Что такое капилляр в капиллярной дефектоскопии. Капиллярный метод неразрушающего контроля сварных швов

§ 9.1. Общие сведения о методе
Капиллярный метод контроля (КМК) основан на капиллярном проникновении индикаторных жидкостей в полость несплошностей материала объекта контроля и регистрации образующихся индикаторных следов визуально или с помощью преобразователя. Метод позволяет обнаруживать поверхностные (т.е. выходящие на поверхность) и сквозные (т.е. соединяющие противоположные поверхности стенки ОК.) дефекты, которые могут быть обнаружены также при визуальном контроле. Такой контроль, однако, требует больших затрат времени, особенно при выявлении слабораскрытых дефектов, когда выполняют тщательный осмотр поверхности с применением средств увеличения. Преимущество КМК в многократном ускорении процесса контроля .
Обнаружение сквозных дефектов входит в задачу методов течеискания, которые рассмотрены в гл. 10. В методах течеискания наряду с другими способами используют КМК, причем индикаторную жидкость наносят с одной стороны стенки ОК, а регистрируют с другой. В этой главе рассмотрен вариант КМК, при котором индикацию выполняют с той же поверхности ОК, с которой наносят индикаторную жидкость. Основными документами, регламентирующими применение КМК, являются ГОСТ 18442 - 80, 28369 - 89 и 24522 - 80.
Процесс капиллярного контроля состоит из следующих основных операций (рис. 9.1):

а) очистка поверхности 1 ОК и полости дефекта 2 от загрязнений, жира и т. д. путем их механического удаления и растворения. Этим обеспечивается хорошая смачиваемость всей поверхности ОК индикаторной жидкостью и возможность проникновения ее в полость дефекта;
б) пропитка дефектов индикаторной жидкостью. 3. Для этого она должна хорошо смачивать материал изделия и проникать в дефекты в результате действия капиллярных сил. По этому признаку метод называют капиллярным, а индикаторную жидкость - индикаторным пенетрантом или просто пенетрантом (от лат. penetrо - проникаю, достаю);
в) удаление с поверхности изделия излишков пенетранта, при этом пенетрант в полости дефектов сохраняется. Для удаления используют эффекты диспергирования и эмульгирования, применяют специальные жидкости - очистители;

Рис. 9.1 - Основные операции при капиллярной дефектоскопии

г) обнаружение пенетранта в полости дефектов. Как отмечено выше, это делают чаще визуально, реже - с помощью специальных устройств - преобразователей. В первом случае на поверхности наносят специальные вещества - проявители 4, извлекающие пенетрант из полости дефектов за счет явлений сорбции или диффузии. Сорбционный проявитель имеет вид порошка или суспензии. Все упомянутые физические явления рассмотрены в § 9.2.
Пенетрант пропитывает весь слой проявителя (обычно довольно тонкий) и образует следы (индикации) 5 на его наружной поверхности. Эти индикации обнаруживают визуально. Различают яркостный или ахроматический метод у в котором индикации имеют более темный тон по сравнению с белым проявителем; цветной метод, когда пенетрант обладает ярким оранжевым или красным цветом, и люминесцентный метод, когда пенетрант светится под действием ультрафиолетового облучения. Заключительная операция при КМК - очистка ОК от проявителя.
В литературе по капиллярному контролю дефектоскопические материалы обозначают индексами: индикаторный пенетрант - «И», очиститель - «М», проявитель - «П». Иногда после буквенного обозначения следуют цифры в скобках или в виде индекса, означающие особенность применения данного материала.

§ 9.2. Основные физические явления, используемые в капиллярной дефектоскопии
Поверхностное натяжение и смачивание. Наиболее важной характеристикой индикаторных жидкостей является их способность к смачиванию материала изделия. Смачивание вызывается взаимным притяжением атомов и молекул (в дальнейшем - молекул) жидкости и твердого тела.
Как известно, между молекулами среды действуют силы взаимного притяжения. Молекулы, находящиеся внутри вещества, испытывают со стороны других молекул в среднем одинаковое действие по всем направлениям. Молекулы же, находящиеся па поверхности, подвергаются неодинаковому притяжению со стороны внутренних слоев вещества и со стороны, граничащей с поверхностью среды.
Поведение системы молекул определяется условием минимума свободной энергии, т.е. той части потенциальной энергии, которая изотермически может обратиться в работу. Свободная энергия молекул на поверхности жидкости и твердого тела больше, чем внутренних, когда жидкость или твердое тело находятся в газе или вакууме. В связи с этим они стремятся приобрести форму с минимальной наружной поверхностью. В твердом теле этому препятствует явление упругости формы, а жидкость в невесомости под влиянием этого явления приобретает форму шара. Таким образом, поверхности жидкости и твердого тела стремятся сократиться, и возникает давление поверхностного натяжения.
Величину поверхностного натяжения определяют работой (при постоянной температуре), необходимой для образования единицы, площади поверхности раздела двух находящихся в равновесии фаз. Ее часто называют силой поверхностного натяжения, понижая под этим следующее. На границе раздела, сред выделяют произвольную площадку. Натяжение рассматривают как результат действия распределенной силы, приложенной к периметру, этой площадки. Направление сил - по касательной к границе раздела и перпендикулярно периметру. Силу, отнесенную к единице длины периметра, называют силой поверхностного натяжения. Два равноправных определения поверхностного натяжения соответствуют двум применяемым для его измерения единицам: Дж/м2 = Н/м.
Для воды в воздухе (точнее, в воздухе, насыщенном испарениями с поверхности воды) при температуре 26°C нормальном атмосферном давлении сила поверхностного натяжения σ = 7,275 ± 0,025) 10-2 Н/м. Это значение уменьшается с увеличением температуры. В различных газовых средах поверхностное натяжение жидкостей практически не изменяется.
Рассмотрим каплю жидкости, лежащую на поверхности: твердого тела (рис. 9.2). Силой тяжести пренебрегаем. Выделим элементарный цилиндр в точке А, где соприкасаются твердое тело, жидкость и окружающий газ. На единицу длины этого цилиндра действуют три силы поверхностного натяжения: твердое тело - газ σтг, твердое тело - жидкость σтж и жидкость - газ σжг = σ. Когда капля находится в состоянии покоя, равнодействующая проекций этих сил на поверхность твердого тела равна нулю:
(9.1)
Угол 9 называют краевым углом смачивания. Если σтг>σтж, то он острый. Это значит, что жидкость смачивает твердое тело (рис. 9.2, а). Чем меньше 9, тем сильнее смачивание. В пределе σтг>σтж + σ отношение (σтг - σтж)/ст в (9.1) больше единицы, чего не может быть, так как косинус угла всегда по модулю меньше единицы. Предельный случай θ = 0 будет соответствовать полному смачиванию, т.е. растеканию жидкости по поверхности твердого тела до толщины молекулярного слоя. Если σтж>σтг, то cos θ отрицателен, следовательно, угол θ тупой (рис. 9.2, б). Это означает, что жидкость не смачивает твердое тело.


Рис. 9.2. Смачивание (а) и несмачивание (б) поверхности жидкостью

Поверхностное натяжение σ характеризует свойство самой жидкости, a σ cos θ - смачиваемость этой жидкостью поверхности данного твердого тела. Составляющую силы поверхностного натяжения σ cos θ, «растягивающую» каплю вдоль поверхности, иногда называют силой смачивания. Для большинства хорошо смачивающих веществ cos θ близок к единице, например, для границы стекла с водой он равен 0,685, с керосином - 0,90, с этиловым спиртом - 0,955.
Сильное влияние на смачивание оказывает чистота поверхности. Например, слой масла на поверхности стали или стекла резко ухудшает ее смачиваемость водой, cos θ становится отрицательным. Тончайший слой масла, иногда сохраняющийся на поверхности ОК и трещин очень мешает применению пенетрантов на водяной основе.
Микрорельеф поверхности ОК вызывает увеличение площади смачиваемой поверхности. Для оценки краевого угла смачивания θш на шероховатой поверхности пользуются уравнением

где θ - краевой угол для гладкой поверхности; α - истинная площадь шероховатой поверхности с учетом неровности ее рельефа, а α0 - проекция ее на плоскость.
Растворение состоит в распределений молекул растворяемого вещества среди молекул растворителя. В капиллярном методе контроля растворение применяют при подготовке объекта к контролю (для очистки полости дефектов). Растворение газа (обычно воздуха), собравшегося у конца тупикового капилляра (дефекта) в пенетранте, существенно повышает предельную глубину проникновения пенетранта в дефект.
Для оценки взаимной растворимости двух жидкостей применяют эмпирическое правило, согласно которому «подобное растворяется в подобном». Например, углеводороды хорошо растворяются в углеводородах, спирты - в спиртах и т.д. Взаимная растворимость жидкостей и твердых тел в жидкости, как правило, увеличивается при повышении температуры. Растворимость газов, как правило, уменьшается с повышением температуры и улучшается при повышении давления.
Сорбция (от лат. sorbeo - поглощаю) - это физико-химический процесс, в результате которого происходит поглощение каким-либо веществом газа, пара или растворенного вещества из окружающей среды. Различают адсорбцию - поглощение вещества на поверхности раздела фаз и абсорбцию - поглощение вещества всем объемом поглотителя. Если сорбция происходит преимущественно в результате физического взаимодействия веществ, то ее называют физической.
В капиллярном методе контроля для проявления используют главным образом явление физической адсорбции жидкости (пенетранта) на поверхности твердого тела (частиц проявителя). Это же явление вызывает осаждение на дефекте контрастных веществ, растворенных в жидкой основе пенетранта.
Диффузия (от лат. diffusio - распространение, растекание) - движение частиц (молекул, атомов) среды, приводящее к переносу вещества и выравнивающее концентрацию частиц разного сорта. В капиллярном методе контроля явление диффузии наблюдается при взаимодействии пенетранта с воздухом, сжатым в тупиковом конце капилляра. Здесь этот процесс неотличим от растворения воздуха в пенетранте.
Важное применение диффузии при капиллярной дефектоскопии - проявление с помощью проявителей типа быстросохнущих красок и лаков. Частицы пенетранта, заключенного в капилляре, входят в контакт с таким проявителем (в первый момент - жидким, а после застывания - твердым), нанесенным на поверхность ОК, и диффундируют через тонкую пленку проявителя к противоположной его поверхности. Таким образом, здесь используется диффузия молекул жидкости сначала через жидкое, а потом через твердое тело.
Процесс диффузии обусловлен тепловым движением молекул (атомов) или их ассоциаций (молекулярная диффузия). Скорость переноса через границу определяется коэффициентом диффузии, который является постоянным для даной пары веществ. Диффузия возрастает с повышением температуры.
Диспергирование (от лат. dispergo - рассеиваю) - тонкое размельчение какого-либо тела в окружающей среде. Диспергирование твердых тел в жидкости играет существенную роль при очистке поверхности от загрязнений.
Эмульгирование (от лат. emulsios - выдоенный) -образование дисперсной системы с жидкой дисперсной фазой, т.е. диспергирование жидкости. Пример эмульсии - молоко, состоящее из мельчайших капель жира, взвешенных в воде. Эмульгирование играет существенную роль при очистке, удалении, излишков пенетранта, приготовлении пенетрантов, проявителей. Для активизации эмульгирования и сохранения эмульсии в стабильном состоянии применяют вещества-эмульгаторы.
Поверхностно-активные вещества (ПАВ) - вещества, способные накапливаться на поверхности соприкосновения двух тел (сред, фаз), понижая ее свободную энергию. ПАВ добавляют в средства для очистки поверхности ОК, вводят в пенетранты, очистители, поскольку, они являются эмульгаторами.
Важнейшие ПАВ растворяются в воде. Их молекулы имеют гидрофобную и гидрофильную части, т.е. смачиваемую и несмачиваемую водой. Проиллюстрируем действие ПАВ при смывании масляной пленки. Обычно вода ее не смачивает и не удаляет. Молекулы ПАВ адсорбируются на поверхности пленки, ориентируются к ней своими гидрофобными концами, а гидрофильными - к водяной среде. В результате происходит резкое усиление смачиваемости, и жировая пленка смывается.
Суспензия (от лат. supspensio - подвешиваю) - грубодисперсная система с жидкой дисперсной средой и твердой дисперсной фазой, частицы которой достаточно крупны и довольно быстро выпадают в осадок или всплывают. Суспензии приготавливают обычно механическим размельчением и размешиванием.
Люминесценция (от лат. lumen - свет) - свечение некоторых веществ (люминофоров), избыточное над тепловым излучением, обладающее длительностью 10-10 с и больше. Указание на конечную длительность нужно, чтобы отличать люминесценцию от других оптических явлений, например, от рассеяния света.
В капиллярном методе контроля люминесценцию используют как один из способов контраста для визуального обнаружения индикаторных пенетрантов после проявления. Для этого люминофор, либо растворяют в основном веществе пенетранта, либо само вещество пенетранта является люминофором.
Яркостный и цветовой контрасты в КМК рассматривают с точки зрения возможности глаза человека фиксировать люминесцентное свечение, цветные и темные индикации на светлом фоне. Все данные относят к глазу среднего человека, у Возможность различать степень яркости объекта называют контрастной чувствительностью. Ее определяют по различимому глазом изменению коэффициента отражения. В цветном методе контроля вводят понятие яркостно-цветового контраста , одновременно учитывающее яркость и насыщенность следа от дефекта, который нужно обнаружить.
Способность глаза различать мелкие объекты, обладающие достаточным контрастом, определяют минимальным углом зрения. Установлено что объект в виде полосы (темной, цветной или люминесцирующей) глаз способен заметить с расстояния 200 мм при ее минимальной ширине более 5 мкм. В рабочих условиях различают объекты на порядок больше - шириной 0,05 ... 0,1 мм.

