Условные экстремумы и метод множителей лагранжа. Метод Лагранжа (вариации постоянной)

Наименование параметра Значение
Тема статьи: Метод Лагранжа.
Рубрика (тематическая категория) Математика

Найти полином означает определить значения его коэффициента . Для этого используя условие интерполяции можно сформировать систему линœейных алгебраических уравнений (СЛАУ).

Определитель этой СЛАУ принято называть определителœем Вандермонда. Определитель Вандермонда не равен нулю при для , то есть в том случае, когда в интерполяционной таблице нет совпадающих узлов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно утверждать, что СЛАУ имеет решение и это решение единственно. Решив СЛАУ и определив неизвестные коэффициенты можно построить интерполяционный полином .

Полином, удовлетворяющий условиям интерполяции, при интерполяции методом Лагранжа строится в виде линœейной комбинации многочленов n-ой степени:

Многочлены принято называть базисными многочленами. Для того, чтобы многочлен Лагранжа удовлетворял условиям интерполяции крайне важно, чтобы для его базисных многочленов выполнялись следующие условия:

для .

В случае если эти условия выполняются, то для любого имеем:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выполнение заданных условий для базисных многочленов означает, что выполняются и условия интерполяции.

Определим вид базисных многочленов исходя из наложенных на них ограничений.

1-е условие: при .

2-е условие: .

Окончательно для базисного многочлена можно записать:

Тогда, подставляя полученное выражение для базисных многочленов в исходный полином, получаем окончательный вид многочлена Лагранжа:

Частная форма многочлена Лагранжа при принято называть формулой линœейной интерполяции:

.

Многочлен Лагранжа взятый при принято называть формулой квадратичной интерполяции:

Метод Лагранжа. - понятие и виды. Классификация и особенности категории "Метод Лагранжа." 2017, 2018.

  • - Метод Лагранжа (метод вариации произвольной постоянной).

    Линейные ДУ. Определение. ДУ вида т.е. линейное относ-но неизвестной ф-ции и ее производной наз-ся линейным. Для реш-я такого типа ур-й рассмотрим два метода: метод Лагранжа и метод Бернулли.Рассмотрим однородное ДУ Это ур-е с разделяющимися переем-ми Решение ур-я Общее... .


  • - Линейные ДУ, однород-е и неоднород-е. Понятие общего реш-я. Метод Лагранжа вариации произв-х постоянных.

    Определение. ДУ наз-ся однород-м, если ф-я может быть представлена, как ф-я отнош-я своих аргументов Пример. Ф-я наз-ся однородной ф-й измерения если Примеры: 1) - 1-й порядок однородности. 2) - 2-й порядок однородности. 3) - нулевой порядок однородности (просто однородная... .


  • - Лекция 8. Применение частных производных: задачи на экстремум. Метод Лагранжа.

    Задачи на экстремум имеют большое значение в экономических расчетах. Это вычисление, например, максимумов дохода, прибыли, минимума издержек в зависимости от нескольких переменных: ресурсов, производственных фондов и т.д. Теория нахождения экстремумов функций... .


  • - Т.2.3. ДУ высших порядков. Уравнение в полных дифференциалах. Т.2.4. Линейные ДУ второго порядка с постоянными коэффициентами. Метод Лагранжа.

    3. 2. 1. ДУ с разделяющимися переменными С.Р. 3. В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или...

  • Сегодня на уроке мы научимся находить условные или, как их ещё называют, относительные экстремумы функций нескольких переменных, и, прежде всего, речь пойдёт, конечно же, об условных экстремумах функций двух итрёх переменных , которые встречаются в подавляющем большинстве тематических задач.

    Что нужно знать и уметь на данный момент? Несмотря на то, что эта статья находится «на окраине» темы, для успешного усвоения материала потребуется не так уж и много. На данный момент вы должны ориентироваться в основных поверхностях пространства , уметь находить частные производные (хотя бы на среднем уровне) и, как подсказывает беспощадная логика, разбираться в безусловных экстремумах . Но даже если у вас низкий уровень подготовки, не спешите уходить – все недостающие знания/навыки реально «подобрать по пути», причём безо всяких многочасовых мучений.

    Сначала проанализируем само понятие и заодно осуществим экспресс-повторение наиболее распространённых поверхностей . Итак, что же такое условный экстремум? …Логика здесь не менее беспощадна =) Условный экстремум функции – это экстремум в обычном понимании этого слова, который достигается при выполнении определённого условия (или условий).

    Представьте произвольную «косую» плоскость в декартовой системе . Никакого экстремума здесь нет и в помине. Но это до поры до времени. Рассмотрим эллиптический цилиндр , для простоты – бесконечную круглую «трубу», параллельную оси . Очевидно, что эта «труба» «высечет» из нашей плоскости эллипс , в результате чего в верхней его точке будет максимум, а в нижней – минимум. Иными словами, функция, задающая плоскость, достигает экстремумов при условии , что её пересёк данный круговой цилиндр. Именно «при условии»! Другой эллиптический цилиндр, пересекающий эту плоскость, почти наверняка породит иные значения минимума и максимума.

