Зародышевые листки позвоночных. Урок на тему «Зародышевое развитие человека

Производные эктодермы выполняют в основном покровную и чувствительную функции, производные энтодермы - функции питания и дыхания, а производные мезодермы - связи между частями зародыша, двигательную, опорную и трофическую функции.

Первым, кто обратил внимание на возникновение органов из зародышевых листков, или пластов, был К. Ф. Вольф (1759). Впоследствии X. Пандер (1817), последователь К. Ф. Вольфа, также описал наличие у куриного эмбриона зародышевых листков. К. М. Бэр (1828) обнаружил наличие зародышевых листков и у других животных, в связи с чем распространил понятие о зародышевых листках на всех позвоночных.

А. О. Ковалевским (1865, 1871), который по праву считается основателем современной теории зародышевых листков. А. О. Ковалевский на основании широких сравнительно-эмбриологических сопоставлений показал, что двуслойную стадию развития проходят почти все многоклеточные организмы. Он доказал сходство зародышевых листков у различных животных не только по происхождению, но и по производным зародышевых листков.

Таким образом, к концу XIX в. сложилась классическая теория зародышевых листков , содержание которой составляют следующие положения:

1. В онтогенезе всех Многоклеточных животных образуются два или три зародышевых листка, из которых развиваются все органы.

2. Зародышевые листки характеризуются определенным поло­жением в теле зародыша (топографией) и соответственно обозна­чаются как экто-, энто- и мезодерма.

3. Зародышевые листки обладают специфичностью, т. е. каж­дый из них дает строго определенные зачатки, одинаковые у всех животных.

4. Зародышевые листки рекапитулируют в онтогенезе пер­вичные органы общего предка всех Metazoa и потому гомоло­гичны.

5. Онтогенетическое развитие органа из того или иного заро­дышевого листка указывает на его эволюционное происхожде­ние из соответствующего первичного органа предка.

Наружный зародышевый листок, или эктодерма, в процессе развития дает такие эмбриональные зачатки, как нервную трубку, ганглиозную пластинку, эктодерму кожи и внезародышевую эктодермую. нервная трубка дает нейроны и макроглию(клетки в мозге, заполняющие пространства между нервными клетками - нейронами - и окружающими их капиллярами) головного и спинного мозга, хвостовую мускулатуру зародышей амфибий, а также сетчатку глаза. Кожная эктодерма дает начало эпидермису кожи и его производным – железам кожи, волосяному покрову, ногтям и пр., эпителию слизистой оболочки преддверия ротовой полости, влагалища, прямой кишки и их железам, а также зубной эмали. Из внезародышевой эктодермы возникает эпителий амниона, хориона и пупочного канатика, а у зародышей пресмыкающихся и птиц – Эпителий серозной оболочки.


Внутренний зародышевый листок, или энтодерма, в развития образует такие эмбриональные зачатки, как кишечную и желточную энтодерму. Кишечная энтодерма является исходной для образования эпителия желудочно-кишечного тракта и желез – железистой части печени, поджелудочной железы, слюнных желез, а также эпителия органов дыхания и их желез. Желточная энтодерма дифференцируется в эпителий желточного мешка. Внезародышевая энтодерма развивается в соответствующую оболочку желточного мешка.

Средний зародышевый листок, или мезодерма, в процессе развития дает хордальный зачаток, сомиты и их производные в виде дерматома, миотома и склеротома (scleros – твердый). а также эмбриональную соединительную ткань, или мезенхиму. Из хордального зачатка развивается хорда, а у позвоночных заменяется скелетогенными тканями. Дерматом дает соединительнотканную основу кожи, миотом – поперечнополосатую мышечную ткань скелетного типа, а склеротом образует скелетные ткани – хрящевую и костную. Нефротомы дают начало эпителию почки, мочевыводящих путей, а вольфовы каналы – эпителию семявыносящих путей. Мюллеровы каналы формируют эпителий яйцевода, матки и первичный эпителиальный покров влагалища. Из спланхнотома развивается целомический эпителий, или мезотелий, корковый слой надпочечников, мышечная ткань сердца и фолликулярный эпителий половых желез. Мезенхима, которая выселяется из спланхнотома, дифференцируется в клетки крови, соединительную ткань, сосуды, гладкую мышечную ткань полых внутренних органов и сосудов. Внезародышевая мезодерма дает начало соединительнотканной основе хориона, амниона, желточного мешка.

Провизорные органы зародышей позвоночных или зародышевые оболочки. Взаимоотношения материнского организма и плода. Влияние вредных привычек родителей (употребление алкоголя и др.) на развитие плода.

Следует различать яйцевые и зародышевые оболочки. 1-е предохраняют яйцо от неблагоприятных воздейсвтий окружающей среды, вторые обеспечивают развитие зародыша (дыхание, питание, выделения), развиваются из клеточного материала уже сформировавшихся зародышевых листков.

Провизорные, или временные, органы образуются в эмбриогенезе ряда представителей позвоночных для обеспечения жизненно важных функций, таких, как дыхание, питание, выделение, движение и др. Недоразвитые органы самого зародыша еще не способны функционировать по назначению, хотя обязательно играют какую-то роль в системе развивающегося целостного организма. Как только зародыш достигает необходимой степени зрелости, когда большинство органов способны выполнять жизненно важные функции, временные органы рассасываются или отбрасываются.

Время образования провизорных органов зависит от того, какие запасы питательных веществ были накоплены в яйцеклетке и в каких условиях среды происходит развитие зародыша. У бесхвостых земноводных, например, благодаря достаточному количеству желтка в яйцеклетке и тому, что развитие идет в воде, зародыш осуществляет газообмен и выделяет продукты диссимиляции непосредственно через оболочки яйца и достигает стадии головастика. На этой стадии образуются провизорные органы дыхания (жабры), пищеварения и движения, приспособленные к водному образу жизни. Перечисленные личиночные органы дают возможность головастику продолжить развитие. По достижении состояния морфофункциональной зрелости органов взрослого типа временные органы исчезают в процессе метаморфоза.

Амнион представляет собой эктодермальный мешок, заключающий зародыша и заполненный амниотической жидкостью. Амниотическая оболочка специализирована для секреции и поглощения амниотической жидкости, омывающей зародыш. Амнион играет первостепенную роль в защите зародыша от высыхания и от механических повреждений, создавая для него наиболее благоприятную и естественную водную среду. Амнион имеет и мезодермальный слой из внезародышевой соматоплевры, который дает начало гладким мышечным волокнам. Сокращения этих мышц вызывают пульсацию амниона, а медленные колебательные движения, сообщаемые при этом зародышу, по-видимому, способствуют тому, что его растущие части не мешают друг другу.

Хорион (сероза) - самая наружная зародышевая оболочка, прилежащая к скорлупе или материнским тканям, возникающая, как и амнион, из эктодермы и соматоплевры. Хорион служит для обмена между зародышем и окружающей средой. У яйцекладущих видов основная его функция - дыхательный газообмен; у млекопитающих он выполняет гораздо более обширные функции, участвуя помимо дыхания в питании, выделении, фильтрации и синтезе веществ, например гормонов.

Желточный мешок имеет энтодермальное происхождение, покрыт висцеральной мезодермой и непосредственно связан с кишечной трубкой зародыша. У зародышей с большим количеством желтка он принимает участие в питании. У птиц, например в спланхноплевре желточного мешка, развивается сосудистая сеть. Желток не проходит через желточный проток, соединяющий мешок с кишкой. Сначала он переводится в растворимую форму под действием пищеварительных ферментов, продуцируемых энтодермальными клетками стенки мешка. Затем попадает в сосуды и с кровью разносится по всему телу зародыша.У млекопитающих нет запасов желтка и сохранение желточного мешка может быть связано с важными вторичными функциями. Энтодерма желточного мешка служит местом образования первичных половых клеток, мезодерма дает форменные элементы крови зародыша. Кроме того, желточный мешок млекопитающих заполнен жидкостью, отличающейся высокой концентрацией аминокислот и глюкозы, что указывает на возможность обмена белков в желточном мешке.

Аллантоис развивается несколько позднее других внезародышевых органов. Он представляет собой мешковидный вырост вентральной стенки задней кишки. Следовательно, он образован энтодермой изнутри и спланхноплеврой снаружи. Прежде всего это вместилище для мочевины и мочевой кислоты, которые представляют собой конечные продукты обмена азотсодержащих органических веществ. В аллантоисе хорошо развита сосудистая сеть, благодаря чему вместе с хорионом он участвует в газообмене. При вылуплении наружная часть аллантоиса отбрасывается, а внутренняя - сохраняется в виде мочевого пузыря.У многих млекопитающих аллантоис тоже хорошо развит и вместе с хорионом образует хориоаллантоисную плаценту.