§ 9.3. Процессы капиллярной дефектоскопии


Рис. 9.3. К понятию капиллярного давления

Заполнение сквозного макрокапилляра. Расcтрим хорошо известный из курса физики опыт: капиллярная трубка диаметром 2r вертикально погружена одним концом в смачивающую жидкость (рис. 9.3). Под действием сил смачивания жидкость в трубке поднимется на высоту l над поверхностью. Это явление капиллярного впитывания. Силы смачивания действуют на единицу длины окружности мениска. Суммарная их величина Fк=σcosθ2πr. Этой силе противодействует вес столба ρgπr2l , где ρ - плотность, a g - ускорение силы тяжести. В состоянии равновесия σcosθ2πr = ρgπr2l . Отсюда высота подъема жидкости в капилляре l = 2σ cos θ/(ρgr).
В этом примере силы смачивания рассматривались как приложенные к линии соприкосновения жидкости и твердого тела (капилляра). Их можно рассматривать также как силу натяжения поверхности мениска, образуемого жидкостью в капилляре. Эта поверхность представляет собой как бы: растянутую пленку, стремящуюся сократиться. Отсюда вводится понятие капиллярного давления, равное отношению действующей на мениск силы FK к площади поперечного сечения трубки:
(9.2)
Капиллярное давление увеличивается с увеличением смачиваемости и уменьшением радиуса капилляра.
Более общая формула Лапласа для давления от натяжения поверхности мениска имеет вид рк=σ(1/R1+1/R2), где R1 и R2 - радиусы кривизны поверхности мениска. Формула 9.2 используется для круглого капилляра R1=R2=r/cos θ. Для щели шириной b с плоскопараллельными стенками R1®¥, R2=b /(2cosθ). В результате
(9.3)
На явлении капиллярного впитывания основана пропитка дефектов пенетрантом. Оценим время, необходимое для пропитки . Рассмотрим расположенную горизонтально капиллярную трубку, один конец которой открыт, а другой помещен в смачивающую: жидкость. Под действием капиллярного Давления мениск жидкости движется в направлении открытого конца. Пройденное расстояние l связано с временем приближенной зависимостью.
(9.4)

где μ - коэффициент динамический сдвиговой вязкости. Из формулы видно, что время, необходимое для прохождения пенетрантом через сквозную трещину, связано с толщиной стенки l , в которой возникла трещина, квадратичной зависимостью: оно тем меньше чем меньше вязкость и больше смачиваемость. Ориентировочная кривая 1 зависимости l от t показана на рис. 9.4. Следует иметь; в виду, что при заполнении пенетрантом реальной; трещины отмеченные закономерности сохраняются лишь при условии одновременного касания пенетрантом всего периметра трещины и ее равномерной ширины. Невыполнение этих условий вызываетнарушение соотношения (9.4), однако влияние отмеченных физических свойств пенетранта на время пропитки сохраняется.


Рис. 9.4. Кинетика заполнения пенетрантом капилляра:
сквозного (1), тупикового с учетом (2) и без учета (3) явления диффузионной пропитки

Заполнение тупикового капилляра отличается тем что газ (воздух), сжатый вблизи тупикового конца, ограничивает глубину проникновения пенетранта (кривая 3 на рис. 9.4). Рассчитывают предельную глубину заполнения l 1 исходя из равенства давлений на пенетрант снаружи и изнутри капилляра. Наружное давление складывается из атмосферного р а и капиллярного р к. Внутреннее давление в капилляре р в определяют из закона Бойля - Мариотта. Для капилляра постоянного сечения: p аl 0S = p в(l 0-l 1)S; р в = р аl 0/(l 0-l 1), где l 0 - полная глубина капилляра. Из равенства давлений находим
Величина р к<<р а, поэтому глубина заполнения, рассчитанная по этой формуле, составляет не более 10% полной глубины капилляра (задача 9.1).
Рассмотрение заполнения тупиковой щели с непараллельными стенками (хорошо имитирующей реальные трещины) или конического капилляра (имитирующего поры) более сложно, чем капилляров постоянного сечения. Уменьшение поперечного сечения по мере заполнения вызывает увеличение капиллярного давления, но еще быстрее уменьшается объем, заполненный сжатым воздухом, поэтому глубина заполнения такого капилляра (при одинаковом размере устья) меньше, чем капилляра постоянного сечения (задача 9.1).
Реально предельная глубина заполнения тупикового капилляра оказывается, как правило, больше расчетного значения. Это происходит за счет того, что воздух, сжатый вблизи конца капилляра, частично растворяется в пенетранте, диффундирует в него (диффузионное заполнение). Для протяженных тупиковых дефектов иногда возникает благоприятная для заполнения ситуация, когда заполнение начинается с одного конца по длине дефекта, а вытесняемый воздух выходит с другого конца.
Кинетика движения смачивающей жидкости в тупиковом капилляре формулой (9.4) определяется лишь в начале процесса заполнения. В дальнейшем при приближении l к l 1 скорость процесса заполнения замедляется, асимптотически приближаясь к нулю (кривая 2 на рис. 9.4).
По оценкам время заполнения цилиндрического капилляра радиусом порядка 10-3 мм и глубиной l 0 = 20 мм до уровня l = 0,9l 1 не более 1 с. Это значительно меньше времени выдержки в пенетранте, рекомендуемого в практике контроля (§ 9.4), которое составляет несколько десятков минут. Различие объясняется тем, что после процесса довольно быстрого капиллярного заполнения начинается значительно более медленный процесс диффузионного заполнения. Для капилляра постоянного сечения кинетика диффузионного заполнения подчиняется закономерности типа (9.4): l p = K Öt, где l р - глубина диффузионного заполнения, но коэффициент К в тысячи раз меньше, чем для капиллярного заполнения (см. кривую 2 на рис. 9.4). Он растет пропорционально увеличению давления в конце капилляра рк/(рк+ра). Отсюда следует необходимость длительного времени пропитки.
Удаление избытка пенетранта с поверхности ОК обычно выполняют с помощью жидкости - очистителя. Важно подобрать такой очиститель, который хорошо удалял бы пенетрант с поверхности, в минимальной степени вымывая его из полости дефекта.
Процесс проявления. В капиллярной дефектоскопии используют диффузионные или адсорбционные проявители. Первые - это быстросохнущие белые краски или лаки, вторые - порошки или суспензии.
Процесс диффузионного проявления состоит в том, что жидкий Проявитель контактирует с пенетрантом в устье дефекта и сорбирует его. Зачтем пенетрант диффундирует в проявитель сначала - как в слой жидкости, а после высыхания краски - как в твердое капиллярно-пористое тело. Одновременно происходит процесс растворения пенетранта в проявителе, который в данном случае неотличим от диффузии. В процессе пропитки пенетрантом свойства проявителя изменяются: он уплотняется. Если применяется проявитель в виде суспензии, то на первой стадии проявления происходит диффузия и растворение пенетранта в жидкой фазе суспензии. После высыхания суспензии действует описанный ранее механизм проявления.

§ 9.4. Технология и средства контроля
Схема общей технологии капиллярного контроля показана на рис. 9.5. Отметим основные ее этапы.


Рис. 9,5. Технологическая схема капиллярного контроля

Подготовительные операции имеют целью вывести на поверхность изделия устья дефектов, устранить возможность возникновения фона и ложных индикаций, очистить полость дефектов. Способ подготовки зависит от состояния поверхности и требуемого класса чувствительности.
Механическую зачистку производят, когда поверхность Изделия покрыта окалиной или силикатом. Например, поверхность некоторых сварных швов покрыта слоем твердого силикатного флюса типа «березовая кора». Такие покрытия закрывают устья дефектов. Гальванические покрытия, пленки, лаки не удаляют, если они трескаются вместе с основным металлом изделия. Если такие покрытия наносят на детали, в которых уже могут быть дефекты, то контроль выполняют до нанесения покрытия. Зачистку выполняют резанием, абразивной шлифовкой, обработкой металлическими щетками. Этими способами удаляется часть материала с поверхности ОК. Ими нельзя зачищать глухие отверстия, резьбы. При шлифовании мягких материалов дефекты могут перекрываться тонким слоем деформированного материала.
Механической очисткой называют обдувание дробью, песком, косточковой крошкой. После механической очистки предусматривают удаление ее продуктов с поверхности. Очистке моющими средствами и растворами подвергают все поступающие на контроль объекты, в том числе прошедшие механическую зачистку и очистку.
Дело в том, что механическая зачистка не очищает полости дефектов, а иногда ее продукты (шлифовальная паста, абразивная пыль) могут способствовать их закрытию. Очистку выполняют водой с добавками ПАВ и растворителями, в качестве которых используют спирты, ацетон, бензин, бензол и др. С их помощью удаляют консервирующую смазку, некоторые лакокрасочные покрытия: При необходимости обработку растворителями выполняют несколько раз.
Для более полной очистки поверхности ОК и полости дефектов применяют способы интенсификации очистки: воздействие парами органических растворителей, химическое травление (помогает удалению с поверхности продуктов коррозии), электролиз, прогрев ОК, воздействие низкочастотными ультразвуковыми колебаниями.
После очистки проводят сушку поверхности ОК. Этим удаляют остатки моющих жидкостей и растворителей из полостей дефектов. Сушку интенсифицируют повышением температуры, обдувом, например используют струю теплового воздуха из фена.
Пропитка пенетрантом. К пенетрантам предъявляют целый ряд требований. Хорошая смачиваемость поверхности ОК - главное из них. Для этого пенетрант должен иметь достаточно высокое поверхностное натяжение и краевой угол, близкий к нулю при растекании по поверхности ОК. Как отмечалось в § 9.3, чаще всего в качестве основы пенетрантов используют такие вещества, как керосин, жидкие масла, спирты, бензол, скипидар, у которых поверхностное натяжение (2,5...3,5)10-2 Н/м. Реже используют пенетранты на водяной основе с добавками ПАВ. Для всех этих веществ cos θ не менее 0,9.
Второе требование к пенетрантам - низкая вязкость. Она нужна для сокращения времени пропитки. Третье важное требование - возможность и удобство обнаружения индикаций. По контрасту пенетранта КМК разделяют на ахроматический (яркостный), цветной, люминесцентный и люминесцентно-цветной. Кроме того, существуют комбинированные КМК, в которых индикации обнаруживают не визуально, а с помощью различных физических эффектов. По типам пенетрантов, точнее по способам их индикации, осуще­ствляют классификацию КМК . Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта с поверхности.
Порог чувствительности конкретного выбранного способа КМК зависит от условий контроля и дефектоскопических материалов. Установлено пять классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов (табл. 9.1).
Для достижения высокой чувствительности (низкого порога чувствительности) нужно применять хорошо смачивающие высококонтрастные пенетранты, лакокрасочные проявители (вместо суспензий или, порошков), увеличивать УФ-облученность или освещенность объекта. Оптимальное сочетание этих факторов позволяет обнаруживать дефекты раскрытием в десятые доли мкм.
В табл. 9.2 приведены рекомендации по выбору способа и условий контроля, обеспечивающих требуемый класс чувствительности. Освещенность приведена комбинированная: первое число соответствует лампам накаливания, а второе - люминесцентным. Позиции 2,3,4,6 основаны на применении выпускаемых промышленностью наборов дефектоскопических материалов .

Таблица 9.1 - Классы чувствительности

Не следует без необходимости стремиться к достижению более высоких классов чувствительности: это требует более, дорогостоящих материалов, лучшей подготовки поверхности изделия, увеличивает время контроля. Например, для применения люминесцентного метода необходимо затемненное помещение, ультрафиолетовое излучение, оказывающее вредное действие на персонал. В связи с этим применение этого, метода целесообразно только тогда, когда требуется достижение высокой чувствительности и производительности. В других случаях следует применять цветной или более простой и дешевый, яркостный метод. Метод фильтрующейся суспензии - самый высокопроизводительный. В нём отпадает операция проявления. Однако этот метод уступает другим по чувствительности.
Комбинированные методы в силу сложности их реализации применяют довольно редко, только в случае необходимости решения каких-либо специфических задач, например достижения очень высокой чувствительности, автоматизации поиска дефектов, контроля неметаллических материалов.
Проверку порога чувствительности способа КМК согласно ГОСТ 23349 - 78 выполняют с помощью специально отобранного или подготовленного реального образца ОК с дефектами. Применяют также образцы с инициированными трещинами. Технология изготовления таких образцов сводится к тому, чтобы вызвать появление поверхностных трещин заданной глубины.
Согласно одному из способов образцы изготовляют из листовой легированной стали в виде пластин толщиной 3...4 мм. Пластины рихтуют, шлифуют, азотируют с одной стороны на глубину 0,3...0,4 мм и эту поверхность еще раз шлифуют на глубину около 0,05...0,1 мм. Параметр шероховатости поверхности Ra£0,4 мкм. Благодаря азотированию поверхностный слой становится хрупким.
Образцы деформируют либо растяжением, либо изгибом (путем вдавливания шарика или цилиндра со стороны, противоположной азотированной). Усилие деформации плавно увеличивают до появления характерного хруста. В результате в образце возникает несколько трещин, проникающих на всю глубину азотированного слоя.