    Если не очень понятно, то ситуацию можно смоделировать реально (правда, в обратном порядке) : возьмите топор, выйдите на улицу и срубите… нет, Гринпис потом не простит – лучше порежем «болгаркой» водосточную трубу =). Условный минимум и условный максимум будут зависеть от того, на какой высоте и под каким (негоризонтальным) углом осуществлён разрез.

    Настало время облачить выкладки в математическое одеяние. Рассмотрим эллиптический параболоид , который имеет безусловный минимум в точке . Теперь найдём экстремум при условии . Данная плоскость параллельна оси , а значит, «высекает» из параболоида параболу . Вершина этой параболы и будет условным минимумом. Причём плоскость не проходит через начало координат, следовательно, точка останется не при делах. Не представили картинку? Срочно идём по ссылкам! Потребуется ещё много-много раз.

    Вопрос: как найти этот условный экстремум? Простейший способ решения состоит в том, чтобы из уравнения (которое так и называют – условием или уравнением связи ) выразить, например: – и подставить его в функцию:

    В результате получена функция одной переменной, задающая параболу, вершина которой «вычисляется» с закрытыми глазами. Найдём критические точки :

    – критическая точка.

    Далее проще всего использовать второе достаточное условие экстремума :

    В частности: , значит, функция достигает минимума в точке . Его можно вычислить напрямую: , но мы пойдём более академичным путём. Найдём «игрековую» координату:
    ,

    запишем точку условного минимума , удостоверимся, что она действительно лежит в плоскости (удовлетворяет уравнению связи) :

    и вычислим условный минимум функции :
    при условии («добавка» обязательна!!!) .

    Рассмотренный способ без тени сомнения можно использовать на практике, однако, он обладает рядом недостатков. Во-первых, далеко не всегда понятна геометрия задачи, а во-вторых, зачастую бывает невыгодно выражать «икс» либо «игрек» из уравнения связи (если вообще есть возможность что-то выразить) . И сейчас мы рассмотрим универсальный метод нахождения условных экстремумов, получивший название метод множителей Лагранжа :

    Пример 1

    Найти условные экстремумы функции при указанном уравнении связи на аргументы .

    Узнаёте поверхности? ;-) …Я рад видеть ваши счастливые лица =)

    Кстати из формулировки данной задачи становится ясно, почему условие называют уравнением связи – аргументы функции связаны дополнительным условием, то есть найденные точки экстремума должны обязательно принадлежать круговому цилиндру.

    Решение : на первом шаге нужно представить уравнение связи в виде и составить функцию Лагранжа :
    , где – так называемый множитель Лагранжа.

    В нашем случае и:

    Алгоритм нахождения условных экстремумов весьма похож на схему отыскания «обычных» экстремумов . Найдём частные производные функции Лагранжа, при этом с «лямбдой» следует обращаться, как с константой:

    Составим и решим следующую систему:

    Клубок распутывается стандартно:
    из первого уравнения выразим ;
    из второго уравнения выразим .

    Подставим в уравнение связи и проведём упрощения:

    В результате получаем две стационарные точки. Если , то:

    если , то:

    Легко видеть, что координаты обеих точек удовлетворяют уравнению . Щепетильные люди могут выполнить и полную проверку: для этого нужно подставить в первое и второе уравнения системы, и затем сделать то же самое с набором . Всё должно «сойтись».

    Проверим выполнение достаточного условия экстремума для найденных стационарных точек. Я разберу три подхода к решению данного вопроса:

    1) Первый способ – это геометрическое обоснование.

    Вычислим значения функции в стационарных точках:

    Далее записываем фразу примерно такого содержания: сечение плоскости круговым цилиндром представляет собой эллипс, в верхней вершине которого достигается максимум, а в нижней – минимум. Таким образом, бОльшее значение – есть условный максимум, а меньшее – условный минимум.

    По возможности лучше применять именно этот метод – он прост, и такое решение засчитывают преподаватели (большим плюсом идёт то, что вы показали понимание геометрического смысла задачи) . Однако, как уже отмечалось, далеко не всегда понятно, что с чем и где пересекается, и тогда на помощь приходит аналитическая проверка:

    2) Второй способ основан на использовании знаков дифференциала второго порядка . Если окажется, что в стационарной точке , то функция достигает там максимума, если же – то минимума.

    Найдём частные производные второго порядка :

    и составим этот дифференциал:

    При , значит, функция достигает максимума в точке ;
    при , значит, функция достигает минимума в точке .

    Рассмотренный метод очень хорош, но обладает тем недостатком, что в ряде случаев практически невозможно определить знак 2-го дифференциала (обычно так бывает, если и/или – разных знаков) . И тогда на помощь приходит «тяжёлая артиллерия»:

    3) Продифференцируем по «икс» и по «игрек» уравнение связи:

    и составим следующую симметричную матрицу :

    Если в стационарной точке , то функция достигает там (внимание! ) минимума, если – то максимума.