Термин плацента означает тесное наложение или слияние зародышевых оболочек с тканями родительского организма.

Взаимоотношения материнского организма и плода.

Находясь в чреве матери, плод не испытывает нужды самостоятельно поглощать пищу и кислород, защищаться от атмосферных осадков или заботиться о поддержании температуры своего тела. Все это обеспечивает ему материнский организм. Однако благодаря развитию плода в его организме постепенно созревают все те физиологические механизмы, которые необходимы ему с первой минуты самостоятельной жизни. Отношения в системе мать - плод строятся так, чтобы не только защитить плод от неблагоприятного воздействия факторов окружающей среды, но и создать дополнительный внешний стимул для его развития. Значительная роль в формировании иммунологических отношений в системе мать-плод принадлежит плаценте , где создаются различные условия для прохождения антигенов и иммуноглобулинов в обоих направлениях.

Плацента - достаточно надёжный барьер, препятствующий взаимному проникновению клеток матери и плода, что является определяющим фактором в комплексе естественных механизмов, создающих иммунологическую защиту плода и норм, течение беременности.

Влияние вредных привычек родителей (употребление алкоголя и др.) на развитие плода.

У курящих женщин вероятность рождения мертвого ребенка или самопроизвольного выкидыша в 2 раза выше, чем у некурящих. При курении никотин, легко проникая к плоду через плаценту, может вызывать у него развитие «табачного синдрома». Ежедневное выкуривание беременной 5 сигарет и более подавляет дыхательные движения плода, при этом их уменьшение наблюдается уже через 30 минут после выкуривания первой сигареты. Может наблюдаться даже нарушение ритма сердечных сокращений у внутриутробного плода. Никотин вызывает спазм артерий матки, обеспечивающих детское место и плод всеми жизненными продуктами. В результате нарушается кровоток в плаценте и развивается плацентарная недостаточность, поэтому плод недополучает объем кислорода и питательных продуктов. Особенно чувствительны дети курящих матерей к инфекциям дыхательных путей. Они в 6,5 раз чаще болеют бронхитами, бронхиальной астмой и пневмониями на первом году жизни, чем дети некурящих матерей.

Существенный вред на состояние здоровья матери и плода оказывает так называемое пассивное курение, то есть пребывание некурящей беременной в накуренном помещении. Ежедневное курение отца в присутствии беременной также способно вызывать гипотрофию у плода, хотя и в меньшей степени, чем когда курит сама мать. Алкоголь легко проникает к плоду через плаценту и наносит непоправимый вред его организму. Проникая через клеточные барьеры, окружающие половые клетки, алкоголь подавляет процесс их созревания. Повреждение алкоголем женских половых клеток является причиной самопроизвольных выкидышей, преждевременных родов и мертворождений.У ребенка, рожденного от людей, употребляющих наркотики могут встречаться расстройства желудка, органов дыхания, печени, сердца. Нередко встречаются параличи, чаще всего ног. У ребенка происходит нарушение мозга, и, как следствие, различные формы слабоумия, психоз, нарушения памяти. Новорожденные наркоманов постоянно пронзительно кричат, не переносят яркого света, звука, малейших прикосновений.

Общие и частные критические периоды в развитии человека. Неблагоприятные факторы, действующие на женский организм, нарушающие нормальное строение и созревание половых клеток. Причины мутаций или аномалий развития. Действие фармакологических веществ на организм беременной женщины и плод.

Эти периоды получили название критических, а повреждающие факторы - тератогенны. Некоторые ученые полагают, что наиболее чувствительными к самым разнообразным внешним воздействиям являются периоды развития, характеризующиеся активным клеточным делением или интенсивно идущими процессами дифференциации . Критические периоды не рассматривают как наиболее чувствительные к факторам среды вообще, т.е. независимо от механизма их действия. Вместе с тем установлено, что в некоторые моменты развития зародыши чувствительны к ряду внешних факторов. Критические периоды различных органов и областей тела не совпадают друг с другом по времени. Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов.

П. Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыща, второй - с формированием плаценты .

Имплантация приходится на первую фазу гаструляции, у человека -на конец 1-й -начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза. Повреждающее действие во время имплантации приводит к ее нарушению, ранней смерти зародыша и его абортированию. По некоторым данным, 50-70% оплодотворенных яйцеклеток не развиваются в период имплантации. По-видимому, это происходит не только от действия патогенных факторов в момент начавшегося развития, но и в результате грубых наследственных аномалий.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки развития. Факторы, оказывающие повреждающее воздействие, не всегда представляют собой чужеродные для организма вещества или воздействия. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие, но в других концентрациях, с другой силой, в другое время. К ним относят кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение.

Неблагоприятные факторы, действующие на женский организм, нарушающие нормальное строение и созревание половых клеток.

Причины мутаций или аномалий развития.

Мута́ция - стойкое преобразование генотипа , происходящее под влиянием внешней или внутренней среды. Процесс возникновения мутаций получил название мутагенеза . Мутации делятся на спонтанные и индуцированные .

Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Действие фармакологических веществ на организм беременной женщины и плод.

Лекарственные вещества, проведшие через плаценту, попадают в клетки плода, нередко нарушая их развитие и функцию. Они могут влиять на ДНК, РНК, рибосомы, на активность ферментов клетки. При этом страдает синтез структурных и ферментных белков клетки. Конечный эффект этих нарушений может проявиться в организме плода в виде изменений биохимических, физиологических и морфологических процессов, недостаточности функций органов, в аномалиях их анатомического развития. Лекарственные вещества могут вызывать не только структурные уродства, но и иммунологические, эндокринные и биохимические сдвиги, которые предрасполагают к появлению недоношенных и слабых детей с плохой сопротивляемостью к различным заболеваниям и вредным факторам окружающей среды.

Преформизм и эпигенез. Современные представления о механизмах эмбрионального развития. Степень и конкретные пути контроля со стороны генома и уровень автономности различных процессов в ходе онтогенеза.

В истории человечества существует давний интерес к природе размножения и развития. Эмбриология - наука о зародышевом развитии - одна из древнейших научных дисциплин. От античных времен ведут начало две противоположные точки зрения на причины и движущие силы индивидуального развития организмов преформизм и эпигенез.

Сторонники преформизма (от латинского praeformo - заранее образую, предобразую) исходили из того, что все формы, структуры и свойства будущего организма заложены в нем еще до рождения, даже в половых клетках. Более того, уже в этом еще не родившемся организме содержатся невидимые (очень маленькие) зачатки будущих поколений. Когда стало ясно, что новый организм происходит от слияния яйца и сперматозоида, мнения преформистов о первоисточнике развития резко разделились. Большинство считало, что организм заложен в яйце (оно гораздо крупнее и содержит питательные вещества), тогда как сперматозоид лишь активирует яйцо к развитию. Сторонников этой теории называли овистами (от латинского ovum -яйцо). Другие - их называли анималькулистами (от латинского animalculum зверек,что означало сперматозоид, то есть микроскопический зверек) - видели предсуществующую форму организма именно в сперматозоиде. Яйцо по мнению анималькулистов является лишь питательной средой для развития сперматозоида, подобно тому, как плодородная почва служит кормилицей для прорастающего семени.

В противоположность преформизму сторонники эпигенеза (от греческих epi - над, сверх, после и genesis - происхождение, возникновение) представляли зародышевое развитие как процесс, осуществляемый путем последовательных новообразований структур из недифференцированной массы оплодотворенного яйца. Эпигенетики невольно приходили к признанию неких внешних нематериальныхьфакторов, управляющих морфогенезом. Так, уже Аристотель в противоречие Гиппократу утверждал, развитием управляет некая высшая цель, жизненная сила - энтелехия.

Биология развития стремится выяснить степень и конкретные пути контроля со стороны генома и одновременно уровень автономности онтогенетических процессов, исследуя конкретные онтогенетические механизмы.

Механизмы онтогенеза:

1. пролиферация или размножение клеток

2. миграция или перемещение клеток

3. сортировка клеток, те скопление клеток только с определенными клетками

5. дифференцировка клеток или специализация.