Таблица: 9.2
Условия достижения требуемой чувствительности


№ п/п

Класс чувствительности

Дефектоскопические материалы

Условия контроля

Пенетрант

Проявитель

Очиститель

Шероховатость поверхности, мкм

УФ-облученность, отн. ед.

Освещенность, лк

Люминесцентно-цветной

Краска Пр1

Люминесцентный

Краска Пр1

Масляно-керосиновая смесь

Люминесцентный

Порошок окиси магния

Бензин, норинол А, скипидар, краситель

Суспензия каолина

Проточная вода

Люминесцентный

Порошок MgO2

Вода с ПАВ

Фильтрующая люминесцирующая суспензия

Вода, эмульгатор, люмотен

Не ниже 50

Изготовленные таким образом образцы аттестуют. Определяют ширину и длину отдельных трещин измерительным микроскопом и вносят их в формуляр образца. К формуляру прилагают фотографию образца с индикациями дефектов. Образцы хранят в футлярах, предохраняющих их от загрязнения. Образец пригоден к использованию не более 15...20 раз, после чего трещины частично забиваются сухими остатками пенетранта. Поэтому обычно в лаборатории имеют рабочие образцы для повседневного использования и контрольные образцы для решения арбитражных вопросов. Образцы используют для проверки дефектоскопических материалов на эффективность совместного применения, для определения правильной технологии (времени пропитки, проявления), аттестации дефектоскопистов и определения нижнего порога чувствительности КМК.

§ 9.6. Объекты контроля
Капиллярным методом контролируют изделия из металлов (преимущественно неферромагнитных), неметаллических материалов и композитные изделия любой конфигурации. Изделия из ферромагнитных материалов контролируют обычно магнитопорошковым методом, который более чувствителен, хотя для контроля ферромагнитных материалов также иногда применяют капиллярный метод, если имеются трудности с намагничиванием материала или сложная конфигурация поверхности изделия создает большие градиенты магнитного поля, затрудняющие выявление дефектов. Контроль капиллярным методом проводят до ультразвукового или магнитопорошкового контроля, иначе (в последнем случае) необходимо размагнитить ОК.
Капиллярным методом обнаруживают только выходящие на поверхность дефекты, полость которых не заполнена окислами или другими веществами. Чтобы пенетрант не вымывался из дефекта, глубина его должна быть значительно больше ширины раскрытия. К таким дефектам относятся трещины, непровары сварных швов, глубокие поры.
Подавляющее большинство дефектов, обнаруживаемых при контроле капиллярным методом, может выявляться при обычном визуальном осмотре, особенно если изделие предварительно протравить (дефекты при этом чернеют) и применить средства увеличения. Однако преимущество капиллярных методов состоит в том, что при их применении угол зрения на дефект возрастает в 10...20 раз (за счет того, что ширина индикаций больше, чем дефектов), а яркостный контраст - на 30...50%. Благодаря этому нет необходимости в тщательном осмотре поверхности и время контроля многократно уменьшается.
Капиллярные методы находят широкое применение в энергетике, авиации, ракетной технике, судостроении, химической промышленности. Ими контролируют основной металл и сварные соединения из сталей аустенитного класса (нержавеющих), титана, алюминия, магния и других цветных металлов. С чувствительностью по классу 1 контролируют лопатки турбореактивных двигателей, уплотнительные поверхности клапанов и их гнезд, металлические уплотнительные прокладки фланцев и др. По классу 2 проверяют корпуса и антикоррозионные наплавки реакторов, основной металл и сварные соединения трубопроводов, детали подшипников. По классу 3 проверяют крепеж ряда объектов, по классу 4 - толстостенное литье. Примеры ферромагнитных изделий, контролируемых капиллярными методами: сепараторы подшипников, резьбовые соединения.


Рис. 9.10. Дефекты в пере лопаток:
а - усталостная трещина, выявлена люминесцентным методом,
б - заков, выявлен цветным методом
На рис. 9.10 показано выявление трещин и закова на пере лопатки авиационной турбины люминесцентным и цветным методами. Визуально такие трещины наблюдают при увеличении в 10 раз.
Очень желательно, чтобы объект контроля имел гладкую, например механически обработанную, поверхность. Для контроля по классам 1 и 2 пригодны поверхности после холодной штамповки, прокатки, аргонно-дуговой сварки. Иногда для выравнивания поверхности проводят механическую обработку, например поверхности некоторых сварных или наплавленных соединений обрабатывают абразивным кругом для удаления застывшего сварочного: флюса, шлаков между валиками шва.
Общее время, необходимое для контроля относительно небольшого объекта типа турбинной лопатки, 0,5...1,4 ч в зависимости от применяемых дефектоскопических материалов и требований по чувствительности. Затраты времени в минутах распределяются следующим образом: подготовка к контролю 5...20, пропитка 10...30, .удаление избытка пенетранта 3...5, проявление 5...25, осмотр 2...5, окончательная очистка 0...5. Обычно выдержку при пропитке или проявлении одного изделия совмещают с контролем другого изделия, в результате чего среднее время контроля изделия сокращается в 5...10 раз. В задаче 9.2 приведен пример расчета времени контроля объекта с большой площадью контролируемой поверхности.
Автоматический контроль применяют для проверки небольших деталей типа лопаток турбин, крепежа, элементов шарико- и роликоподшипников. Установки представляют собой комплекс ванн и камер для последовательной обработки ОК (рис. 9.11). В таких установках широко применяют средства интенсификации операций контроля: ультразвук, повышение температуры, вакуум и т.д. .


Рис. 9.11. Схема автоматической установки для контроля деталей капиллярными методами:
1 - транспортер, 2 - пневматический подъемник, 3 - автоматический захват, 4 - контейнер с деталями, 5 - тележка, 6...14 - ванны, камеры и печи для обработки деталей, 15 - рольганг, 16 - место для осмотра деталей при УФ-облучении, 17 - место для осмотра в видимом свете

Транспортер подает детали в ванну для ультразвуковой очистки, затем в ванну для промывки проточной водой. Влагу с поверхности деталей удаляют при температуре 250...300°С. Горячие детали охлаждают сжатым воздухом. Пропитку пенетрантом осуществляют под действием ультразвука или в вакууме. Удаление излишков пенетранта проводят последовательно в ванне с очищающей жидкостью, затем в камере с душевой установкой. Влагу удаляют сжатым воздухом. Проявитель наносят распылением краски в воздухе (в виде тумана). Детали осматривают на рабочих местах, где предусмотрено УФ-облучение и искусственное освещение. Ответственную операцию осмотра автоматизировать трудно (см. §9.7).
§ 9.7. Перспективы развития
Важное направление развития КМК - его автоматизация . Рассмотренные ранее средства автоматизируют контроль однотипных небольших изделий. Автоматизация; контроля изделий разного типа, в том числе крупногабаритных, возможна с применением адаптивных роботов-манипуляторов, т.е. обладающих способностью приспосабливаться к изменяющимся условиям. Такие роботы успешно используются на окрасочных работах, которые во многом подобны операциям при КМК.
Наиболее трудно поддается автоматизации осмотр поверхности изделий и принятие решения о наличии дефектов. В настоящее время для улучшения условий выполнения этой операции применяют осветители и УФ-облучатели большой мощности. Чтобы уменьшить действие на контролера УФ-излучения, применяют световоды и телевизионные системы. Однако это не решает задачи полной автоматизации с устранением влияния субъективных качеств контролера на результаты контроля.
Создание автоматических систем оценки результатов контроля требует разработки соответствующих алгоритмов для ЭВМ. Работы ведутся по нескольким направлениям: определение конфигурации индикаций (протяженность, ширина, площадь), соответствующей недопустимым дефектам, и корреляционное сравнение изображений контролируемого участка объектов до и после обработки дефектоскопическими материалами. Кроме отмеченной области, ЭВМ в КМК применяют для сбора и анализа статистических данных с выдачей рекомендаций на корректировку технологического процесса, для оптимального подбора дефектоскопических материалов и технологии контроля.
Важное направление исследований - изыскание новых дефектоскопических материалов и технологии их применения, имеющее целью повышение чувствительности и производительности контроля. Предложено применение в качестве пенетранта ферромагнитных жидкостей . В них в жидкой основе (например, керосине) взвешены ферромагнитные частицы очень малого размера (2...10 мкм), стабилизированные ПАВ, в результате чего жидкость ведет себя как однофазная система. Проникновение такой жидкости в дефекты интенсифицируется магнитным полем, а обнаружение индикаций возможно магнитными датчиками, что облегчает автоматизацию контроля.
Очень перспективное направление совершенствования капиллярного контроля -использование электронного парамагнитного резонанса . Сравнительно недавно получены вещества типа стабильных нитроксильных радикалов. В них имеются слабосвязанные электроны, которые могут резонировать в электромагнитном поле частотой от десятков гигагерц до мегагерц, причем спектральные линии определяются с большой степенью точности. Нитроксильные радикалы стабильны, малотоксичны, способны растворяться в большинстве жидких веществ. Это дает возможность вводить их в жидкие пенетранты. Индикация основывается на регистрации спектра поглощения в возбуждающем электромагнитном поле радиоспектроскопа. Чувствительность этих приборов очень велика, они позволяют обнаруживать скопления 1012 парамагнитных частиц и более. Таким образом решается вопрос об объективных и высокочувствительных средствах индикации при капиллярной дефектоскопии.

Задачи
9.1. Рассчитать и сравнить максимальную глубину заполнения пенетрантом щелевидного капилляра с параллельными и непараллельными стенками. Глубина капилляра l 0=10 мм, ширина устья b=10 мкм, пенетрант на основе керосина с σ=3×10-2Н/м, cosθ=0,9. Атмосферное давление принять р а-1,013×105 Па. Диффузионное заполнение не учитывать.
Решение. Глубину заполнения капилляра с параллельными стенками рассчитаем по формулам (9.3) и (9.5):

Решение выполнено таким образом, чтобы продемонстрировать, что капиллярное давление составляет около 5% атмосферного, а глубина заполнения - около 5% от полной глубины капилляра.
Выведем формулу для заполнения щели с непараллельными поверхностями, имеющую в сечении вид треугольника. Из закона Бойля - Мариотта найдем давление воздуха, сжатого у конца капилляра р в:


где b1 - расстояние между стенками на глубине 9.2. Рассчитать необходимое количество дефектоскопических материалов из набора в соответствии с позицией 5 табл. 9.2 и время для выполнения КМК антикоррозионной наплавки на внутренней поверхности реактора. Реактор состоит из цилиндрической части диаметром D=4 м, высотой, H=12 м с полусферическим дном (сварено с цилиндрической частью и образует корпус) и крышкой, а также четырьмя патрубками диаметром d=400 мм, длиной h=500 мм. Время нанесения какого-либо дефектоскопического материала на поверхность принять τ=2 мин/м2.

Решение. Рассчитаем площадь контролируемого объекта по элементам:
цилиндрическая S1=πD2Н=π42×12=603,2 м2;
часть
дно и крышка S2=S3=0,5πD2=0,5π42=25,1 м2;
патрубки (каждый) S4=πd2h=π×0,42×0,5=0,25 м2;
суммарная площадь S=S1+S2+S3+4S4=603,2+25,1+25,1+4×0,25=654,4 м2.