    Запишем матрицу для значения и соответствующей точки :

    Вычислим её определитель :
    , таким образом, функция имеет максимум в точке .

    Аналогично для значения и точки :

    Таким образом, функция имеет минимум в точке .

    Ответ : при условии :

    После обстоятельного разбора материала просто не могу не предложить вам пару типовых задач для самопроверки:

    Пример 2

    Найти условный экстремум функции , если её аргументы связаны уравнением

    Пример 3

    Найти экстремумы функции при условии

    И вновь настоятельно рекомендую разобраться в геометрической сути заданий, особенно, это касается последнего примера, где аналитическая проверка достаточного условия – не подарок. Вспомните, какую линию 2-го порядка задаёт уравнение , и какую поверхность эта линия порождает в пространстве. Проанализируйте, по какой кривой цилиндр пересечёт плоскость и где на этой кривой будет минимум, а где – максимум.

    Решения и ответы в конце урока.

    Рассматриваемая задача находит широкое применение в различных областях, в частности – далеко ходить не будем, в геометрии. Решим всем понравившуюся задачу о поллитровке (см. Пример 7 статьи Экстремальные задачи ) вторым способом:

    Пример 4

    Каковы должны быть размеры консервной банки цилиндрической формы, чтобы на изготовления банки пошло наименьшее количество материала, если объем банки равен

    Решение : рассмотрим переменный радиус основания , переменную высоту и составим функцию площади полной поверхности банки:
    (площадь двух крышек + площадь боковой поверхности)

    Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
    (1) .
    Существует три способа решения этого уравнения:

    • метод вариации постоянной (Лагранжа).

    Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

    Метод вариации постоянной (Лагранжа)

    В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

    Рассмотрим уравнение:
    (1)

    Шаг 1 Решение однородного уравнения

    Ищем решение однородного уравнения:

    Это уравнение с разделяющимися переменными

    Разделяем переменные - умножаем на dx , делим на y :

    Интегрируем:

    Интеграл по y - табличный :

    Тогда

    Потенцируем:

    Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

    Шаг 2 Заменим постоянную C на функцию

    Теперь заменим постоянную C на функцию от x :
    C → u(x)
    То есть, будем искать решение исходного уравнения (1) в виде:
    (2)
    Находим производную.

    По правилу дифференцирования сложной функции:
    .
    По правилу дифференцирования произведения:

    .
    Подставляем в исходное уравнение (1) :
    (1) ;

    .
    Два члена сокращаются:
    ;
    .
    Интегрируем:
    .
    Подставляем в (2) :
    .
    В результате получаем общее решение линейного дифференциального уравнения первого порядка:
    .

    Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

    Решить уравнение

    Решение

    Решаем однородное уравнение:

    Разделяем переменные:

    Умножим на :

    Интегрируем:

    Интегралы табличные :

    Потенцируем:

    Заменим постоянную e C на C и убираем знаки модуля:

    Отсюда:

    Заменим постоянную C на функцию от x :
    C → u(x)

    Находим производную:
    .
    Подставляем в исходное уравнение:
    ;
    ;
    Или:
    ;
    .
    Интегрируем:
    ;
    Решение уравнения:
    .

    ЛАГРАНЖА МЕТОД

    Метод приведения квадратичной формы к сумме квадратов, указанный в 1759 Ж. Лагранжем (J. Lagrange). Пусть дана

    от ппеременных х 0 , x 1 ,..., х п . с коэффициентами из поля k характеристики Требуется привести эту форму к канонич. виду

    при помощи невырожденного линейного преобразования переменных. Л. м. состоит в следующем. Можно считать, что не все коэффициенты формы (1) равны нулю. Поэтому возможны два случая.

    1) При некотором g, диагональный Тогда

    где форма f 1 (х).не содержит переменную x g . 2) Если же все но то


    где форма f 2 (х).не содержит двух переменных x g и x h . Формы, стоящие под знаками квадратов в (4), линейно независимы. Применением преобразований вида (3) и (4) форма (1) после конечного числа шагов приводится к сумме квадратов линейно независимых линейных форм. С помощью частных производных формулы (3) и (4) можно записать в виде


    Лит. : Г а н т м а х е р Ф. Р., Теория матриц, 2 изд., М., 1966; К у р о ш А. Г., Курс высшей алгебры, 11 изд., М., 1975; Александров П. С., Лекции по аналитической геометрии..., М., 1968. И. В. Проскуряков.


    Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

    Смотреть что такое "ЛАГРАНЖА МЕТОД" в других словарях:

      Лагранжа метод - Лагранжа метод — метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, λ*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по… … Экономико-математический словарь

      Лагранжа метод - Метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, ?*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по xi и?i . См. Лагранжиан. }