6. Клетка приобретает свои морфологические и функциональные особенности

7. контактные взаимодействия: индукция и компетенция

8. дистантное взаимодействие клеток, тканей и органов

Все эти процессы протекают в определенных пространственно-временых рамках, подчиняясь принципу целотности развивающегося организма.

Общие закономерности онтогенеза многоклеточных. Основные механизмы роста и морфогенеза. Пусковое действие генов. Гипотеза дифференциальной активности генов. Взаимодействие частей развивающегося организма. Эмбриональная индукция. Опыты Шпемана.

Пусковое действие генов. Уже в зиготе имеется вся информация об особенностях будущего организма. В период дробления формируются абсолютно равнозначные или тотипотентные бластомеры. Они обладают всей генетической информацией о будущем организме и могут ее реализовать. Подтверждение этого механизма - наличие монозиготных близнецов. Для объяснения дифференцировки клеток во время развития использована гипотеза дифференциальной активности (экспрессии) генов. «В разные этапы онтогенеза, а также в различных частях зародыша функционируют то одни гены, то другие». Считают, что регуляция генной активности зависит от взаимодействия ДНК и гистоновых и негистоновых белков. Гистогны блокируют транскрипцию. На них могут действовать негистоновые белки, а также различные в-ва, поступающие из цитоплазмы в ядро. Они могут освобождать определенные участки ДНК от гистонов, т.е вкл и выкл гены. Экспрессия генов - сложный этапный процесс, включает внутриклеточные и тканевые процессы. Процесс онтогенза представляет собой цепь реакций, регулирующихся по принципу обратной связи. Накопление в этой цепи в-в образующихся в результате деятельности генов может либо тормозить, либо стимулировать экспрессию генов. Большая часть 9/10 мРНК ОДИНАКОВА по составу в клетках разных стадий онтогенеза. Он необходима для обеспечения жизнедеятельности клеток и считывается с генов «дом. Хоз-ва». 1/10 - мРНК специфичные для тканей, т.е определяют специализацию клеток, они определяются уникальными нуклеотидными последовательностями- генами роскоши и кодируют уникальные белки, белки роскоши.

В ходе онтогенеза многоклеточных организмов происходит рост, дифференцировка и интеграция частей организма. Существует множество типов онтогенеза (например, личиночный, яйцекладный, внутриутробный). У высших многоклеточных организмов онтогенез обычно делят на два периода - эмбриональное развитие (до перехода к самостоятельному существованию) и постэмбриональное развитие (после перехода к самостоятельному существованию).

Эмбриональный период онтогенеза многоклеточных животных включает следующие стадии: зиготы, ее дробления, образования бластулы (однослойного зародыша), гаструлы (двухслойного зародыша) и нейрулы (трехслойного зародыша ).

Вскоре после образования зиготы начинается ее дробление. Дробление - это ряд митотических делений яйца. На ранних стадиях дробления гены яйца не функционируют, и лишь в конце дробления начинается синтез мРНК.

Для яиц с низким содержанием желтка характерно полное равномерное дробление, а для яиц с высоким содержанием желтка - полное неравномерное или неполное. У многих организмов в результате дробления образуется морула - шаровидное скопление бластомеров. Иногда морулу рассматривают как отдельную стадию эмбрионального развития, а иногда как разновидность следующей стадии - бластулы. Существует множество типов бластул: морула, равномерная и неравномерная целобластула, равномерная и неравномерная стерробластула, дискобластула, перибластула. При неравномерном дроблении более крупные бластомеры называются макромеры , а более мелкие - микромеры . Полость бластулы называется бластоцел ь, или первичная полость тела.

Затем в ходе гаструляции бластула превращается в двуслойный зародыш - гаструлу. Существует множество типов гаструляции. У ряда организмов между эктодермой и энтодермой сохраняется первичная полость тела. Центральная же полость гаструлы (гастроцель, или первичная кишка) сообщается с внешней средой с помощью бластопора, или первичного рта.

В ходе нейруляции гаструла превращается в трехслойный зародыш, который у хордовых называется нейрула. Сущность нейруляции заключается в образовании мезодермы - третьего зародышевого листка. Мезодерма представляет собой клеточные пласты, расположенные между энтодермой и эктодермой.

Постэмбриональный период продолжается от перехода организмов к существованию вне яйца или зародышевых оболочек до полового созревания. В постэмбриональном периоде завершаются процессы органогенеза, роста и дифференцировки.

Эмбриональная индукция - взаимодействие между частями развивающегося организма у многоклеточных. Согласно этой гипотезе, существуют определенные клетки, которые действуют как организаторы на другие, подходящие для этого клетки. В условиях отсутствия клеток-организаторов такие клетки пойдут по другому пути развития, отличном от того, в котором они развивались бы в условиях присутствия организаторов.

Морфогенез- возникновение и развитие органов, систем и частей телаорганизмов как в индивидуальном (онтогенез), так и в историческом, или эволюционном, развитии (филогенез). Изучение особенностей морфогенеза на разных этапах онтогенеза в целях управления развитием организмов составляет основную задачу биологии развития, а также генетики, молекулярной биологии, биохимии, эволюционной физиологии, и связано с изучением закономерностей наследственности.

Процесс морфогенеза контролирует организованное пространственное распределение клеток во время эмбрионального развития организма. Морфогенез может проходить также и в зрелом организме, в клеточных культурах или опухолях.

Опыт Шпена.

Направление первых работ Ш. по эмбриональному развитию было подсказано ему его коллегой по Гейдельбергскому университету Густавом Вольфом. Этот ученый обнаружил, что если из развивающегося глаза эмбриона тритона удалить хрусталик, то из края сетчатки будет развиваться новый хрусталик. Ш. был поражен опытами Вольфа и решил продолжить их, сделав упор не столько на том, как регенерирует хрусталик, сколько на том, каков механизм его изначального формирования.

В норме хрусталик глаза тритона развивается из группы клеток эктодермы. Ш. доказал, что сигнал к формированию хрусталика поступает именно от глазного бокала. Он обнаружил, что если удалить эктодерму, из которой должен образоваться хрусталик, и заменить ее клетками из совершенно иной области эмбриона, то из этих пересаженных клеток начинает развиваться нормальный хрусталик. Для решения своих задач Ш. разработал чрезвычайно сложные методы и приборы, многие из которых по сей день используются эмбриологами и нейробиологами для тончайших манипуляций с отдельными клетками.

Взаимодействие частей развивающегося зародыша. Эмбриональная индукция. Э.и.- явление, когда эмбриональные закладки предопределяют закладку и развитие других тканей и органов зародыша. Осуществление индукции возможно лишь при условии, что клетки реагирующей системы СПОСОБНЫ ВОСПРИНЯТЬ ВОЗДЕЙСТВИЕ, т.е являются компетентными. В этом случае они отвечают образованием соответствующих структур. Компетенция возникает на ОПРЕДЕЛЕННЫХ стадиях развития и сохраняется ограниченное время, затем может появиться компетенция к другому индуктору. Развитие зародыша рассматривается, как система взаимодействия зачатков. КАК КАСКАДНЫЕ, ИЕРАРХИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ. Индукция многих структур зависит от предшествующих индукционных событий.

«МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. П. ОГАРЁВА»

Биологический факультет

Кафедра генетики

на тему: зародышевые листки

Выполнил: студент 3 курса

специальности «Биология»

Введение

1. Строение зародышевых листков

2. История развития теории зародышевых листков

3. Образование зародышевых листков

4. Происхождение и эволюционное значение зародышевых листков

5. Положения теории зародышевых листков и возражения против данной теории

Заключение

Литература

Введение

Наряду с возможностью истолкования зародышевых листков с точки зрения их филогенетического значения важно установить ту роль, которую они играют в индивидуальном развитии. Зародышевые листки являются первыми организованными группами клеток в эмбрионе, которые четко отличаются друг от друга своими особенностями и отношениями. Тот факт, что эти отношения в основном одинаковы у всех эмбрионов позвоночных, убедительно говорит об общем происхождении и сходной наследственности у различных членов этой огромной группы животных.

Можно думать, что в этих зародышевых листках начинают впервые создаваться различия разных классов над общим планом строения тела, характерным для всех позвоночных животных.

Образованием зародышевых листков заканчивается период, когда основным процессом развития является лишь увеличение количества клеток, и начинается период дифференциации и специализации клеток. Дифференциация происходит в зародышевых листках еще до того, как мы можем видеть ее признаки с помощью любого из наших микроскопических методов. В листке, который имеет совершенно однородный вид, постоянно возникают локализованные группы клеток с различными потенциями к дальнейшему развитию.