Учитывая, что контролируемая поверхность наплавки неровная, расположена преимущественно вертикально, принимаем расход пенетранта q =0,5 л/м2.
Отсюда необходимое количество пенетранта:
Qп = Sq = 654,4×0,5 = 327,2 л.
С учетом возможных потерь, повторного контроля и т. п. принимаем, необходимое количество пенетранта равным 350 л.
Требуемое количество проявителя в виде суспензии - 300 г на 1 л пенетранта, отсюда Qпр=0,3×350=105 кг. Очистителя требуется в 2...3 раза больше, чем пенетранта. Принимаем среднее значение - в 2,5 раза. Таким образом, Qоч = 2,5×350 = 875 л. Жидкости (например, ацетона) для предварительной очистки требуется приблизительно в 2 раза больше, чем Qоч.
Время контроля рассчитаемте учетом того, что каждый элемент реактора (корпус, крышка, патрубки) контролируют отдельно. Экспозицию, т.е. время нахождения объекта в контакте с каждым дефектоскопическим материалом принимаем средним из нормативов, приведенных в § 9.6. Наиболее значительна экспозиция для пенетранта.- в среднем t п=20 мин. Экспозиция или время нахождения ОК в контакте с другими дефектоскопическими материалами меньше, чем с пенетрантом, причем его можно увеличить без ущерба для эффективности контроля.
Исходя из этого, принимаем следующую, организацию процесса контроля (она не единственно, возможная). Корпус и крышку, где контролируются большие площади, разбиваем на участки, на каждый из которых время нанесения какого-либо дефектоскопического материала равно t уч = t п = 20 мин. Тогда время нанесения любого дефектоскопического материала будет не меньше, чей экспозиция для него. То же самое относится к времени выполнения технологических операций, не связанных с дефектоскопическими материалами (сушка осмотр и т.п.).
Площадь такого участка Sуч = tуч/τ = 20/2 = 10 м2. Время контроля элемента с большой площадью поверхности равно количеству таких участков с округлением в сторону увеличения, умноженному на t уч = 20 мин.
Площадь корпуса разбиваем на (S1+S2)/Sуч = (603,2+25,1)/10 = 62,8 = 63 участка. Время, необходимое для их контроля, 20×63 = 1260 мин = 21 ч.
Площадь крышки разбиваем на S3/Sуч = 25,l/10=2,51 = 3 участка. Время контроля 3×20=60 мин = 1 ч.
Патрубки контролируем одновременно, т.е, выполнив какую-либо технологическую операцию на одном, переходим к другому, после этого также выполняем следующую операцию и т.д. Их общая площадь 4S4=1 м2 значительно меньше, чем площадь одного контролируемого участка. Время контроля, в основном, определяется суммой средних времен экспозиций для отдельных операций, как для небольшого изделия в § 9.6, плюс сравнительное небольшое время для нанесения дефектоскопических материалов и осмотра. В сумме оно будет приблизительно равно 1ч.
Общее время контроля 21+1+1=23 ч. Принимаем, что для контроля потребуется три 8-часовых смены.

НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ. Кн. I. Общие вопросы. Контроль проникающими веществами. Гурвич, Ермолов, Сажин.

Вы можете скачать документ

У нас на сайте всегда представлено большое количество свежих актуальных вакансий. Используйте фильтры для быстрого поиска по параметрам.

Для успешного трудоустройства желательно иметь профильное образование, а также обладать необходимыми качествами и навыками работы. Прежде всего, нужно внимательно изучить требования работодателей по выбранной специальности, затем заняться составлением резюме.

Не стоит отправлять свое резюме одновременно по всем компаниям. Выбирайте подходящие вакансии, ориентируясь на свою квалификацию и опыт работы. Перечислим самые значимые для работодателей навыки, необходимые Вам для успешной работы инженером по неразрушающему контролю в Москве:

Топ 7 ключевых навыков, которыми Вам нужно обладать для трудоустройства

Также довольно часто в вакансиях встречаются следующие требования: ведение переговоров, проектная документация и ответственность.

Готовясь к собеседованию, используйте эту информацию как чек-лист. Это поможет Вам не только понравиться рекрутеру, но и получить желаемую работу!

Анализ вакансий в Москве

По результатам анализа вакансий, опубликованных на нашем сайте, указанная начальная зарплата, в среднем, составляет — 71 022 . Усредненный максимальный уровень дохода (указанная «зарплата до») — 84 295 . Нужно учитывать, что приведенные цифры это статистика. Реальная же зарплата при трудоустройстве может сильно отличаться в зависимости от многих факторов:
  • Ваш предыдущий опыт работы, образование
  • Тип занятости, график работы
  • Размер компании, ее отрасль, бренд и др.

Уровень зарплаты в зависимости от опыта работы соискателя


КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ

Цветной метод контроля соединений, наплавленного и основного металла

Генеральный директор ОАО «ВНИИПТхимнефтеаппаратуры»

В.А. Панов

Заведующий отделом стандартизации

В.Н. Заруцкий

Заведующий отделом № 29

С.Я. Лучин

Заведующий лабораторией № 56

Л.В. Овчаренко

Руководитель разработки, старший научный сотрудник

В.П. Новиков

Ведущий инженер

Л.П. Горбатенко

Инженер-технолог II кат.

Н.К. Ламина

Инженер по стандартизации I кат.

З.А. Лукина

Соисполнитель

Заведующий отделом ОАО «НИИХИММАШ»

Н.В. Химченко

СОГЛАСОВАНО

Заместитель генерального директора
по научно-производственной деятельности
ОАО «НИИХИММАШ»

В.В. Раков

Предисловие

1. РАЗРАБОТАН ОАО «Волгоградский научно-исследовательский и проектный институт технологии химического и нефтяного аппаратостроения» (ОАО «ВНИИПТ химнефтеаппаратуры)


2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Техническим комитетом № 260 «Оборудование химическое и нефтегазоперерабатывающее» Листом Утверждения от декабря 1999 г.

3. СОГЛАСОВАН письмом Госгортехнадзора России № 12-42/344 от 05.04.2001 г.

4. ВЗАМЕН ОСТ 26-5-88

1 Область применения. 2

3 Общие положения. 2

4 Требования к участку контроля цветным методом.. 3

4.1 Общие требования. 3

4.2 Требования к рабочему месту контроля цветным методом.. 3

5 Дефектоскопические материалы.. 4

6 Подготовка к контролю цветным методом.. 5

7 Методика проведения контроля. 6

7.1 Нанесение индикаторного пенетранта. 6

7.2 Удаление индикаторного пенетранта. 6

7.3 Нанесение и сушка проявителя. 6

7.4 Осмотр контролируемой поверхности. 6

8 Оценка качества поверхности и оформление результатов контроля. 6

9 Требования безопасности. 7

Приложение А. Нормы шероховатости контролируемой поверхности. 8

Приложение Б. Нормы обслуживания при контроле цветным методом.. 9

Приложение В. Значения освещенности контролируемой поверхности. 9

Приложение Г. Контрольные образцы для проверки качества дефектоскопических материалов. 9

Приложение Д. Перечень реактивов и материалов, применяемых при контроле цветным методом.. 11

Приложение Е. Приготовление и правила использования дефектоскопических материалов. 12

Приложение Ж. Хранение и проверка качества дефектоскопических материалов. 14

Приложение И. Нормы расхода дефектоскопических материалов. 14

Приложение К. Методы оценки качества обезжиривания контролируемой поверхности. 15

Приложение Л. Форма журнала контроля цветным методом.. 15

Приложение М. Форма заключения по результатам контроля цветным методом.. 15

Приложение Н. Примеры сокращенной записи контроля цветным методом.. 16

Приложение П. Паспорт на контрольный образец. 16

ОСТ 26-5-99

ОТРАСЛЕВОЙ СТАНДАРТ

Дата введения 2000-04-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на цветной метод контроля сварных соединений, наплавленного и основного металла всех марок стали, титана, меди, алюминия и их сплавов.

Стандарт действует в отрасли химического, нефтяного и газового машиностроения и может быть использован для любых объектов, подконтрольных Госгортехнадзору России.


Стандарт устанавливает требования к методике подготовки и проведения контроля цветным методом, контролируемым объектам (сосудам, аппаратам, трубопроводам, металлическим конструкциям, их элементам и т.п.), персоналу и рабочим местам, дефектоскопическим материалам, оценке и оформлению результатов, а также требования безопасности.

2 НОРМАТИВНЫЕ ССЫЛКИ

ГОСТ 12.0.004-90 ССБТ Организация обучения работающих безопасности труда

ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны


ППБ 01-93 Правила пожарной безопасности в Российской Федерации

Правила аттестации специалистов неразрушающего контроля, утвержденные Госгортехнадзором России

РД 09-250-98 Положение о порядке безопасного проведения ремонтных работ на химических, нефтехимических и нефтеперерабатывающих опасных производственных объектах, утвержденное Госгортехнадзором России

РД 26-11-01-85 Инструкция по контролю сварных соединений, недоступных для проведения радиографического и ультразвукового контроля

СН 245-71 Санитарные нормы проектирования промышленных предприятий


Типовая инструкция на проведение газоопасных работ, утвержденная Госгортехнадзором СССР 20.02.85.

3 ОБЩИЕ ПОЛОЖЕНИЯ

3.1 Цветной метод неразрушающего контроля (цветная дефектоскопия) относится к капиллярным методам и предназначен для выявления дефектов типа несплошностей, выходящих на поверхность.

3.2 Применение цветного метода, объем контроля, класс дефектности устанавливает разработчик конструкторской документации на изделие и отражает в технических требованиях чертежа.

3.3 Необходимый класс чувствительности контроля цветным методом по ГОСТ 18442 обеспечивается применением соответствующих дефектоскопических материалов при выполнении требований настоящего стандарта.

3.4 Контроль объектов из цветных металлов и сплавов должен проводиться до их механической обработки.

3.5 Контроль цветным методом должен проводиться до нанесения лакокрасочных и других покрытий или после полного их удаления с контролируемых поверхностей.

3.6 При контроле объекта двумя методами - ультразвуковым и цветным, контроль цветным методом следует проводить до ультразвукового.

3.7 Поверхность, подлежащая контролю цветным методом, должна быть очищена от металлических брызг, нагара, окалины, шлака, ржавчины, различных органических веществ (масел и т.п.) и других загрязнений.

При наличии металлических брызг, нагара, окалины, шлака, ржавчины и т.п. загрязнений поверхность подлежит механической зачистке.

Механическую зачистку поверхности из сталей углеродистых, низколегированных, и близких им по механическим свойствам следует производить шлифовальной машинкой с электрокорундовым шлифовальным кругом на керамической связке.

Допускается производить зачистку поверхности металлическими щетками, абразивной бумагой или другими способами по ГОСТ 18442, обеспечивающими выполнение требований приложения А.

Очистку поверхности от жировых и прочих органических загрязнений, а также от воды рекомендуется проводить с прогреванием этой поверхности или объектов, если объекты мелкие, в течение 40 - 60 мин при температуре 100 - 120 °С.

Примечание. Механическая зачистка и прогревание контролируемой поверхности, а также очистка объекта после проведения контроля в обязанности дефектоскописта не входят.

3.8 Шероховатость контролируемой поверхности должна соответствовать требованиям приложения А настоящего стандарта и быть указана в нормативно-технической документации на изделие.

3.9 Поверхность, подлежащая контролю цветным методом, должна быть принята службой ОТК по результатам визуального контроля.

3.10 В сварных соединениях контролю цветным методом подлежит поверхность сварного шва и прилегающие к нему участки основного металла шириной не менее толщины основного металла, но не менее 25 мм по обе стороны от шва при толщине металла до 25 включительно и 50 мм - при толщине металла свыше 25 мм до 50 мм.

3.11 Сварные соединения, протяженностью более 900 мм следует разделить на участки (зоны) контроля длина или площадь которых должна быть установлена так, чтобы не допустить высыхания индикаторного пенетранта до повторного его нанесения.

Для кольцевых сварных соединений и кромок под сварку длина контролируемого участка должна быть при диаметре изделия:

до 900 мм - не более 500 мм,

свыше 900 мм - не более 700 мм.

Площадь контролируемой поверхности не должна превышать 0,6 м 2 .

3.12 При контроле внутренней поверхности цилиндрического сосуда его ось должна быть наклонена под углом 3 - 5° к горизонтали, обеспечивая сток отработанных жидкостей.

3.13 Контроль цветным методом должен проводиться при температуре от 5 до 40 °С и относительной влажности не более 80 %.

Допускается проведение контроля при температуре ниже 5 °С с использованием соответствующих дефектоскопических материалов.

3.14 Проведение контроля цветным методом при монтаже, ремонте или техническом диагностировании объектов следует оформлять как газоопасные работы в соответствии с РД 09-250.

3.15 Контроль цветным методом должен выполняться лицами, прошедшими специальную теоретическую и практическую подготовку и аттестованными в установленном порядке согласно «Правилам аттестации специалистов неразрушающего контроля», утвержденным Госгортехнадзором России, и имеющими соответствующие удостоверения.

3.16 Нормы обслуживания при контроле цветным методом приведены в приложении Б.

3.17 Настоящий стандарт может быть использован предприятиями (организациями) при разработке технологических инструкций и (или) другой технологической документации по контролю цветным методом для конкретных объектов.

4 ТРЕБОВАНИЯ К УЧАСТКУ КОНТРОЛЯ ЦВЕТНЫМ МЕТОДОМ

4.1 Общие требования

4.1.1 Участок контроля цветным методом должен размещаться в сухих отапливаемых, изолированных помещениях с естественным и (или) искусственным освещением и приточно-вытяжной вентиляцией в соответствии с требованиями СН-245, ГОСТ 12.1.005 и 3.13, 4.1.4, 4.2.1 настоящего стандарта, вдали от высокотемпературных источников и механизмов, вызывающих искрение.

Приточный воздух с температурой ниже 5 °С следует подогревать.

