономности и точности приведут к тому, что уже в недалеком будущем появятся новые устройства с использованием атомных часов во всех сферах человеческой жизни, начиная с космических исследований на орбитальных спутниках и станциях до бытового применениях в комнатных и наручных системах.

Часто мы слышим фразу, что атомные часы всегда показывают точное время. Но из их названия сложно понять, почему атомные часы самые точные или как они устроены.

То, что в названии есть слово «атомные» вовсе не означает, что часы представляют собой опасность для жизни, даже если в голову сразу же приходят мысли об атомной бомбе или атомной электростанции. В данном случае мы всего лишь говорим о принципе работы часов. Если в обычных механических часах колебательные движения совершают шестеренки и ведется подсчет их движений, то в атомных часах ведется подсчет колебаний электронов внутри атомов. Чтобы лучше понять принцип работы, вспомним физику элементарных частиц.

Все вещества в нашем мире состоят из атомов. Атомы же состоят из протонов, нейтронов и электронов. Протоны и нейтроны объединяются друг с другом в ядро, которое также называют нуклоном. Вокруг ядра движутся электроны, которые могут находиться на разных энергетических уровнях. Самое интересное, что при поглощении или отдаче энергии, электрон может переходить со своего энергетического уровня на более высокий или низкий. Электрон может получать энергию из электромагнитного излучения, при каждом переходе поглощая или испуская электромагнитное излучение определенной частоты.

Чаще всего встречаются часы, в которых для изменения используют атомы элемента Цезий -133. Если за 1 секунду маятник обычных часов совершает 1 колебательное движение, то электроны в атомных часах на основе Цезия-133 при переходе с одного энергетического уровня на другой испускают электромагнитное излучение с частотой 9192631770 Гц. Получается, именно на такое количество промежутков делится одна секунда, если её рассчитывать в атомных часах. Эта величина была официально принята международным сообществом в 1967 году. Представьте огромный циферблат, где находится не 60, а 9192631770 делений, которые составляют всего 1 секунду. Неудивительно, что атомные часы такие точные и обладают целым рядом преимуществ: атомы не подвержены старению, не изнашиваются, а частота колебания будет всегда одинаковой для одного химического элемента, благодаря чему можно синхронно сравнивать, например, показания атомных часов далеко в космосе и на Земле, не боясь погрешностей.

Благодаря атомным часам человечество на практике смогло проверить правильность теории относительности и удостовериться, что , чем на Земле. Атомные часы установлены на многих спутниках и космических аппаратах, они используются для телекоммуникационных нужд, для мобильной связи, по ним сравнивают точное время на всей планете. Без преувеличения, именно благодаря изобретению атомных часов человечество смогло войти в эпоху высоких технологий.

Как работают атомные часы?

Цезий-133 нагревают, выпаривая атомы цезия, которые проходит через магнитное поле, где отбираются атомы с нужным энергетическим состояниям.

Затем отобранные атомы проходят через магнитное поле с частотой, близкой к 9192631770 Гц, которое создает кварцевый генератор. Под воздействием поля атомы цезия снова меняют энергетические состояния, и попадают на детектор, который фиксирует, когда наибольшее количество попадающих атомов будет обладать «правильным» энергетическим состоянием. Максимальное количество атомов с измененным энергетическим состоянием говорит о том, что частота микроволнового поля подобрана верно, и затем её значение подается в электронное устройство – делитель частоты, который, уменьшая частоту в целое число раз, получает число 1, которое и является эталонной секундой.

Таким образом, атомы цезия используются для проверки правильности частоты магнитного поля, создаваемой кварцевым генератором, помогая поддерживать ее в постоянном значении.

Это интересно: хотя существующие на сегодняшний момент атомные часы беспрецедентно точно и могут миллионы лет идти без погрешностей, физики не собираются останавливаться на достигнутом. Используя атомы различных химических элементов, они постоянно работают над повышением точности атомных часов. Из последних изобретений – атомные часы на стронции , которые в три раза точнее их цезиевого аналога. Чтобы отстать всего на секунду им потребуется 15 млрд. лет – время, превышающее возраст нашей Вселенной…

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Атомные часы являются наиболее точными приборами для измерения времени, которые существуют сегодня, и приобретают все большее значение с развитием и усложнением современных технологий.

Принцип работы

Атомные часы точное время отсчитывают не благодаря радиоактивному распаду, как может показаться по их названию, а используя колебания ядер и окружающих их электронов. Их частоту определяет масса ядра, гравитация и электростатический «балансир» между положительно заряженным ядром и электронами. Это не совсем соответствует обычному часовому механизму. Атомные часы являются более надежными хранителями времени, потому что их колебания не изменяются в зависимости от таких факторов окружающей среды, как влажность, температура или давление.

Эволюция атомных часов

За многие годы ученые поняли, что атомы обладают резонансными частотами, связанными со способностью каждого поглощать и испускать электромагнитное излучение. В 1930-х и 1940-х годах было разработано оборудование для высокочастотной связи и РЛС, которое могло взаимодействовать с частотами резонанса атомов и молекул. Это способствовало возникновению идеи часов.