Из зародышевого листка возникают различные структуры. В то же время в зародышевом листке незаметно никаких видимых изменений, благодаря которым они возникают. Последние экспериментальные исследования свидетельствуют о том, насколько рано эта невидимая дифференциация предшествует видимой морфологической локализации клеточных групп, которые мы без труда распознаем в качестве зачатка дефинитивного органа.

1. Строение зародышевых листков

Зародышевые листки состоят из клеточных материалов, которые идут на развитие различных органов и тканей. По своему строению клетки различных зародышевых листков отличаются друг от друга; клетки энтодермы всегда крупнее и менее правильной формы, чем эктодермальные. Энтодерма отличается свойствами будущей закладки, имеющей трофическое значение. Эктодерма остается на поверхности и первоначально имеет защитное значение. В отличие от энтодермы она состоит из правильно расположенных клеток более однообразной формы. Гаструляция приводит к заметному различию между наружным и внутренним листками и зародышевый материал становится неоднородным. Процесс, который приводит к появлению различий в первоначально однородном материале, называется дифференцировкой.

Большую роль в дифференцировке клеточного материала играют первичные организаторы или индукторы. Индукторы – это химические вещества, которые выделяются группами клеток и влияют на другие группы клеток, изменяя их путь развития. В результате дифференцировки зародышевых листков образуются различные органы и ткани. При исследовании этих процессов у разных животных было установлено, что судьба каждого зародышевого листка у всех многоклеточных, как правило, одинакова.

Так, из эктодермы развивается эпителий кожи, кожные железы, многие роговые производные, нервная система и органы чувств. Из энтодермы у всех животных формируется эпителий средней части кишечного тракта, печень и пищеварительные железы. У хордовых животных формируется и эпителий дыхательных путей. Из мезодермы развиваются кровь и лимфа, мышечная, соединительная, хрящеваяи костная ткани, эпителий почек, стенка вторичной полости тела, часть тканей половой системы.

2. История развития теории зародышевых листков

Теория зародышевых листков является одним из крупнейших обобщений сравнительной эмбриологии XIX в. Впер­вые зародышевые листки были описаны X. Пандером (1817), ко­торый обнаружил, что на некоторых стадиях развития куриный зародыш состоит из трех тонких пленок или пластов, клеточная природа которых еще не была известна. Наружный листок Пандер назвал серозным, самый глубокий - слизистым, а проме­жуточный - кровяным. Эти наблюдения были подтверждены К. Бэром (1828, 1837), который нашел зародышевые листки и у некоторых других животных (Рыб, Лягушки, Черепахи). Бэр различал два первичных листка - анимальный и вегета­тивный, которые затем снова разделяются на вторичные заро­дышевые листки: анимальный листок дает кожный и мускульный, а вегетативный - сосудистый и слизистый. Согласно современной терминологии, кожный листок соответствует эктодерме, слизис­тый - энтодерме, а мускульный и сосудистый - париетальному и висцеральному листку мезодермы. Ошибка Бэра состояла лишь в том, что он описал происхождение этих двух мезодермальных слоев у Позвоночных из разных источников. Термины «экто­дерма» и «энтодерма» были заимствованы эмбриологами из зооло­гии (так еще раньше были названы эпителиальные слои, из ко­торых состоит тело взрослых Книдарий). Клеточное строение зародышевых листков куриного зародыша было установлено Ремаком в 1855 г.


Первоначально считалось, что зародышевые листки обра­зуются только при развитии Позвоночных. Однако после работ А. О. Ковалевского и И. И. Мечникова, изучивших развитие почти всех классов беспозвоночных, стало ясно, что в той или иной форме зародышевые листки представлены у всех Много­клеточных животных. А. О. Ковалевский (1871) в статье «Эмбри­ологические исследования червей и членистоногих» в заключи­тельной части писал: «Если мы теперь сравним развитие опи­санных нами червей с развитием других животных, то нам особенно бросается в глаза аналогия зародышевых листков с та­ковыми позвоночных животных, вплоть до отдельных деталей; те же самые два первичных листа, которые играют главную роль в развитии червей, представлены также у позвоночных; как у одних, так и у других средний лист появляется лишь впоследствии. Судьбы листов и закладки органов чрезвычайно совпадают, вплоть до отдельных процессов»*.

И. И. Мечников обнаружил зародышевые листки у некоторых животных с сильно измененным развитием и впервые поставил вопрос об эволюции процессов гаструляции.

3. Образование зародышевых листков

Зародышевые листки образуются у животных и человека в процессе, который носит название гаструляции.

Среди животных различают двуслойные и трехслойные таксоны. Начиная с плоских червей, животные имеют 3 зародышевых листка: эктодерму (наружный), энтодерму (внутренний) и мезодерму (средний). Мезодерма есть только у трехслойных животных, а эктодерма и энтодерма – у двуслойных (губки, мшанки, кишечнополостные) и трехслойных животных.

Из эктодермы в онтогенезе развиваются нервная система, кожа, кожные железы, производные кожы, такие как перья, волосы, ногти, когти, чешуя, а также эпителий переднего и заднего отдела пищеварительной трубки, кости висцерального скелета.

Из энтодермы образуется выстилка кишечника; энтодерма обеспечивает питание зародыша; из этого зародышевого листка развиваются органы дыхания, слизистые оболочки пищеварительной системы, пищеварительные железы (печень и др.).

Из мезодермы образуются органы кровеносной, выделительной и половой систем, серозные оболочки целома и внутренних органов, а также кости опорного скелета и мышцы.

Современные методы исследования эмбрионального процесса позволили установить, что зародышевые листки не имеют значения примитивного органа и не повторяют какую-то стадию филогенетического развития. Их следует рассматривать как материал определенного комплекса будущих органов, которые находятся на одном уровне развития и морфологически сходны. Процесс образования зародышевых листков означает определенную стадию в развитии органов, которую проходит подавляющее большинство животных.

Обычно в состав каждого органа входят ткани, происходящие из разных зародышевых листков, но мы причисляем орган к производным того или иного листка в зависимости от того, из чего развивается его основной зачаток. Так, стенка средней кишки у Позвоночных состоит из энтодермального эпителия и мезодермальных по происхождению гладких мышц и слоя соеди­нительной ткани. Но так как первый зачаток средней кишки образуется из энтодермы, а мезодермальные элементы присоеди­няются к нему позднее, и пищеварительную функцию выполняет энтодермальный эпителий, то средняя кишка считается энтодер-мальным органом.

Наличие зародышевых листков, сходным образом участвую­щих в построении тела всех Metazoa, сделало возможным со­поставление развития далеких в систематическом отношении групп животных. В настоящее время просто невозможно описать развитие какого-нибудь животного, не упоминая зародышевых листков.

4. Происхождение и эволюционное значение зародышевых листков

Возникает вопрос, каково происхождение и эволюционное значение зародышевых листков. По мнению Э. Геккеля (1874), первичные зародышевые листки (экто - и энтодерма) повторяют в развитии (рекапитулируют) первичные органы (кожу и кишеч­ник) гипотетического общего предка Metazoa - Гастреи. Из этого следует, что зародышевые листки у всех животных гомологич­ны. И. И. Мечников (1886) тоже придавал зародышевым лист­кам рекапитуляционное значение, но он представлял общего предка Metazoa в форме Фагоцителлы. По Мечникову, кинобласт представлен во время развития эктодермой, и все органы, которые возникли в процессе эволюции из кинобласта, имеют во время индивидуального развития эктодермальное происхожде­ние. Эволюция фагоцитобласта происходила в двух направле­ниях. У Кишечнополостных он целиком эпителизовался и превра­тился в выстилку гастральной полости, в индивидуальном развитии он представлен энтодермой. У Трехслойных животных толь­ко центральная часть фагоцитобласта превратилась в кишечник и представлена в онтогенезе энтодермой, а периферическая часть дала ткани внутренней среды и представлена в онтогенезе ме­зодермой.

5. Положения теории зародышевых листков и возражения против данной теории

Таким образом, к концу XIX в. сложилась классическая теория зародышевых листков, содержание которой составляют следующие положения:

1. В онтогенезе всех Многоклеточных животных образуются два или три зародышевых листка, из которых развиваются все органы.