4.1.2 При применении дефектоскопических материалов с использованием органических растворителей и других пожаро- и взрывоопасных веществ участок контроля должен размещаться в двух смежных помещениях.

В первом помещении выполняются технологические операции подготовки и проведения контроля, а также осмотр контролируемых объектов.

Во втором помещении располагаются нагревательные устройства и оборудование, на котором выполняются работы, не связанные с применением пожаро- и взрывоопасных веществ и которое по условиям техники безопасности нельзя устанавливать в первом помещении.

Допускается проводить контроль цветным методом на производственных (монтажных) участках при полном соблюдении методики контроля и требований техники безопасности.

4.1.3 На участке для контроля крупногабаритных объектов, при превышении норм допустимой концентрации паров применяемых дефектоскопических материалов, должны быть установлены стационарные панели всасывания, переносные вытяжные зонты или подвесные вытяжные панели, укрепленные на поворотной одно- или двух- шарнирной подвеске.

Переносные и подвесные отсасывающие устройства должны быть соединены с вентиляционной системой гибкими воздуховодами.

4.1.4 Освещение на участке контроля цветным методом должно быть комбинированным (общим и местным).

Допускается использовать одно общее освещение в случае, если применение местного освещения невозможно по производственным условиям.

Используемые светильники должны быть во взрывозащищённом исполнении.

Значения освещенности приведены в приложении В.

При использовании оптических приборов и других средств для осмотра контролируемой поверхности её освещенность должна соответствовать требованиям документов по эксплуатации этих приборов и (или) средств.

4.1.5 Участок контроля цветным методом должен быть обеспечен сухим чистым сжатым воздухом давлением 0,5 - 0,6 МПа.

Сжатый воздух должен поступать на участок через влагомаслоотделитель.

4.1.6 На участке должен быть подвод холодной и горячей воды со стоком в канализацию.

4.1.7 Пол и стены в помещении участка должны быть покрыты легко моющимися материалами (метлахской плиткой и т.п.).

4.1.8 На участке должны быть установлены шкафы для хранения инструмента, приспособлений, дефектоскопических и вспомогательных материалов, документации.

4.1.9 Состав и размещение оборудования участка контроля цветным методом должны обеспечивать технологическую последовательность операций и соответствовать требованиям раздела 9.

4.2 Требования к рабочему месту контроля цветным методом

4.2.1 Рабочее место для контроля должно быть оборудовано:

приточно-вытяжной вентиляцией и местной вытяжкой не менее чем с трехкратным воздухообменом, (над рабочим местом должен быть установлен вытяжной зонт);

светильником для местного освещения, обеспечивающим освещенность согласно приложению В;

источником сжатого воздуха с воздушным редуктором;

подогревателем (воздушным, инфракрасным или другого типа), обеспечивающим сушку проявителя при температуре ниже 5 °С.

4.2.2 На рабочем месте должны быть установлены стол (верстак) для контроля мелких объектов, а также стол и стул с решеткой под ноги для дефектоскописта.

4.2.3 На рабочем месте должны быть следующие приборы, устройства, инструменты, приспособления, дефектоскопические и вспомогательные материалы, другие принадлежности для выполнения контроля:

краскораспылители с небольшим расходом воздуха и малой производительностью (для нанесения индикаторного пенетранта или проявителя распылением);

контрольные образцы и приспособление (для проверки качества и чувствительности дефектоскопических материалов) согласно приложению Г;

лупы с 5 и 10-кратным увеличением (для общего осмотра контролируемой поверхности);

лупы телескопические (для осмотра контролируемых поверхностей, расположенных внутри конструкции и удаленных от глаз дефектоскописта, а также поверхностей в виде острых двухгранных и многогранных углов);

наборы стандартных и специальных щупов (для измерения глубины дефектов);

металлические линейки (для определения линейных размеров дефектов и разметки контролируемых участков);

мел и (или) цветной карандаш (для разметки контролируемых участков и отметки дефектных мест);

наборы малярных волосяных и щетинных кистей (для обезжиривания контролируемой поверхности и нанесения на нее индикаторного пенетранта и проявителя);

набор щетинных щеток (для обезжиривания контролируемой поверхности при необходимости их применения);

салфетки и (или) ветошь из хлопчатобумажных тканей бязевой группы (для протирки контролируемой поверхности. Не допускается использовать салфетки или ветошь из шерстяных, шелковых, синтетических, а также ворсистых тканей);

ветошь обтирочная (для удаления механических и других загрязнений с контролируемой поверхности при необходимости);

бумага фильтровальная (для проверки качества обезжиривания контролируемой поверхности и фильтрования приготавливаемых дефектоскопических материалов);

перчатки резиновые (для защиты рук дефектоскописта от материалов, используемых при контроле);

халат хлопчатобумажный (для дефектоскописта);

костюм хлопчатобумажный (для работы внутри объекта);

фартук прорезиненный с нагрудником (для дефектоскописта);

сапоги резиновые (для работы внутри объекта);

респиратор фильтрующий универсальный (для работы внутри объекта);

фонарь с лампой на 3,6 Вт (для работы в монтажных условиях и при техническом диагностировании объекта);

тара плотно закрывающаяся, небьющаяся (для дефектоскопических материалов на 5

одноразовую работу, при проведении контроля с использованием кистей);

весы лабораторные со шкалой до 200 г (для взвешивания составляющих дефектоскопических материалов);

набор разновесов до 200 г;

набор дефектоскопических материалов для проведения контроля (может быть в аэрозольной упаковке или в плотно закрывающейся небьющейся таре, в количестве рассчитанном на односменную работу).

4.2.4 Перечень реактивов и материалов используемых для контроля цветным методом приведен в приложении Д.

5 ДЕФЕКТОСКОПИЧЕСКИЕ МАТЕРИАЛЫ

5.1 Набор дефектоскопических материалов для контроля цветным методом составляют:

индикаторный пенетрант (И);

очиститель от пенетранта (М);

проявитель пенетранта (П).

5.2 Выбор набора дефектоскопических материалов должен определяться в зависимости от необходимой чувствительности контроля и условий его применения.

Наборы дефектоскопических материалов указаны в таблице 1, рецептура, технология приготовления и правила их использования приведены в приложении Е, правила хранения и проверка качества - в приложении Ж, нормы расхода - в приложении И.

Допускается использовать дефектоскопические материалы и (или) их наборы не предусмотренные настоящим стандартом при условии обеспечения необходимой чувствительности контроля.

Таблица 1 - Наборы дефектоскопических материалов

Отраслевое обозначение набора

Назначение набора

Показатели назначения набора

Условия применения

Дефектоскопические материалы

Температура °С

особенности применения

пенетрант

очиститель

проявитель

Пожароопасен, токсичен

при Ra ? 6,3 мкм

Малотоксичен, пожаробезопасен, применим в закрытых помещениях требует тщательной очистки от пенетранта

Для грубых сварных швов

Пожароопасен, токсичен

при Ra ? 6,3 мкм

Для послойного контроля сварных швов

Пожароопасен, токсичен, не требуется удаления проявителя перед очередной операцией сварки

Жидкость К

при Ra ? 6,3 мкм

Для достижения высокой чувствительности

Пожароопасен, токсичен, применим к объектам, исключающим контакт с водой

Жидкость К

Масляно-керосиновая смесь

при Rа? 3,2 мкм

(ИФХ-Колор-4)

Экологически и пожаробезопасен, не вызывает коррозии, совместим с водой

По ТУ изготовителя

Любой по приложению Е

при Rа = 12,5 мкм

Для грубых сварных швов

Аэрозольный способ нанесения пенетранта и проявителя

По ТУ изготовителя

при Ra ? 6,3 мкм

при Ra ? 3,2 мкм

Примечания:

1 Обозначение набора в скобках дано его разработчиком.

2 Шероховатость поверхности (Ra) - по ГОСТ 2789.

3 Наборы ДН-1Ц - ДН-6Ц следует готовить по рецептуре, приведенной в приложении Е.

4 Жидкость К и краска М (изготовитель Львовский лакокрасочный завод), наборы:

ДН-8Ц (изготовитель ИФХ УАН г. Киев), ДН-9Ц и ЦАН (изготовитель Невинномысский НХК) - поставляются в готовом виде.

5 В скобках указаны проявители, которые допускается использовать для данных индикаторных пенетрантов.

6 ПОДГОТОВКА К КОНТРОЛЮ ЦВЕТНЫМ МЕТОДОМ

6.1 При механизированном контроле перед началом работы следует проверить работоспособность средств механизации и качество распыления дефектоскопических материалов.

6.2 Наборы и чувствительность дефектоскопических материалов должны соответствовать требованиям таблицы 1.

Проверку чувствительности дефектоскопических материалов следует производить по приложению Ж.

6.3 Поверхность, подлежащая контролю должна соответствовать требованиям 3.7 - 3.9.

6.4 Контролируемая поверхность должна быть обезжирена соответствующим составом из конкретного набора дефектоскопических материалов.

Допускается использовать для обезжиривания органические растворители (ацетон, бензин), с целью достижения максимальной чувствительности и (или) при проведении контроля в условиях пониженных температур.

Не допускается обезжиривание керосином.

6.5 При проведении контроля в помещениях без вентиляции или внутри объекта обезжиривание следует осуществлять водным раствором порошкообразного синтетического моющего средства (CMC) любой марки концентрацией 5 %.

6.6 Обезжиривание следует осуществлять жесткой, щетинной кистью (щеткой), соответствующей размеру и форме контролируемой зоны.

Допускается проводить обезжиривание салфеткой (ветошью), смоченной в обезжиривающем составе, либо распылением обезжиривающего состава.

Обезжиривание мелких объектов следует выполнять погружением их в соответствующие составы.

6.7 Контролируемая поверхность после обезжиривания должна быть осушена струей чистого сухого воздуха с температурой 50 - 80 °С.

Допускается осушку поверхности производить сухими, чистыми салфетками из ткани с последующей выдержкой в течение 10 - 15 мин.

Осушку мелких объектов после обезжиривания рекомендуется проводить их нагреванием до температуры 100 - 120 °С и выдержкой при этой температуре в течение 40 - 60 мин.

6.8 При проведении контроля в условиях низких температур контролируемую поверхность следует обезжирить бензином, а затем осушить спиртом, используя сухие, чистые салфетки из ткани.

6.9 Поверхность, которая перед контролем подверглась травлению, следует нейтрализовать водным раствором кальцинированной соды концентрацией 10 - 15 %, промыть чистой водой и осушить струей сухого, чистого воздуха с температурой не менее 40 °С или сухими, чистыми салфетками из ткани, а затем обработать в соответствии с 6.4 - 6.7.

6.11 Контролируемую поверхность следует разметить на участки (зоны) согласно 3.11 и маркировать в соответствии с картой контроля способом, принятым на данном предприятии.

6.12 Промежуток времени между окончанием подготовки объекта к контролю и нанесением индикаторного пенетранта не должен превышать 30 мин. В течение этого времени должна быть исключена возможность конденсации атмосферной влаги на контролируемой поверхности, а также попадание на нее различных жидкостей и загрязнений.

7 МЕТОДИКА ПРОВЕДЕНИЯ КОНТРОЛЯ

7.1 Нанесение индикаторного пенетранта

7.1.1 Индикаторный пенетрант следует наносить на подготовленную согласно разделу 6 поверхность мягкой волосяной кистью, соответствующей размеру и форме контролируемого участка (зоны), распылением (краскораспылителем, аэрозольным способом) или окунанием (для мелких объектов).

Пенетрант следует наносить на поверхность в 5 - 6 слоев, не допуская высыхания предыдущего слоя. Площадь последнего слоя должна быть несколько больше площади ранее нанесенных слоев (чтобы подсохший по контуру пятна пенетрант растворился последним слоем не оставляя следов, которые после нанесения проявителя образуют рисунок ложных трещин).

7.1.2 При проведении контроля в условиях низких температур, температура индикаторного пенетранта должна быть не ниже 15 °С.

7.2 Удаление индикаторного пенетранта

7.2.1 Индикаторный пенетрант следует удалить с контролируемой поверхности немедленно после нанесения его последнего слоя, сухой, чистой салфеткой из безворсовой ткани, а затем - чистой салфеткой, смоченной в очистителе (в условиях низких температур - в техническом этиловом спирте) до полного удаления окрашенного фона, или любым другим способом по ГОСТ 18442.

При шероховатости контролируемой поверхности Ra ? 12,5 мкм фон, образуемый остатками пенетранта, не должен превышать установленного контрольным образцом фона по приложению Г.

Масляно-керосиновую смесь следует наносить щетинной кистью, сразу после нанесения последнего слоя проникающей жидкости К, не допуская его высыхания, при этом, площадь покрытая смесью, должна быть несколько больше площади, покрытой проникающей жидкостью.

Удаление проникающей жидкости с масляно-керосиновой смесью с контролируемой поверхности следует производить сухой, чистой ветошью.

7.2.2 Контролируемую поверхность, после удаления индикаторного пенетранта, следует осушить сухой, чистой салфеткой из безворсовой ткани.