Первые экземпляры были построены в 1949 году Национальным институтом стандартов и технологий (NIST). В качестве источника вибрации в них использовался аммиак. Однако они оказались ненамного точнее существующего стандарта времени, и в следующем поколении был применен цезий.

Новый стандарт

Изменение точности измерения времени оказалось настолько большим, что в 1967 году Генеральная конференция по мерам и весам определила секунду SI как 9 192 631 770 колебаний атома цезия на его резонансной частоте. Это означало, что время больше не было связано с движением Земли. Наиболее стабильные атомные часы в мире были созданы в 1968 году и использовались в качестве части системы отсчета времени NIST вплоть до 1990-х годов.

Вагон усовершенствований

Одним из последних достижений в этой области является лазерное охлаждение. Это улучшило отношение сигнал - шум и сократило неопределенность в тактовом сигнале. Для размещения этой системы охлаждения и другого оборудования, используемого для улучшения цезиевых часов, потребуется место размером с железнодорожный вагон, хотя коммерческие варианты могут поместиться в чемодане. Одна из таких лабораторных установок отсчитывает время в г. Боулдере, штат Колорадо, и является самыми точными часами на Земле. Они ошибаются лишь на 2 наносекунды в день или на 1 с в 1,4 млн лет.

Сложная технология

Такая огромная точность является результатом сложного технологического процесса. Прежде всего жидкий цезий помещают в печь и нагревают до тех пор, пока он не превратится в газ. Атомы металла на высокой скорости выходят через небольшое отверстие в печи. Электромагниты заставляют их разделиться на отдельные пучки с разными энергиями. Необходимый луч проходит через U-образное отверстие, и атомы подвергаются облучению энергией микроволнового излучения частотой 9.192.631.770 Гц. Благодаря этому они возбуждаются и переходят в другое энергетическое состояние. Затем магнитное поле отфильтровывает другие энергетические состояния атомов.

Детектор реагирует на цезий и показывает максимум при правильном значении частоты. Это необходимо для настройки кварцевого генератора, управляющего механизмом тактирования. Деление его частоты на 9.192.631.770 и дает один импульс в секунду.

Не только цезий

Хотя наиболее распространенные атомные часы используют свойства цезия, есть и другие их типы. Они отличаются применяемым элементом и средствами определения изменения энергетического уровня. Другими материалами являются водород и рубидий. Атомные часы на водороде функционируют подобно цезиевым, но требуют емкости со стенками из особого материала, препятствующего слишком быстрой потере атомами энергии. Рубидиевые часы наиболее просты и компактны. В них стеклянная ячейка, заполненная газообразным рубидием, изменяет поглощение света при воздействии сверхвысокой частоты.

Кому необходимо точное время?

Сегодня время можно отсчитывать с особой точностью, но почему это важно? Это необходимо в таких системах, как мобильные телефоны, интернет, GPS, авиационные программы и цифровое телевидение. На первый взгляд это не очевидно.

Пример того, как используется точное время, - синхронизация пакетов. Через среднюю линию связи проходят тысячи телефонных звонков. Это возможно только потому, что разговор не передается полностью. Телекоммуникационная компания разделяет его на мелкие пакеты и даже пропускает часть информации. Затем они проходят через линию вместе с пакетами других разговоров и на другом конце восстанавливаются, не смешиваясь. Система тактирования телефонной станции может определять, какие пакеты принадлежат данному разговору, по точному времени отправки информации.

GPS

Другой реализацией точного времени является система глобального позиционирования. Она состоит из 24 спутников, которые передают свои координаты и время. Любой приемник GPS может соединиться с ними и сравнить время трансляции. Разница позволяет пользователю определить свое местоположение. Если бы эти часы были не очень точными, то система GPS была бы непрактичной и ненадежной.

Предел совершенства

С развитием технологий и атомных часов стали заметны неточности Вселенной. Земля движется неравномерно, что приводит к случайным колебаниям продолжительности лет и дней. В прошлом эти изменения остались бы незамеченными, поскольку инструменты для измерения времени были слишком неточны. Однако, к большому разочарованию исследователей и ученых, время атомных часов приходится корректировать для компенсации аномалий реального мира. Они являются удивительными инструментами, способствующими продвижению современных технологий, но их совершенство ограничено пределами, установленными самой природой.

    Во-первых, часы использует человечество в качестве средств программно-временного управления.

    Во-вторых, в наши дни измерение времени является и самым точным видом измерений из всех проводимых: точность измерения времени определяется сейчас невероятно погрешностью порядка 1·10-11 %, или 1 с за 300 тыс. лет.

    А добились такой точности современные люди, когда стали использовать атомы , которые в результате своих колебаний являются регулятором хода атомных часов. Атомы цезия находятся в двух, необходимых нам, энергетических состояниях (+) и (-). Электромагнитное излучение с частотой 9 192 631 770 герц образуется, когда атомы переходят из состояния (+) в (-), создавая точный постоянный периодический процесс - регулятор кода атомных часов.