2. Зародышевые листки характеризуются определенным поло­жением в теле зародыша (топографией) и соответственно обозна­чаются как экто-, энто - и мезодерма.

3. Зародышевые листки обладают специфичностью, т. е. каж­дый из них дает строго определенные зачатки, одинаковые у всех животных.

4. Зародышевые листки рекапитулируют в онтогенезе пер­вичные органы общего предка всех Metazoa и потому гомоло­гичны.

5. Онтогенетическое развитие органа из того или иного заро­дышевого листка указывает на его эволюционное происхожде­ние из соответствующего первичного органа предка.

К настоящему времени накопилось много фактов, которые на первый взгляд не укладываются в рамки классической теории зародышевых листков. Поэтому стали появляться утверждения, что эта теория устарела, переживает кризис, нуждается в пере­смотре. Все эти критические высказывания основаны на слиш­ком формальном антиэволюционном понимании зародышевых листков Рассмотрим некоторые наиболее существенные возражения против теории зародышевых листков.

1. Предметом многих разногласий послужило то обстоятель­ство, что мезодерма может происходить как из экто-, так и из энтодермы, а это ставит под сомнение ее единство как заро­дышевого листка. Многие авторы считают нужным различать мезобласт (энтомезодерму) имезенхиму (эктомезодерму). Но различия между этими частями мезодермы не так зна­чительны, как кажется на первый взгляд. У форм со спираль­ным дроблением мезенхима происходит от микромеров 2-го и 3-го квартетов, а мезобласт относится к 4-му квартету: все эти клетки располагаются по краям бластопора, т. е. в погра­ничной зоне между экто - и энтодермой. Миграция в бластоцель мезенхимных элементов является частью гаструляции. Можно предположить также, что эволюционное образование фагоцито­бласта, периферическая часть которого представлена мезодермой, было длительным процессом, и его пополнение за счет кинобласта продолжалось очень долго, что находит свое отражение в онто­генезе.

2. У некоторых животных зародышевые листки представлены в очень усложненной форме. У Насекомых и Птиц, например, наблюдается так называемая двуфазная или даже мно­гофазная гаструляция, которая как бы распадается на ряд независимых актов Нередко при этом еще до за­вершения образования зародышевых листков начинается органо­генез, обособляются зачатки органов. Зародышевые листки ока­зываются выраженными неясно. Но эта ситуация легко может быть объяснена как результат вторичного изменения хода раз­вития. Нельзя забывать, что все онтогенетические процессы в такой же степени подвержены эволюции, как и органы взрос­лых животных. Даже в пределах типа Cnidaria гаструляция проделала значительную эволюцию, не удивительно поэтому, что у высших животных, далеко стоящих от истоков Metazoa, про­цессы гаструляции подверглись таким глубоким вторичным изме­нениям. Скорее надо удивляться тому, что мы все-таки разли­чаем у них зародышевые листки, хотя и в модифицированном виде.

3. В случае строго детерминированного дробления (у Нема­тод, Кольчатых червей, Моллюсков, Асцидий) отдельные бласто-меры или группы бластомеров уже представляют собой зачатки определенных органов. Так, у Кольчатого червя Arenicola на стадии 64 бластомеров на анимальном полюсе различается так называемая розетка, состоящая из 4 клеток, которая является зачатком чувствительного султанчика, а в экваториальной зоне располагаются 4 группы клеток по 4 в каждой - трохоблас-т ы, из которых развивается прототрох. На вегетативном полю­се находятся 7 крупных богатых желтком клеток - зачаток ки­шечника, к которым с будущей спинной стороны примыкает клетка, дающая начало мезодермальным телобластам. Создается впечатление, что образующиеся затем заро­дышевые листки не имеют самостоятельного значения, а пред­ставляют собой лишь временное объединение уже существующих разнородных зачатков.

Однако это объединение зачатков в зародышевых листках не случайно, а обусловлено исторически. Так, в состав эктодермы входят зачатки только тех органов, которые развиваются из нее и при недетерминированном дроблении (кожные покровы, органы чувств и т. д.). Кроме того, ранняя детерминация бласто­меров тоже является следствием вторичных изменений в ходе развития - это приспособление, позволяющее зародышу уско­ренным путем превратиться в личинку, состоящую еще из не­многих клеток, но уже способную самостоятельно выполнять все жизненно важные функции (кроме, разумеется, половой).

4. Критики теории зародышевых листков обычно указывают на существование различных исключений, к числу которых относят извращение зародышевых листков у Губок, отсутствие ясно выраженных листков у многих Плоских червей, отсутствие энто­дермы у большинства Мшанок и т. д. Все эти конкретные при­меры мы рассмотрим вместе с подробным описанием развития названных животных. Отметим только, что возникновение всех частных отклонений от общего правила вполне может быть по­нято с эволюционной точки зрения, а причины, их вызвавшие, в большинстве случаев ясны. Кроме этого, эти отклонения обычно наблюдаются у довольно низко организованных животных, а у высших (Членистоногие, Позвоночные) специфичность зародыше­вых листков строго соблюдается. Это наводит на мысль, что у низших Metazoa зародышевые листки обладают большой лабиль­ностью, а их специфичность появилась позднее и в процессе эволюции прогрессирует.

5. При бесполом размножении, различных восстановительных процессах и экспериментальном вмешательстве в ход развития часто наблюдается нарушение принципа специфичности заро­дышевых листков. Так, при почковании Мшанок и некоторых Асцидий в состав почки ткани энтодермальной природы не входят и кишечник развивается из эктодермы. У Немертины Lineus lacteus можно отрезать небольшой предротовой отдел тела, тоже не содержащий энтодермальных органов, и из этого фрагмента развивается целое животное.

Чтобы понять природу этих явлений, нужно вспомнить, на чем основана специфичность зародышевых листков. В эмбриоге­незе из каждого листка развиваются те органы, которые исто­рически выделились из состава соответствующего клеточного слоя, т. е. в основе специфичности листков лежит явление река­питуляции. Сама рекапитуляция (как показано И. И. Шмальгау-зеном) в значительной степени обусловлена тем, что между частями зародыша существуют определенные исторически сло­жившиеся морфогенетические корреляции. Но при восстанови­тельных процессах и бесполом размножении развитие протекает не на основе гаструлы, а на основе тканей взрослого животного, между которыми имеются иные физиологические отношения. За­родышевые листки - это исключительно эмбриональные образо­вания и у взрослых животных, как таковые, отсутствуют. Поэто­му специфичность зародышевых листков утрачивает свое значение.

К этому можно добавить, что способность к бесполому размно­жению и более широкие морфогенетические способности тканей свойственны лишь животным, не достигшим очень высокого эволю­ционного уровня, что говорит о прогрессирующей специфичности зародышевых листков и тканей взрослого животного.

Современную точку зрения на зародышевые листки хорошо выражает следующая цитата из «Сравнительной анатомии беспо­звоночных» В. Н. Беклемишева: «...кинобласт и фагоцитобласт являются основными пластами тела и непосредственными органами животного только у личинок кишечнополостных и губок и у наиболее просто устроенных из гидроидов, вроде Protohydra. У всех остальных Enterozoa в силу концентрации функций и интеграции органов первичные пласты распадаются на ряд про­изводных, которые сложным образом переплетаются между со­бой. В силу этого у вышестоящих Metazoa первичные пласты низводятся на степень зародышевых пластов; их больше нет, как таковых, у взрослого, но они сохраняются в виде первичных пластов зародыша, дающих начало определенным клеточным системам, тканям и элементарным органам взрослого организ­ма. Однако эти зародышевые пласты остаются гомологичными друг другу у всех Metazoa повсюду, кроме взрослых губок, сохраняя одни и те же основные наборы характерных призна­ков взаимного положения и проспективного значения» .

Заключение

Итак, зародышевые листки не воображаемое понятие, они реально существуют, в них проявляется определенный тип пер­вичной дифференциации клеточного материала при развитии Metazoa из яйца. Постоянство, с которым зародышевые листки воспроизводятся в развитии подавляющего большинства живот­ных, может быть объяснено только существованием «истори­ческих традиций», т. е. рекапитуляцией. Но не следует рассмат­ривать зародышевые листки как нечто стабильное и неизменное; не следует забывать о возможных эволюционных преобразова­ниях любых онтогенетических процессов, в том числе и развития зародышевых листков.

Литература

1. Иванова-Казас О. М., Кричинская Е. Б. Курс сравнительной эмбриологии беспозвоночных животных. Л. Изд-во Ленингр. Ун-та, 1988.