7.3 Нанесение и сушка проявителя

7.3.1 Проявитель должен представлять собой однородную массу без комков и расслоений, для чего перед употреблением его следует тщательно перемешать.

7.3.2 Проявитель следует наносить на контролируемую поверхность немедленно после удаления индикаторного пенетранта, одним тонким, ровным слоем, обеспечивающим выявляемость дефектов, мягкой волосяной кистью, соответствующей размеру и форме контролируемого участка (зоны), распылением (краскораспылителем, аэрозольно) или окунанием (для мелких объектов).

Не допускается нанесение проявителя на поверхность дважды, а также его наплывы и подтеки на поверхности.

При аэрозольном способе нанесения, клапан распылительной головки баллончика с проявителем перед употреблением следует продуть фреоном, для чего повернуть баллончик вверх дном и кратковременно нажать на распылительную головку. Затем, повернуть баллончик распылительной головкой вверх и встряхивать его в течение 2 - 3 мин с целью перемешивания содержимого. Убедиться в хорошем качестве распыления, нажав на распылительную головку и направив струю в сторону от объекта.

При удовлетворительном распылении, не закрывая клапан распылительной головки, следует перенести струю проявителя на контролируемую поверхность. Распылительная головка баллончика должна находиться на расстоянии 250 - 300 мм от контролируемой поверхности.

Не допускается закрывать клапан распылительной головки при направлении струи на объект во избежание попадания крупных капель проявителя на контролируемую поверхность.

Распыление следует закончить, направив струю проявителя в сторону от объекта. По окончании распыления клапан распылительной головки вновь продуть фреоном.

В случае засорения распылительной головки ее следует извлечь из гнезда, промыть в ацетоне и продуть сжатым воздухом (резиновой грушей).

Краску М следует наносить сразу после удаления масляно-керосиновой смеси, краскораспылителем, для обеспечения наибольшей чувствительности контроля. Промежуток времени между удалением масляно-керосиновой смеси и нанесением краски М не должен превышать 5 мин.

Допускается наносить краску М волосяной кистью, когда применение краскораспылителя невозможно.

7.3.3 Сушка проявителя может осуществляться за счет естественного испарения или в струе чистого, сухого воздуха с температурой 50 - 80 °С.

7.3.4 Сушка проявителя в условиях низких температур может выполняться с дополнительным применением отражательных электронагревательных приборов.

7.4 Осмотр контролируемой поверхности

7.4.1 Осмотр контролируемой поверхности следует проводить через 20 - 30 мин после высыхания проявителя. В случаях, вызывающих сомнение при осмотре контролируемой поверхности, следует использовать лупу 5 или 10-кратного увеличения.

7.4.2 Осмотр контролируемой поверхности при послойном контроле должен проводиться не позднее, чем через 2 мин после нанесения проявителя на органической основе.

7.4.3 Дефекты, выявленные в процессе осмотра, следует отметить способом, принятом на данном предприятии.

8 ОЦЕНКА КАЧЕСТВА ПОВЕРХНОСТИ И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ

8.1 Оценку качества поверхности по результатам контроля цветным методом следует проводить по форме и размеру рисунка индикаторного следа в соответствии с требованиями конструкторской документации на объект или таблицей 2.

Таблица 2 - Нормы поверхностных дефектов для сварных соединений и основного металла

Вид дефекта

Класс дефектности

Толщина материала, мм

Максимально допустимый линейный размер индикаторного следа дефекта, мм

Максимально допустимое количество дефектов на стандартном участке поверхности

Трещины всех видов и направлений

Независимо

Не допускаются

Отдельные поры и включения, выявившиеся в виде пятен округлой или удлиненной формы

Независимо

Не допускаются

0,2S, но не более 3

Не более 3

0,2S, но не более 3

или не более 5

Не более 3

или не более 5

0,2S, но не более 3

или не более 5

Не более 3

или не более 5

или не более 9

Примечания:

1 В антикоррозионной наплавке 1 - 3 классов дефектности дефекты всех видов не допускаются; для 4 класса - допускаются одиночные разрозненные поры и шлаковые включения размером до 1 мм не более 4 на стандартном участке 100?100 мм и не более 8 - на участке 200?200 мм.

2 Стандартный участок, при толщине металла (сплава) до 30 мм - участок сварного шва длиной 100 мм или площадь основного металла 100?100 мм, при толщине металла свыше 30 мм - участок сварного шва длиной 300 мм или площадь основного металла 300?300 мм.

3 При разной толщине свариваемых элементов, определение размеров стандартного участка и оценку качества поверхности следует производить по элементу наименьшей толщины.

4 Индикаторные следы дефектов подразделяются на две группы - протяженные и округлые, протяженный индикаторный след характеризуется отношением длины к ширине больше 2, округлый - отношением длины к ширине равном или меньше 2.

5 Дефекты следует определять как отдельные при отношении расстояния между ними к максимальной величине их индикаторного следа больше 2, при этом отношении равном или меньше 2, дефект следует определять как один.

8.2 Результаты контроля следует фиксировать в журнале с обязательным заполнением всех его граф. Форма журнала (рекомендуемая) приведена в приложении Л.

Журнал должен иметь сквозную нумерацию страниц, быть прошнурован и скреплен подписью руководителя службы неразрушающего контроля. Исправления должны быть подтверждены подписью руководителя службы неразрушающего контроля.

8.3 Заключение по результатам контроля должно составляться на основании записи в журнале. Форма заключения (рекомендуемая) приведена в приложении М.

Допускается дополнять журнал и заключение другими сведениями, принятыми на предприятии.

8.5 Условные обозначения вида дефектов и технологии контроля - по ГОСТ 18442.

Примеры записи приведены в приложении Н.

9 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

9.1 К выполнению работ по контролю цветным методом допускаются лица, аттестованные в соответствии с 3.15, прошедшие специальный инструктаж согласно ГОСТ 12.0.004 по правилам безопасности, электробезопасности (до 1000 В), пожарной безопасности по соответствующим инструкциям, действующим на данном предприятии, с записью о проведении инструктажа в специальном журнале.

9.2 Дефектоскописты, выполняющие контроль цветным методом, подлежат предварительному (при поступлении на работу) и ежегодному медицинскому осмотру с обязательной проверкой цветового зрения.

9.3 Работы по контролю цветным методом должны проводиться в спецодежде: халате (костюме) хлопчатобумажном, куртке ватной (при температуре ниже 5 °С), резиновых перчатках, головном уборе.

При пользовании резиновыми перчатками руки предварительно следует покрыть тальком или смазать вазелином.

9.4 На участке контроля цветным методом необходимо соблюдать правила пожарной безопасности в соответствии с ГОСТ 12.1.004 и ППБ 01.

Не допускается курение, наличие открытого огня и всякого рода искрений на расстоянии 15 м от места контроля.

На месте проведения работ должны быть вывешены плакаты: «Огнеопасно», «С огнем не входить».

9.6 Количество органических жидкостей на участке контроля цветным методом должно быть в пределах сменной потребности, но не более 2 л.

9.7 Горючие вещества следует хранить в специальных металлических шкафах, оборудованных вытяжной вентиляцией или в герметично закрывающейся, небьющейся таре.

9.8 Использованный протирочный материал (салфетки, ветошь) необходимо держать в металлической, плотно закрывающейся таре и периодически подвергать утилизации в установленном на предприятии порядке.

9.9 Приготовление, хранение и транспортирование дефектоскопических материалов следует выполнять в небьющейся, герметично закрывающейся таре.

9.10 Предельно допустимые концентрации паров дефектоскопических материалов в воздухе рабочей зоны - по ГОСТ 12.1.005.

9.11 Контроль внутренней поверхности объектов следует проводить при постоянной подаче свежего воздуха внутрь объекта, во избежание скопления паров органических жидкостей.

9.12 Контроль цветным методом внутри объекта должен проводиться двумя дефектоскопистами, один из которых, находясь снаружи, обеспечивает соблюдение требований безопасности, обслуживает вспомогательное оборудование, поддерживает связь и помогает дефектоскописту, работающему внутри.

Время непрерывной работы дефектоскописта внутри объекта не должно превышать одного часа, по прошествии которого дефектоскопистам следует сменить друг друга.

9.13 Для снижения утомляемости дефектоскопистов и повышения качества контроля целесообразно через каждый час работы делать перерыв 10 - 15 мин.

9.14 Переносные светильники должны быть во взрывобезопасном исполнении с напряжением электропитания не более 12 В.

9.15 При контроле объекта, установленного на роликовом стенде, на пульте управления стенда должен быть вывешен плакат «Не включать, работают люди».

9.16 При работе с набором дефектоскопических материалов в аэрозольной упаковке не допускается: распыление составов вблизи открытого огня; курение; нагревание баллона с составом выше 50 °С, его размещение вблизи источника тепла и под прямыми солнечными лучами, механическое воздействие на баллон (удары, разрушение и т.п.), а также выбрасывание до полного использования содержимого; попадание составов в глаза.

9.17 Руки, после проведения контроля цветным методом, следует немедленно вымыть теплой водой с мылом.

Запрещается использовать для мытья рук керосин, бензин и другие растворители.

При сухости рук после мытья необходимо применять смягчающие кожу кремы.

Не допускается прием пищи на участке контроля цветным методом.

9.18 Участок контроля цветным методом должен быть обеспечен средствами пожаротушения в соответствии с действующими нормами и правилами пожарной безопасности.

Приложение А

(обязательное)

Нормы шероховатости контролируемой поверхности

Объект контроля

Группа сосудов, аппаратов по ПБ 10-115

Класс чувствительности по ГОСТ 18442

Класс дефектности

Шероховатость поверхности по ГОСТ 2789, мкм, не более

Западание между валиками сварного шва, мм, не более

Сварные соединения корпусов сосудов и аппаратов (кольцевые, продольные, приварка днищ, патрубков и других элементов), кромки под сварку

Технологический

Не обработанная

Технологическая наплавка кромок под сварку

Антикоррозионная наплавка

Участки других элементов сосудов и аппаратов, где обнаружены дефекты при визуальном контроле

Сварные соединения трубопроводов Р раб? 10 МПа

Сварные соединения трубопроводов Р раб < 10 МПа

Приложение Б

Нормы обслуживания при контроле цветным методом

Таблица Б.1 - Объем контроля для одного дефектоскописта в одну смену (480 мин)

Фактическая величина нормы обслуживания (Нф) с учетом расположения объекта и условий проведения контроля определяется по формуле:

Нф = Но/(Ксл?Кр?Ку?Кпз),

где Но - норма обслуживания по таблице Б.1;

Ксл - коэффициент сложности по таблице Б.2;

Кр - коэффициент размещения по таблице Б.3;

Ку - коэффициент условий по таблице Б.4;

Кпз - коэффициент подготовительно-заключительного времени, равный 1,15.

Трудоемкость контроля 1 м сварного шва или 1 м 2 поверхности определяется по формуле:

Т = (8?Ксл?Кр?Ку?Кпз)/Но

Таблица Б.2 - Коэффициент сложности проведения контроля, Ксл

Таблица Б.3 - Коэффициент размещения объектов контроля, Кр

Таблица Б.4 - Коэффициент условий проведения контроля, Ку

Приложение В

(обязательное)

Значения освещенности контролируемой поверхности

Класс чувствительности по ГОСТ 18442

Минимальные размеры дефекта (трещины)

Освещенность контролируемой поверхности, лк

ширина раскрытия, мкм

протяженность, мм

комбинированная

от 10 до 100

от 100 до 500

Технологический

Не нормируется

Приложение Г

Контрольные образцы для проверки качества дефектоскопических материалов

Г.1 Контрольный образец с искусственным дефектом

Образец изготавливается из коррозионностойкой стали и представляет собой рамку с помещенными в ней двумя пластинами, прижатыми друг к другу винтом (рис. Г.1). Контактные поверхности пластин должны быть притерты, их шероховатость (Ra) - не более 0,32 мкм, шероховатость других поверхностей пластин - не более 6,3 мкм по ГОСТ 2789.

Искусственный дефект (клиновидная трещина) создается щупом соответствующей толщины, помещенным между контактными поверхностями пластин с одного края.

1 - винт; 2 - рамка; 3 - пластины; 4 - щуп

а - контрольный образец; б - пластина

Рисунок Г.1 - Контрольный образец из двух пластин

Г.2 Контрольные образцы предприятия

Образцы могут быть изготовлены из любых коррозионностойких сталей способами, принятыми на предприятии-изготовителе.

Образцы должны иметь дефекты типа неразветвленных тупиковых трещин с раскрытиями, соответствующими применяемым классам чувствительности контроля по ГОСТ 18442. Ширина раскрытия трещины должна измеряться на металлографическом микроскопе.

Точность измерения ширины раскрытия трещины в зависимости от класса чувствительности контроля по ГОСТ 18442 должна быть для:

I класса - до 0,3 мкм,

II и III классов - до 1 мкм.

Контрольные образцы должны быть аттестованы и подвергаться периодической проверке в зависимости от условий производства, но не реже одного раза в год.