    Для того, чтобы атомные часы работали точно цезий необходимо испарить в печи, в результате этого процесса выбрасываются его атомы. Позади печи находится сортирующий магнит, который обладает пропускной способностью атомов в состоянии (+), а в нем за счет облучения в микроволновом поле атомы переходят в состояние (-). Второй магнит направляет атомы, изменившие состояние (+) на (-) в приемное устройство. Много атомов, изменивших свое состояние, получается лишь в том случае, если частота микроволнового излучателя в точности совпадет с частотой колебаний цезия 9 192 631 770 герц. Иначе, количество атомов (-) в приемном устройстве уменьшается.

    Приборы постоянно отслеживают и регулируют постоянство частоты 9 192 631 770 герц. А значит, осуществилась мечта часовых конструкторов, найден абсолютно постоянный периодический процесс: частота 9 192 631 770 герц, регулирующая ход атомных часов.

    Сегодня, в результате международного соглашения, секунда определяется как период излучения умноженный на 9 192 631 770, соответствующий переходу между двумя гипертонкими структурными уровнями основного состояния атома цезия (изотопа цезия-133).

    Для измерения точного времени можно использовать также колебания других атомов и молекул, таких как, атомы кальция, рубидия, цезия, стронция, молекул водорода, йода, метана и т. д. Однако, стандартом частоты признано излучение атома цезия. Для того чтобы осуществить сравнение колебаний разных атомов со стандартом (цезия) создан титан-сапфировый лазер, генерирующий широкий диапазон частот в диапазоне от 400 до 1000 нм.

    Первым создателем кварцевых и атомных часов был английский физик-экспериментатор Эссен Льюис (1908-1997) . В 1955 г. он создал первый атомный стандарт частоты (времени) на пучке атомов цезия. Как результат этой работы через 3 года (1958) возникла служба времени, основанная на атомном стандарте частоты.

    В СССР свои идеи по созданию атомных часов выдвигал академик Николай Геннадьевич Басов.

    Итак, атомные часы, один из точных типов часов - устройство для измерения времени, где в качестве маятника используются собственные колебания атомов или молекул. Стабильность атомных часов является наилучшей среди всех существующих типов часов, что является залогом высочайшей точности. Генератор атомных часов выдает в секунду более чем 32 768 импульса в отличие от обычных часов. Колебания атомов не зависят от температуры воздуха, вибраций, влажности и многих других внешних факторов.

    В современном мире, когда без навигации просто не обойтись, атомные часы стали незаменимыми помощниками. Они способны определить местоположение космического корабля, спутника, баллистической ракеты, самолета, подводной лодки, автомобиля автоматически по спутниковой связи.

    Таким образом, последние 50 лет атомные часы, а точнее цезиевые, считаются самыми точными. Они уже давно используются службами точного времени, а также временные сигналы транслируются некоторыми радиостанциями.

    Устройство атомных часов включает в себя 3 части:

    квантовый дискриминатор,

    кварцевый осциллятор,

    комплекс электроники.

    Кварцевый осциллятор генерирует частоту (5 или 10 МГц). Осциллятор представляет собой RC-радиогенератор, у которого в качестве резонансного элемента используются пьезоэлектрические моды кварцевого кристалла, где и происходит сравнение атомов, изменивших состояние (+) на (-) Для повышения стабильности его частота постоянно сравнивается с колебаниями квантового дискриминатора (атомов или молекул). При появлении разницы в колебаниях, электроника подстраивает частоту кварцевого осциллятора до нулевого уровня, тем самым повышая стабильность и точность часов до нужного уровня.

    В современном мире атомные часы могут быть изготовлены в любой стране мира для использования их в повседневной жизни. Они весьма невелики по своим размерам и красивы. Размер последней новинки атомных часов не более спичечного коробка и их низкое энергопотребление - менее 1 Ватт. И это не предел, возможно, в будущем технический прогресс достигнет мобильных телефонов. А пока компактные атомные часы устанавливают лишь настратегические ракеты для повышения точности навигации во много раз.

    Сегодня мужские и женские атомные часы на любой вкус и кошелек можно купить в Интернет магазинах.

    В 2011 году самые маленькие в мире атомные часы создали специалисты компании Symmetricom и Национальной лаборатории Сандия. Эти часы, в 100 раз более компактные, чем предыдущие коммерчески доступные версии. По величине атомный хронометр — не больше спичечного коробка. Для работы ему достаточно мощности 100 мВт — это в 100 раз меньше по сравнению с предшественниками.

    Уменьшить размер часов удалось, установив вместо пружин и шестеренок механизм, действующий по принципу определения частоты электромагнитных волн, излучаемых атомами цезия под действием лазерного луча ничтожной мощности.

    Такие часы применяются в навигации, а также в работе шахтеров, водолазов, там, где необходимо точно синхронизировать время с коллегами на поверхности, а также службами точного времени, ведь ошибка атомных часов составляет менее 0,000001 доли секунды в сутки. Стоимость рекордно малых атомных часов Symmetricom составила около 1500 долларов.