2. http:///biologia/26-zarodyshevye-listki. html

3. Большая Советская Энциклопедия, БСЭ

У позвоночных животных есть особый эмбриональный зачаток, называемый нервным гребнем (он расположен рядом с нервной трубкой). Из клеток нервного гребня образуется удивительно много разных структур, от некоторых нервных узлов до большей части черепа. Многие современные ученые считают нервный гребень четвертым зародышевым листком, наряду с эктодермой, энтодермой и мезодермой. У ближайших родственников позвоночных - оболочников - есть группа зародышевых клеток, близкая по свойствам к нервному гребню, которая дифференцируется в пигментные клетки покровов. Вероятно, эта группа клеток сохранилась и у позвоночных, значительно расширив набор путей своей дифференцировки. Кроме того, у позвоночных появились новые регуляторные гены с экспрессией, специфичной для нервного гребня; это было облегчено тем, что в их эволюции произошла полногеномная дупликация. Таким образом, две уникальные особенности подтипа позвоночных - полногеномная дупликация и присутствие «четвертого зародышевого листка» - наверняка связаны между собой.

Можно ли свести устройство всех животных к единой схеме? Простого ответа на этот вопрос нет. Все зависит от детальности требуемой схемы и от того, как именно мы ее собираемся использовать. Тем не менее вопрос о наличии у животных «единого плана строения» рассматривался в классической зоологии как важнейший, и между сторонниками разных ответов на него бывали грандиозные споры (см., например: Б. Жуков, 2011. Спор двух истин). И правда, вопрос этот важен - хотя бы потому, что любая наука стремится описывать свои объекты по общему для всех шаблону, а «единый план строения» как раз и мог бы предоставить такой шаблон.

В середине XIX века эмбриология подарила эволюционной науке ценное обобщение, позволившее, по крайней мере, сравнивать сколь угодно разных животных между собой. Было установлено, что зародыш любого (или почти любого) животного, достигнув определенной стадии, делится на устойчивые слои клеток, которые называются зародышевыми листками . Всего зародышевых листков три: эктодерма (наружный), энтодерма (внутренний) и мезодерма (средний). Из эктодермы образуется кожный покров (эпидермис) и нервная система. Из энтодермы образуется кишечник - точнее, пищеварительный тракт - и органы, развивающиеся как его выросты, например печень. Из мезодермы, как правило, образуются опорно-двигательная, кровеносная и выделительная системы.

У некоторых животных (например, у гидроидных полипов, к которым относится пресноводная гидра) есть эктодерма и энтодерма, но мезодермы нет. У двусторонне-симметричных животных, к которым относимся и мы, есть все три зародышевых листка. Животных с двумя зародышевыми листками называют двуслойными (диплобластами), животных с тремя зародышевыми листками - трехслойными (триплобластами).

Автор известного курса общей эмбриологии Б. П. Токин назвал теорию зародышевых листков «самым крупным морфологическим обобщением за всю историю эмбриологии». К рубежу XIX–XX веков эта теория стала общепринятой. Более того, сложилось своеобразное представление о «святости» зародышевых листков, границы которых считались непоколебимыми. Если некоторый орган образуется из одного зародышевого листка, он никогда, ни у какого организма не может образоваться из другого.

Но, как часто бывает, живая природа оказалась объемнее академических схем. В данном случае это выяснилось быстро. В 1893 году американская исследовательница-эмбриолог Джулия Платт (Julia Platt) обнаружила, что некоторые хрящи жаберного аппарата позвоночных развиваются не из мезодермы (как следовало бы ожидать по классической теории зародышевых листков), а из эктодермы. Джулия Платт сделала целую серию работ по прослеживанию судьбы эктодермальных клеток, образующих хрящи. Ее результаты были подтверждены несколькими другими эмбриологами. Но широкого признания это открытие не нашло, в основном из-за чисто догматических сомнений: хрящам «положено» развиваться из мезодермы - значит, развиваться из эктодермы они не могут, и всё тут! Джулия Платт даже не получила постоянной ставки в университете, после чего решила вообще оставить науку. Она занялась общественной деятельностью, стала заметным в штате Калифорния политиком, много сделала для охраны природы, так что человечество в целом тут, может, и не пострадало. Но вот особое происхождение жаберных хрящей стало общепринятым фактом только в конце 1940-х годов, после очень тонких опытов шведского эмбриолога Свена Хёрстадиуса (Sven Hörstadius), усомниться в результатах которых было уже трудно.

Казалось бы, какое значение для нашего мировоззрения может иметь вопрос о том, из каких именно зародышевых клеток формируются жаберные дуги тритона или акулы? Не мелочь ли это? Нет, не мелочь. Потянув, как за ниточку, за данные Платт и Хёрстадиуса, мы оказываемся перед серьезной макроэволюционной проблемой.

Мы уже знаем, что эктодерма - самый внешний из трех зародышевых листков. У позвоночных она делится на две части: (1) покровная эктодерма и (2) нейроэктодерма. Из покровной эктодермы образуется эпидермис, из нейроэктодермы - центральная нервная система. Покровная эктодерма, естественно, одевает тело будущего животного снаружи. Что касается нейроэктодермы, то она сначала представляет собой расположенную на будущей спине нервную пластинку , которая потом погружается, сворачивается и замыкается в нервную трубку . Эта трубка и становится центральной нервной системой, то есть мозгом (спинным и головным).

На самой границе нейроэктодермы и покровной эктодермы у позвоночных находится группа клеток, называемая нервным валиком , или нервным гребнем . Клетки нервного гребня не входят ни в состав нервной трубки, ни в состав эпидермиса. Зато они способны расползаться по всему организму, мигрируя, как амебы, с помощью ложноножек. Именно судьбу клеток нервного гребня и изучала Джулия Платт. Действительно, из них формируются многочисленные структуры, далеко не только нервные. Свен Хёрстадиус в свое время показал, что если у зародыша хвостатой амфибии микрохирургически удалить нервный гребень в передней трети тела, то у него нормально развивается затылок, нормально развиваются ушные капсулы - а всего остального черепа просто нет. Ни большая часть мозговой коробки, ни капсулы органов обоняния, ни челюсти не развиваются без вклада клеток нервного гребня (рис. 2).

Вот список (наверняка неполный) производных нервного гребня у позвоночных:

  • Нервные узлы спинных корешков спинномозговых нервов (часто их называют просто спинальными ганглиями).
  • Нервные узлы вегетативной нервной системы (симпатической, парасимпатической и метасимпатической).
  • Мозговое вещество надпочечников .
  • Шванновские клетки , образующие оболочку отростков нейронов.
  • Внутренняя выстилка (эндотелий) и гладкомышечный слой некоторых сосудов, в том числе аорты.
  • Ресничные мышцы, сужающие и расширяющие зрачок.
  • Одонтобласты - клетки, выделяющие дентин, твердое вещество зубов.
  • Пигментные клетки покровов: эритрофоры (красные), ксантофоры (желтые), иридофоры (отражающие), меланофоры и меланоциты (черные).
  • Часть адипоцитов - клеток жировой ткани.
  • Парафолликулярные клетки щитовидной железы, выделяющие гормон кальцитонин .
  • Хрящи и кости черепа, в первую очередь его висцерального (глоточного) отдела, в который входят не только жаберные дуги, но и челюсти.

Богатый перечень, не правда ли? Ну, спинномозговые ганглии - это неудивительно: они расположены как раз примерно на месте нервного гребня, клеткам которого в данном случае даже не приходится совершать миграцию. Вегетативные ганглии - тоже ничего удивительного. Они расположены гораздо дальше от спинного мозга, но, в конце концов, это часть нервной системы. И мозговое вещество надпочечников - это фактически вегетативный ганглий, только преобразованный. И шванновские клетки - часть нервной ткани. Но дальше-то в списке идут структуры, не имеющие к нервной системе никакого отношения, притом разнообразные и многочисленные. У человека есть и болезни, вызываемые аномалиями производных нервного гребня, - нейрокристопатии .

Исключительно важен последний пункт списка: череп! Из нервного гребня образуется, собственно, большая его часть (кроме слухового отдела и затылка). Между тем весь остальной скелет - позвоночник, скелет конечностей - образуется из мезодермы. Классическая концепция, согласно которой однотипные органы не должны развиваться из разных зародышевых листков, тут явно дала сбой.