К образцам должен быть приложен паспорт по форме, приведенной в приложении П с фотографией картины выявленных дефектов и указанием набора дефектоскопических материалов, использованных при контроле. Форма паспорта является рекомендуемой, а содержание - обязательным. Паспорт оформляется службой неразрушающего контроля предприятия.

Если контрольный образец в результате длительной эксплуатации не соответствует паспортным данным, его следует заменить новым.

Г.3 Технология изготовления контрольных образцов

Г.3.1 Образец № 1

Объект контроля из коррозионностойкой стали или его часть с естественными дефектами.

Г.3.2 Образец № 2

Образец изготавливается из листовой стали марки 40X13 размером 100?30?(3 - 4) мм.

Вдоль заготовки следует проплавить шов аргонодуговой сваркой без применения присадочной проволоки в режиме I = 100 A, U = 10 - 15 B.

Заготовку согнуть на любом приспособлении до появления трещин.

Г3.3 Образец № 3

Образец изготавливается из листовой стали 1Х12Н2ВМФ или из любой азотируемой стали размером 30?70?3 мм.

Полученную заготовку рихтовать и шлифовать на глубину 0,1 мм с одной (рабочей) стороны.

Заготовку азотировать на глубину 0,3 мм без последующей закалки.

Рабочую сторону заготовки шлифовать на глубину 0,02 - 0,05 мм.

1 - приспособление; 2 - тест-образец; 3 - тиски; 4 - пуансон; 5 - скоба

Рисунок Г.2 - Приспособление для изготовления образца

Шероховатость поверхности Ra должна быть не более 40 мкм по ГОСТ 2789.

Заготовку поместить в приспособление в соответствии с рисунком Г.2, приспособление с заготовкой установить в тиски и плавно зажать до появления характерного хруста азотированного слоя.

Г.3.4 Контрольный образец фона

На металлическую поверхность нанести слой проявителя из используемого набора дефектоскопических материалов и высушить его.

На высохший проявитель однократно нанести индикаторный пенетрант из этого набора, разбавленный соответствующим очистителем в 10 раз и высушить.

Приложение Д

(справочное)

Перечень реактивов и материалов, применяемых при контроле цветным методом

Бензин Б-70 для промышленно-технических целей

Бумага фильтровальная лабораторная

Ветошь обтирочная (сортированная) хлопчатобумажная

Вещество вспомогательное ОП-7 (ОП-10)

Вода питьевая

Вода дистиллированная

Жидкость проникающая красная К

Каолин обогащенный для косметической промышленности, сорт 1

Кислота винная

Керосин осветительный

Краска М проявляющая белая

Краситель жирорастворимый темно-красный Ж (Судан IV)

Краситель жирорастворимый темно-красный 5С

Краситель «Родамин С»

Краситель «Фуксин кислый»

Ксилол каменноугольный

Масло трансформаторное марки ТК

Масло МК-8

Мел химически осажденный

Моноэтаноламин

Наборы дефектоскопических материалов по таблице 1, поставляемые в готовом виде

Натрий едкий технический марки А

Натрий азотнокислый химически чистый

Натрий фосфорнокислый трехзамещенный

Натрия силикат растворимый

Нефрас С2-80/120, С3-80/120

Нориол марки А (Б)

Сажа белая марки БС-30 (БС-50)

Синтетическое моющее средство (CMC) - порошкообразное, любой марки

Скипидар живичный

Сода кальцинированная

Спирт этиловый ректификованный технический

Ткани хлопчатобумажные бязевой группы

Приложение Е

Приготовление и правила использования дефектоскопических материалов

Е.1 Индикаторные пенетранты

Е.1.1 Пенетрант И1:

краситель жирорастворимый темно-красный Ж (Судан IV) - 10 г;

скипидар живичный - 600 мл;

нориол марки А (Б) - 10 г;

нефрас С2-80/120 (С3-80/120) - 300 мл.

Краситель Ж растворить в смеси скипидара с нориолом на водяной бане с температурой 50 °С в течение 30 мин. постоянно перемешивая состав. К полученному составу добавить нефрас. Выдержать состав до комнатной температуры и отфильтровать.

Е.1.2 Пенетрант И2:

краситель жирорастворимый темно-красный Ж (Судан IV) - 15 г;

скипидар живичный - 200 мл;

керосин осветительный - 800 мл.

Краситель Ж полностью растворить в скипидаре, в полученный раствор ввести керосин, емкость с приготовленным составом поместить в кипящую водяную ванну и выдержать в течение 20 мин. Остывший до температуры 30 - 40 °С состав отфильтровать.

Е.1.3 Пенетрант И3:

вода дистиллированная - 750 мл;

вещество вспомогательное ОП-7 (ОП-10) - 20 г;

краситель «Родамин С» - 25 г;

натрий азотнокислый - 25 г;

спирт этиловый ректификованный технический - 250 мл.

Краситель «Родамин С» полностью растворить в этиловом спирте постоянно перемешивая раствор. Натрий азотнокислый и вспомогательное вещество полностью растворить в дистиллированной воде, подогретой до температуры 50 - 60 °С. Полученные растворы слить вместе постоянно перемешивая состав. Выдержать состав в течение 4 ч и отфильтровать.

При контроле по III классу чувствительности по ГОСТ 18442 допускается заменить «Родамин С» на «Родамин Ж» (40 г).

Е.1.4 Пенетрант И4:

вода дистиллированная - 1000 мл;

кислота винная - 60 - 70 г;

краситель «Фуксин кислый» - 5 - 10 г;

синтетическое моющее средство (CMC) - 5 - 15 г.

Краситель «Фуксин кислый», кислоту винную и синтетическое моющее средство растворить в дистиллированной воде, подогретой до температуры 50 - 60 °С, выдержать до температуры 25 - 30 °С и отфильтровать состав.

Е.1.5 Пенетрант И5:

краситель жирорастворимый темно-красный Ж - 5 г;

краситель жирорастворимый темно-красный 5С - 5 г;

ксилол каменноугольный - 30 мл;

нефрас С2-80/120 (С3-80/120) - 470 мл;

скипидар живичный 500 мл.

Краситель Ж растворить в скипидаре, краситель 5С - в смеси нефраса с ксилолом, полученные растворы слить вместе, перемешать и отфильтровать состав.

Е.1.6 Жидкость проникающая красная К.

Жидкость К - маловязкая темно-красная жидкость, не имеющая расслаивания, нерастворимого осадка и взвешенных частиц.

При длительном (свыше 7 ч) воздействии отрицательных температур (до -30 °С и ниже) в жидкости К возможно появление осадка, вследствие снижения растворяющей способности ее составляющих. Такую жидкость перед употреблением следует выдержать при положительной температуре не менее суток, периодически перемешивая или взбалтывая до полного растворения осадка, и выдержать дополнительно не менее одного часа.

Е.2 Очистители индикаторного пенетранта

Е.2.1 Очиститель M1:

вода питьевая - 1000 мл;

вещество вспомогательное ОП-7 (ОП-10) - 10 г.

Вещество вспомогательное полностью растворить в воде.

Е.2.2 Очиститель М2: спирт этиловый ректификованный технический - 1000 мл.

Очиститель следует использовать при низких температурах: от 8 до минус 40 °С.

Е.2.3 Очиститель М3: вода питьевая - 1000 мл; сода кальцинированная - 50 г.

Соду растворить в воде с температурой 40 - 50 °С.

Очиститель следует применять при контроле в помещениях с повышенной пожароопасностью и (или) небольших по объему, не имеющих вентиляции, а также внутри объектов.

Б.2.4 Масляно-керосиновая смесь:

керосин осветительный - 300 мл;

трансформаторное масло (масло МК-8) - 700 мл.

Трансформаторное масло (масло МК-8) смешать с керосином.

Допускается отклонение объема масла от номинального в сторону уменьшения не более, чем на 2 %, в сторону увеличения - не более, чем на 5 %.

Смесь перед применением следует тщательно перемешать.

Е.3 Проявители индикаторного пенетранта

Е.3.1 Проявитель П1:

вода дистиллированная - 600 мл;

каолин обогащенный - 250 г;

спирт этиловый ректификованный технический - 400 мл.

Каолин ввести в смесь воды со спиртом и перемешать до получения однородной массы.

Е.3.2 Проявитель П2:

каолин обогащенный - 250 (350) г;

спирт этиловый ректификованный технический - 1000 мл.

Каолин перемешать со спиртом до однородной массы.

Примечания:

1 При нанесении проявителя краскораспылителем следует вводить в смесь 250 г каолина, а при нанесении кистью - 350 г.

2 Проявитель П2 можно использовать при температуре контролируемой поверхности от 40 до -40 °С.

Допускается в составе проявителей П1 и П2 вместо каолина использовать мел химически осажденный или зубной порошок на меловой основе.

Е.3.3 Проявитель П3:

вода питьевая - 1000 мл;

мел химически осажденный - 600 г.

Мел перемешать с водой до однородной массы.

Допускается взамен мела использовать зубной порошок на меловой основе.

Е.3.4 Проявитель П4:

вещество вспомогательное ОП-7 (ОП-10) - 1 г;

вода дистиллированная - 530 мл;

сажа белая марки БС-30 (БС-50) - 100 г;

спирт этиловый ректификованный технический - 360 мл.

Вещество вспомогательное растворить в воде, влить в раствор спирт и ввести сажу. Полученный состав тщательно перемешать.

Допускается заменить вещество вспомогательное на синтетическое моющее средство любой марки.

Е.3.5 Проявитель П5:

ацетон - 570 мл;

нефрас - 280 мл;

сажа белая марки БС-30 (БС-50) - 150 г.

Сажу ввести в раствор ацетона с нефрасом и тщательно перемешать.

Е.3.6 Белая проявляющая краска М.

Краска М - однородная смесь пленкообразователя, пигмента и растворителей.

При хранении, а также при длительном (свыше 7 ч) воздействии отрицательных температур (до -30 °С и ниже) пигмент краски М выпадает в осадок, поэтому перед использованием и при переливании в другую тару ее следует тщательно перемешать.

Гарантийный срок хранения краски М - 12 месяцев со дня выпуска. По истечении этого срока краска М подлежит проверке на чувствительность согласно приложению Ж.

Е.4 Составы для обезжиривания контролируемой поверхности

Е.4.1 Состав С1:

вещество вспомогательное ОП-7 (ОП-10) - 60 г;

вода питьевая - 1000 мл.

Е.4.2 Состав С2:

вещество вспомогательное ОП-7 (ОП-10) - 50 г;

вода питьевая - 1000 мл;

моноэтаноламин - 10 г.

Е.4.3 Состав С3:

вода питьевая 1000 мл;

синтетическое моющее средство (CMC) любой марки - 50 г.

Е.4.4 Компоненты каждого из составов С1 - С3 растворить в воде при температуре 70 - 80 °С.

Составы С1 - С3 применимы для обезжиривания любых марок металлов и их сплавов.

Е.4.5 Состав С4:

вещество вспомогательное ОП-7 (ОП-10) - 0,5 - 1,0 г;

вода питьевая - 1000 мл;

натрий едкий технический марки А - 50 г;

натрий фосфорнокислый трехзамещенный - 15 - 25 г;

натрия силикат растворимый - 10 г;

сода кальцинированная - 15 - 25 г.

Е.4.6 Состав С5:

вода питьевая - 1000 мл;

натрий фосфорнокислый трехзамещенный 1 - 3 г;

натрия силикат растворимый - 1 - 3 г;

сода кальцинированная - 3 - 7 г.

Е.4.7 Для каждого из составов С4 - С5:

соду кальцинированную растворить в воде при температуре 70 - 80 °С, в полученный раствор поочередно, в указанной последовательности, ввести другие компоненты конкретного состава.

Составы С4 - С5 следует применять при контроле объектов из алюминия, свинца и их сплавов.

После применения составов С4 и С5 контролируемую поверхность следует промыть чистой водой и нейтрализовать 0,5 %-ным водным раствором нитрита натрия.

Не допускается попадание составов С4 и С5 на кожу.

Е.4.8 Допускается в составах С1, С2 и С4 заменить вещество вспомогательное на синтетическое моющее средство любой марки.

Е.5 Органические растворители

Бензин Б-70

Нефрас С2-80/120, С3-80/120

Применение органических растворителей должно осуществляться в соответствии с требованиями раздела 9.

Приложение Ж

Хранение и проверка качества дефектоскопических материалов

Ж.1 Дефектоскопические материалы следует хранить в соответствии с требованиями распространяющихся на них стандартов или технических условий.

Ж.2 Наборы дефектоскопических материалов следует хранить в соответствии с требованиями документов на материалы, из которых они составлены.

Ж.3 Индикаторные пенетранты и проявители следует хранить в герметичной таре. Индикаторные пенетранты должны быть защищены от света.

Ж.4 Составы для обезжиривания и проявители следует готовить и хранить в небьющейся таре из расчета сменной потребности.