Еще один важный момент: весь список производных нервного гребня относится не к хордовым , а именно к позвоночным . Кроме позвоночных в тип хордовых входят еще две современные группы животных: оболочники и ланцетники . Так вот у них нервный гребень не выражен. Это уникальный признак подтипа позвоночных.

Что же такое нервный гребень? Если это часть эктодермы (как считалось во времена Джулии Платт), то какая-то уж слишком необычная. В 2000 году канадский эмбриолог Брайан Холл (Brian Keith Hall) предложил считать нервный гребень не чем иным, как отдельным - четвертым - зародышевым листком. Эта трактовка быстро распространилась в научной литературе, где нервный гребень сейчас вообще является популярной темой. Получается, что позвоночные - единственные четырехслойные животные (квадробласты).

Четвертый зародышевый листок - такая же важная особенность позвоночных, как, например, случившаяся в начале их эволюции полногеномная дупликация (см., например: Своим сердцем позвоночные обязаны полногеномной дупликации , «Элементы», 17.06.2013). Но как он возник? Американские биологи Уильям Муньос (William A. Muñoz) и Пол Трэйнор (Paul A. Trainor) опубликовали статью о современном состоянии этой проблемы (рис. 1). Пол Трэйнор - видный эмбриолог позвоночных, уже много лет специализирующийся как раз на нервном гребне, так что обзор, подписанный им, точно заслуживает внимания.

По современным данным, от эволюционного древа хордовых первой отошла веточка, ведущая к ланцетнику (см., например: Причина особенностей генома оболочников - детерминированность их эмбрионального развития , «Элементы», 01.06.2014). Оболочники и позвоночные - более близкие родственники; вместе они образуют группу, которая называется Olfactores («животные с органом обоняния»). Раз ланцетник представляет более древнюю ветвь, то у него можно ожидать более древних признаков. Действительно, никаких близких аналогов клеток нервного гребня у ланцетника не найдено. Большинства органов и тканей, которые у позвоночных образуются из материала нервного гребня, в его теле просто нет. Существует одно серьезное исключение: волокна чувствительных спинномозговых нервов ланцетника окружены вспомогательными (глиальными) клетками, очень похожими на шванновские клетки позвоночных. Шванновские клетки - важнейшие производные нервного гребня. Но их аналоги у ланцетника образуются из обычной нейроэктодермы, то есть из материала нервной трубки. Этот пример только подтверждает: никакого нервного гребня у ланцетника нет.

С оболочниками дело обстоит сложнее и интереснее. У асцидии Ciona intestinalis (вполне типичный и хорошо изученный оболочник) аналоги производных нервного гребня есть - это пигментные клетки, содержащие меланин. И их эмбриональный источник расположен как раз «где надо»: на границе нервной пластинки и покровной эктодермы. Особенности индивидуального развития асцидии позволяют проследить судьбу этих клеток очень точно. Прежде чем занять свое место в покровах, они совершают долгую миграцию (иногда сквозь рыхлую мезодерму, а иногда между мезодермой и эпидермисом); все это очень похоже на поведение клеток типичного нервного гребня. Более того, в предшественниках пигментных клеток асцидии экспрессируется антиген HNK-1, специфичный для клеток нервного гребня позвоночных, вплоть до птиц и млекопитающих.

«Нервный гребень» асцидии происходит от определенного бластомера (то есть от определенной клетки раннего зародыша; для асцидии составлена карта раннего развития, где все бластомеры пронумерованы). Интересно, что пигментными клетками становятся не все потомки этого бластомера. Некоторые из них входят в состав мезодермы и могут, например, становиться клетками крови или мышцами стенки тела. Связь нервного гребня и мезодермы изучена пока недостаточно подробно, но она наверняка не случайна. Похоже, здесь мы прикоснулись к довольно тонкому и глубокому эволюционному механизму. У большинства животных пигментные клетки развиваются именно из мезодермы. Скорее всего, так было и у предков асцидии. Затем, в процессе эволюции хордовых, возникающий нервный гребень «перехватил» у мезодермы путь дифференцировки пигментных клеток, начав формировать их из себя. У позвоночных этот процесс продолжился: нервный гребень «перехватил» пути дифференцировки еще и таких традиционно мезодермальных тканей, как хрящ, кость, жировая ткань и гладкие мышцы, причем во всех этих случаях - только частично.

Именно так мог бы проявляться меторизис - процесс изменения границы зародышевых листков, когда один из них частично замещает другой. Это понятие ввел в 1908 году профессор Петербургского (впоследствии Петроградского) университета, академик Владимир Михайлович Шимкевич . Но Шимкевич не знал, что путем меторизиса может образоваться целый новый зародышевый листок. У позвоночных, получается, произошло именно это. Вот чем уникален их план строения.

Скелетная ткань, которая у всех известных нам животных развивается исключительно из нервного гребня - это дентин. К счастью, дентин очень тверд, и он отлично сохраняется в ископаемом состоянии. Например, мы знаем, что представители одной из самых древних групп бесчелюстных позвоночных - Pteraspidomorphi - были буквально закованы в броню из дентина (рис. 3). Видимо, это можно рассматривать как документальное свидетельство того, что нервный гребень у них уже был полностью развит. Но скорее всего, он возник еще раньше.

Остается еще один интригующий вопрос. Связаны ли между собой два уникальных признака позвоночных: четвертый зародышевый листок и полногеномная дупликация?

Да, такая связь скорее всего есть. Это можно показать на некоторых примерах, несмотря на то, что система генов, управляющих развитием нервного гребня, изучена пока не очень полно. Считается общепризнанным, что в начале эволюции позвоночных произошло подряд два события полногеномной дупликации (whole-genome duplication event, WGD). Дупликация, то есть удвоение всего генома, не может не привести к появлению дополнительных копий генов, в том числе и контролирующих индивидуальное развитие. Пример такого гена - ген FoxD , относящийся к крупному генному семейству Fox . У ланцетника этот ген один. Область его экспрессии включает некоторые участки нервной трубки, а также осевую мезодерму. У асцидии ген FoxD тоже один, поскольку никакой полногеномной дупликации у оболочников не было. Но у асцидии, в отличие от ланцетника, есть зачаток нервного гребня. Ген FoxD экспрессируется и в нем тоже. А у позвоночных генов FoxD становится несколько, и в клетках нервного гребня экспрессируется только один из них - ген FoxD3 . Это - разделение функций, типичное для последствий дупликации. Есть идея, что любая дупликация сама по себе «побуждает» новые копии гена по возможности разделять между собой задачи, чтобы в генной сети не возникало сбоев из-за дублирования (см. Конфликт между копиями удвоившегося гена ведет к избыточному усложнению генно-регуляторных сетей , «Элементы», 10.10.2013).

С другой стороны, можно сказать, что дупликация дала геному позвоночных дополнительные степени свободы, которые пригодились, в частности, при создании нового зародышевого листка. Ведь у асцидии такого разнообразия производных нервного гребня нет и отдаленно; у них это рядовой мелкий зачаток, обеспечивающий формирование единственного типа клеток. У позвоночных этот зачаток «взбесился», захватив огромное количество разных путей дифференцировки вместе с типами клеток, к которым эти пути ведут. А увеличение числа генов явно послужило тут предпосылкой.

В свете этих данных старое наивное представление, что позвоночные устроены сложнее всех других животных, начинает, как ни странно, выглядеть верным. Полногеномная дупликация и новый зародышевый листок - весомые объективные показатели сложности. Еще одним подобным показателем может быть, например, количество регуляторных микроРНК (см. Усложнение организма у древних животных было связано с появлением новых регуляторных молекул , «Элементы», 04.10.2010). Но пример с нервным гребнем даже ярче.

Типы гаструляции.

По окончании периода дробления зародыши всех многоклеточных животных вступают в период образования зародышевых слоев (листков). Этот этап называется гаструляцией.

В процессе гаструляции различают два этапа. Сначала образуется ранняя гаструла, имеющая два зародышевых листка: наружный – эктодерму и внутренний – энтодерму. Затем наступает поздняя гаструла, когда образуется средний зародышевый листок – мезодерма. Образование гаструлы протекает по-разному.

Выделяют 4 типа гаструляции:

1) Иммиграция - гаструляция путем выселения отдельных клеток из бластодермы внутрь. Впервые описана И. И. Мечниковым у зародышей медуз. Иммиграция может быть униполярной, биполярной и мультиполярной, т. е. при иммиграции клетки выселяются из одной, двух или нескольких зон сразу. Иммиграция, наблюдающаяся у кишечно-полостных, стоящих в эволюционном ряду ниже всех многоклеточных, является самым древним типом гаструляции.

2) Инвагинация - гаструляция путем впячивания вегетативного полюса. Она характерна для низших хордовых, иглокожих, некоторых кишечно-полостных, т.е. она наблюдается у зародышей, развивающихся из изолецитальных яиц, характеризующихся полным равномерным дроблением.

3) Эпиболия - обрастание.

Если зародыш развивается из телолецитального яйца, а на вегетативном полюсе бластулы находятся крупные, богатые желтком макромеры, то прогибание вегетативного полюса затруднено, и гаструляция происходит за счет быстрого размножения микромеров, которые обрастают вегетативный полюс. При этом макромеры оказываются внутри зародыша. Эпиболия наблюдается у земноводных, она сочетается с перемещением бластодермы внутрь зародыша (инвагинация) на границе анимального и вегетативного полюсов, т. е. эпиболия в чистом виде практически не встречается.

4) Деляминация - расслоение. При этом типе гаструляции, наблюдающейся у некоторых кишечно-полостных, имеющих бластулу в виде морулы (отсутствует в бластуле бластоцель), клетки бластодермы делятся на наружные и внутренние. В результате за счет наружных клеток образуется эктодерма гаструлы, а за счет внутренних - энтодерма.

Рис. 4. Типы гаструл: а – инвагинационная гаструла; б, в – две стадии развития иммиграционной гаструлы; г, д – две стадии развития деляминационной гаструлы; е, ж – две стадии развития эпиболической гаструлы; 1 – эктодерма; 2 – энтодерма; 3 – бластоцель.

Несмотря на разнообразие типов гаструляции, сущность процесса сводится к одному: однослойный зародыш (бластула) превращается в двухслойный зародыш (гаструлу).

1.5.4. Способы образования третьего зародышевого листка

У всех многоклеточных животных, кроме губок и кишечнополостных, вслед за образованием экто- и энтодермы развивается третий зародышевый листок - мезодерма. Мезодерма имеет двойное происхождение. Одна ее часть имеет вид рыхлой массы клеток, выселяющихся поодиночке, из других зародышевых листков. Эта часть называется мезенхимой. Из мезенхимы впоследствии образуются все виды соединительной ткани, гладкая мускулатура, кровеносная и лимфатическая системы. В процессе филогенеза она возникла раньше. Вторая часть мезодермы называется мезобластом. Она возникает в виде компактного двусторонне-симметричного зачатка. Мезобласт образовался в филогенезе позже мезенхимы. В онтогенезе он развивается различными способами.

Телобластический способ , главным образом, наблюдается у первичноротых животных (типично протекает у моллюсков, кольчатых червей, ракообразных). Он проходит путем врастания многоклеточных зачатков с двух сторон бластопора или путем внедрения в этих же местах двух крупных клеток - телобластов. В результате размножения телобластов, от которых отделяются мелкие клетки, формируется мезодерма.

Энтероцельный способ наблюдается у вторичноротых (типичное течение у иглокожих, ланцетника). У них мезобласт отшнуровывается от стенки первичной кишки в виде парных мезодермальных карманов с зачатками целомической полости внутри.

Следовательно, на стадии образования зародышевых листков имеет место один и тот же процесс, варьирующий только в деталях. Сущность происходящих явлений заключается в дифференцировке трех зародышевых слоев: наружного - эктодермы, внутреннего - энтодермы и находящегося между ними среднего слоя - мезодермы. В дальнейшем за счет этих слоев развиваются различные ткани и органы.

Рис. 5. Способы образования третьего зародышевого листка: А - телобластический, Б – энтероцельный, 1 – эктодерма, 2 – мезенхима, 3 – энтодерма, 4 – телобласт (а) и целомическая мезодерма (б).

Типы гаструляции.

По окончании периода дробления зародыши всех многоклеточных животных вступают в период образования зародышевых слоев (листков). Этот этап называется гаструляцией.

В процессе гаструляции различают два этапа. Сначала образуется ранняя гаструла, имеющая два зародышевых листка: наружный – эктодерму и внутренний – энтодерму. Затем наступает поздняя гаструла, когда образуется средний зародышевый листок – мезодерма. Образование гаструлы протекает по-разному.

Выделяют 4 типа гаструляции:

1) Иммиграция - гаструляция путем выселения отдельных клеток из бластодермы внутрь. Впервые описана И. И. Мечниковым у зародышей медуз. Иммиграция может быть униполярной, биполярной и мультиполярной, т. е. при иммиграции клетки выселяются из одной, двух или нескольких зон сразу. Иммиграция, наблюдающаяся у кишечно-полостных, стоящих в эволюционном ряду ниже всех многоклеточных, является самым древним типом гаструляции.

2) Инвагинация - гаструляция путем впячивания вегетативного полюса. Она характерна для низших хордовых, иглокожих, некоторых кишечно-полостных, т.е. она наблюдается у зародышей, развивающихся из изолецитальных яиц, характеризующихся полным равномерным дроблением.

3) Эпиболия - обрастание.

Если зародыш развивается из телолецитального яйца, а на вегетативном полюсе бластулы находятся крупные, богатые желтком макромеры, то прогибание вегетативного полюса затруднено, и гаструляция происходит за счет быстрого размножения микромеров, которые обрастают вегетативный полюс. При этом макромеры оказываются внутри зародыша. Эпиболия наблюдается у земноводных, она сочетается с перемещением бластодермы внутрь зародыша (инвагинация) на границе анимального и вегетативного полюсов, т. е. эпиболия в чистом виде практически не встречается.

4) Деляминация - расслоение. При этом типе гаструляции, наблюдающейся у некоторых кишечно-полостных, имеющих бластулу в виде морулы (отсутствует в бластуле бластоцель), клетки бластодермы делятся на наружные и внутренние. В результате за счет наружных клеток образуется эктодерма гаструлы, а за счет внутренних - энтодерма.

Рис. 4. Типы гаструл: а – инвагинационная гаструла; б, в – две стадии развития иммиграционной гаструлы; г, д – две стадии развития деляминационной гаструлы; е, ж – две стадии развития эпиболической гаструлы; 1 – эктодерма; 2 – энтодерма; 3 – бластоцель.

Несмотря на разнообразие типов гаструляции, сущность процесса сводится к одному: однослойный зародыш (бластула) превращается в двухслойный зародыш (гаструлу).

1.5.4. Способы образования третьего зародышевого листка

У всех многоклеточных животных, кроме губок и кишечнополостных, вслед за образованием экто- и энтодермы развивается третий зародышевый листок - мезодерма. Мезодерма имеет двойное происхождение. Одна ее часть имеет вид рыхлой массы клеток, выселяющихся поодиночке, из других зародышевых листков. Эта часть называется мезенхимой. Из мезенхимы впоследствии образуются все виды соединительной ткани, гладкая мускулатура, кровеносная и лимфатическая системы. В процессе филогенеза она возникла раньше. Вторая часть мезодермы называется мезобластом. Она возникает в виде компактного двусторонне-симметричного зачатка. Мезобласт образовался в филогенезе позже мезенхимы. В онтогенезе он развивается различными способами.

Телобластический способ , главным образом, наблюдается у первичноротых животных (типично протекает у моллюсков, кольчатых червей, ракообразных). Он проходит путем врастания многоклеточных зачатков с двух сторон бластопора или путем внедрения в этих же местах двух крупных клеток - телобластов. В результате размножения телобластов, от которых отделяются мелкие клетки, формируется мезодерма.

Энтероцельный способ наблюдается у вторичноротых (типичное течение у иглокожих, ланцетника). У них мезобласт отшнуровывается от стенки первичной кишки в виде парных мезодермальных карманов с зачатками целомической полости внутри.

Следовательно, на стадии образования зародышевых листков имеет место один и тот же процесс, варьирующий только в деталях. Сущность происходящих явлений заключается в дифференцировке трех зародышевых слоев: наружного - эктодермы, внутреннего - энтодермы и находящегося между ними среднего слоя - мезодермы. В дальнейшем за счет этих слоев развиваются различные ткани и органы.

Рис. 5. Способы образования третьего зародышевого листка: А - телобластический, Б – энтероцельный, 1 – эктодерма, 2 – мезенхима, 3 – энтодерма, 4 – телобласт (а) и целомическая мезодерма (б).