Ж.5 Качество дефектоскопических материалов следует проверять на двух контрольных образцах. Один образец (рабочий) следует применять постоянно. Второй образец используется как арбитражный в случае не выявления трещин на рабочем образце. Если на арбитражном образце трещины тоже не выявляются, то дефектоскопические материалы следует признать не пригодными. Если на арбитражном образце трещины выявляются, то рабочий образец следует тщательно очистить или заменить.

Чувствительность контроля (К), при использовании контрольного образца в соответствии с рисунком Г.1, следует рассчитывать по формуле:

где L 1 - длина невыявленной зоны, мм;

L - длина индикаторного следа, мм;

S - толщина щупа, мм.

Ж.6 Контрольные образцы после их использования следует промыть в очистителе или ацетоне щетинной кистью или щеткой (образец по рисунку Г.1 предварительно необходимо разобрать) и просушить теплым воздухом или протереть сухими, чистыми салфетками из ткани.

Ж.7 Результаты проверки чувствительности дефектоскопических материалов должны быть занесены в специальный журнал.

Ж.8 На аэрозольных баллончиках и сосудах с дефектоскопическими материалами должна быть этикетка с данными об их чувствительности и датой очередной проверки.

Приложение И

(справочное)

Нормы расхода дефектоскопических материалов

Таблица И.1

Ориентировочный расход вспомогательных материалов и принадлежностей в расчете на 10 м 2 контролируемой поверхности

Приложение К

Методы оценки качества обезжиривания контролируемой поверхности

К.1 Метод оценки качества обезжиривания каплей растворителя

К.1.1 На обезжиренный участок поверхности нанести 2 - 3 капли нефраса и выдержать не менее 15 с.

К.1.2 Положить на участок с нанесенными каплями лист фильтровальной бумаги и прижать его к поверхности до полного впитывания растворителя в бумагу.

К.1.3 На другой лист фильтровальной бумаги нанести 2 - 3 капли нефраса.

К.1.4 Выдержать оба листа до полного испарения растворителя.

К.1.5 Сравнить визуально внешний вид обоих листов фильтровальной бумаги (освещение должно соответствовать значениям, приведенным в приложении В).

К.1.6 Качество обезжиривания поверхности следует оценивать по наличию или отсутствию пятен на первом листе фильтровальной бумаги.

Данный метод применим для оценки качества обезжиривания контролируемой поверхности любыми обезжиривающими составами, включая органические растворители.

К.2 Метод оценки качества обезжиривания смачиванием.

К.2.1 Обезжиренный участок поверхности смочить водой и выдержать в течение 1 мин.

К.2.2 Качество обезжиривания следует оценивать визуально по отсутствию или наличию водяных капель на контролируемой поверхности (освещение должно соответствовать значениям, приведенным в приложении В).

Данный метод следует применять при очистке поверхности водой или водными составами для обезжиривания.

Приложение Л

Форма журнала контроля цветным методом

Дата проведения контроля

Сведения об объекте контроля

Класс чувствительности, набор дефектоскопических материалов

Выявленные дефекты

заключение по результатам контроля

Дефектоскопист

наименование, номер чертежа

марка материала

№ или обозначение сварного соединения по черт.

№ контролируемого участка

при первичном контроле

при контроле после первого исправления

при контроле после повторного исправления

фамилия, номер удостоверения

Примечания:

1 В графе «Выявленные дефекты» следует приводить размеры индикаторных следов.

2 При необходимости следует прилагать эскизы расположения индикаторных следов.

3 Обозначения выявленных дефектов - по приложению Н.

4 Техническую документацию по результатам контроля следует хранить в архиве предприятия в установленном порядке.

Приложение М

Форма заключения по результатам контроля цветным методом

Предприятие_____________________________

Наименование объекта контроля____________

________________________________________

Зав. № __________________________________

Инв. № _________________________________

ЗАКЛЮЧЕНИЕ № _____ от ___________________
по результатам контроля цветным методом согласно ОСТ 26-5-99, класс чувствительности _____ набор дефектоскопических материалов

Дефектоскопист _____________ /____________/,

удостоверение № _______________

Руководитель службы НК ______________ /______________/

Приложение Н

Примеры сокращенной записи контроля цветным методом

Н.1 Запись контроля

П - (И8 М3 П7),

где П - второй класс чувствительности контроля;

И8 - индикаторный пенетрант И8;

М3 - очиститель М3;

П7 - проявитель П7.

Отраслевое обозначение набора дефектоскопических материалов следует указывать в скобках:

П - (ДН-7Ц).

Н.2 Обозначения дефектов

Н - непровар; П - пора; Пд - подрез; Т - трещина; Ш - шлаковое включение.

А - единичный дефект без преобладающей ориентации;

Б - групповые дефекты без преобладающей ориентации;

В - повсеместно распределенные дефекты без преобладающей ориентации;

П - расположение дефекта параллельно оси объекта;

Расположение дефекта перпендикулярно оси объекта.

Обозначения допустимых дефектов с указанием их расположения должны быть обведены кружком.

Примечание - Сквозной дефект следует обозначать со знаком « * ».

Н.3 Запись результатов контроля

2ТА+-8 - 2 трещины единичные, расположенные перпендикулярно оси сварного шва, длиной 8 мм, недопустимые;

4ПБ-3 - 4 поры, расположенные группой без преобладающей ориентации, со средним размером 3 мм, недопустимые;

20-1 - 1 группа пор длиной 20 мм, расположенная без преобладающей ориентации, со средним размером поры 1 мм, допустимые.

Приложение П

Контрольный образец аттестован ______ (дата) ______ и признан годным для определения чувствительности контроля цветным методом по ___________ классу ГОСТ 18442 с применением набора дефектоскопических материалов

_________________________________________________________________________

Фотография контрольного образца прилагается.

Подпись руководителя службы неразрушающего контроля предприятия

Капиллярный контроль. Цветная дефектоскопия. Капиллярный метод неразрушающего контроля.

_____________________________________________________________________________________

Капиллярная дефектоскопия - метод дефектоскопии, основанный на проникновении определенных контрастных веществ в поверхностные дефектные слои контролируемого изделия под действием капиллярного (атмосферного) давления, в результате последующей обработки проявителем повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного, с выявлением количественного и качественного состава повреждений (до тысячных долей миллиметра).

Существует люминесцентный (флуоресцентный) и цветной методы капиллярной дефектоскопии.

В основном по техническим требованиям или условиям необходимо выявлять очень малые дефекты (до сотых долей миллиметра) и идентифицировать их при обычном визуальном осмотре невооруженным глазом просто невозможно. Использование же портативных оптических приборов, например увеличительной лупы или микроскопа, не позволяет выявить поверхностные повреждения из-за недостаточной различимости дефекта на фоне металла и нехватки поля зрения при кратных увеличениях.

В таких случаях применяют капиллярный метод контроля.

При капиллярном контроле индикаторные вещества проникают в полости поверхностных и сквозных дефектов материала объектов контроля, в последствие образующиеся индикаторные линии или точки регистрируются визуальным способом или с помощью преобразователя.

Контроль капиллярным методом осуществляется в соответствии с ГОСТ 18442-80 “Контроль неразрушающий. Капиллярные методы. Общие требования.”

Главным условием для обнаружения дефектов типа нарушения сплошности материала капиллярным методом является наличие полостей, свободных от загрязнений и других технических веществ, имеющих свободный доступ к поверхности объекта и глубину залегания, в несколько раз превышающую ширину их раскрытия на выходе. Для очистки поверхности перед нанесением пенетранта используют очиститель.

Назначение капиллярного контроля (капиллярной дефектоскопии)

Капиллярная дефектоскопия (капиллярный контроль) предназначена для обнаружения и инспектирования, невидимых или слабо видимых для невооруженного глаза поверхностных и сквозных дефектов (трещины, поры, непровары, межкристаллическая коррозия, раковины, свищи и т.д.) в контролируемых изделиях, определение их консолидации, глубины и ориентации на поверхности.

Применение капиллярного метода неразрушающего контроля

Капиллярный метод контроля применяется при контроле объектов любых размеров и форм, изготовленных из чугуна, черных и цветных металлов, пластмасс, легированных сталей, металлических покрытий, стекла и керамики в энергетике, ракетной технике, авиации, металлургии, судостроении, химической промышленности, при строительстве ядерных реакторов, в машиностроении, автомобилестроении, электротехники, литейном производстве, медицине, штамповке, приборостроении, медицине и других отраслях. В некоторых случаях этот метод является единственным для определения технической исправности деталей или установок и допуск их к работе.

Капиллярную дефектоскопию применяют как метод неразрушающего контроля также и для объектов из ферромагнитных материалов, если их магнитные свойства, форма, вид и расположение повреждений не позволяют достигать требуемой по ГОСТ 21105-87 чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по техническим условиям эксплуатации объекта.

Капиллярные системы также широко применяются для контроля герметичности, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации. Основными достоинствами капиллярных методов дефектоскопии являются: несложность операций при проведение контроля, легкость в обращение с приборами, большой спектр контролируемых материалов, в том числе и немагнитные металлы.

Преимущество капиллярной дефектоскопии в том, что с помощью несложного метода контроля можно не только обнаружить и индентифицировать поверхностные и сквозные дефекты, но и получить по их расположению, форме,протяженности и ориентации по поверхности полную информацию о характере повреждения и даже некоторых причинах его возникновения (концентрация силовых напряжений, несоблюдение технического регламетна при изготовлении и пр.).

В качестве проявляющих жидкостей применяют органические люминофоры - вещества, обладающие ярким собственным излучением под действием ультрафиолетовых лучей, а также различные красители и пигменты. Поверхностные дефекты выявляют посредством средств, позволяющие извлекать пенетрант из полости дефектов и обнаруживать его на поверхности контролируемого изделия.

Приборы и оборудования применяемые при капиллярном контроле:

Наборы для капиллярной дефектоскопии Sherwin, Magnaflux, Helling (очистители, проявители, пенетранты)
. Пульверизаторы
. Пневмогидропистолеты
. Источники ультрафиолетового освещения (ультрафиолетовые фонари, осветители).
. Испытательные панели (тест-панель)
. Контрольные образцы для цветной дефектоскопии.

Параметр "чувствительность" в капиллярном методе дефектоскопии

Чувствительность капиллярного контроля - способность выявления несплошностей данного размера с заданной вероятностью при использовании конкретного способа, технологии контроля и пенетрантной системы. Согласно ГОСТ 18442-80 класс чувствительности контроля определяют в зависимости от минимального размера выявленных дефектов с поперечными размером 0,1 - 500 мкм.

Выявление поверхностных дефектов, имеющих размер раскрытия более 500 мкм, капиллярными методами контроля не гарантируется.

Класс чувствительности Ширина раскрытия дефекта, мкм

II От 1 до 10

III От 10 до 100

IV От 100 до 500

технологический Не нормируется

Физические основы и методика капиллярного метода контроля

Капиллярный метод неразрушающего контроля (ГОСТ 18442-80) основан на проникновении внутрь поверхностного дефекта индикаторного вещества и предназначен для выявления повреждений, имеющих свободный выход на поверхность изделия контроля. Метод цветной дефектоскопии подходит для обнаружения несплошностей с поперечными размером 0,1 - 500 мкм, в том числе сквозных дефектов, на поверхности керамики, черных и цветных металлов, сплавов, стекла и другие синтетических материалов. Нашел широкое применение при контроле целостности спаек и сварного шва.

Цветной или красящий пенетрант наносится с помощью кисти или распылителя на поверхность объекта контроля. Благодаря особым качествам, которое обеспечиваются на производственном уровне, выбор физических свойств вещества: плотности, поверхностного натяжения, вязкости, пенетрант под действием капиллярного давления, проникает в мельчайшие несплошности, имеющие открытый выход на поверхность контролируемого объекта.

Проявитель, наносимый на поверхность объекта контроля через относительно недолгое время после осторожного удаления с поверхности неусвоенного пенетранта, растворяет находящийся внутри дефекта краситель и за счет взаимного проникновения друг в друга “выталкивает” оставшийся в дефекте пенетрант на поверхность объекта контроля.

Имеющиеся дефекты видны достаточно четко и контрастно. Индикаторные следы в виде линий указывают на трещины или царапины, отдельные цветовые точки - на одиночные поры или выходы.

Процесс обнаружения дефектов капиллярным методом разделяется на 5 стадий (проведение капиллярного контроля):

1. Предварительная очистка поверхности (используют очиститель)
2. Нанесение пенетранта
3. Удаление излишков пенетранта
4. Нанесение проявителя
5. Контроль

Капиллярный контроль. Цветная дефектоскопия. Капиллярный метод неразрушающего контроля.

Капиллярный контроль (капиллярная / люминесцентная / цветная дефектоскопия, контроль пенетрантами)

Капиллярный контроль, капиллярная дефектоскопия, люминесцентная / цветная дефектоскопия - это наиболее распространённые в среде специалистов названия метода неразрушающего контроля проникающими веществами, - пенетрантами .

Капиллярный метод контроля - оптимальный способ обнаружения дефектов, выходящих на поверхность изделий. Практика показывает высокую экономическую эффективность капиллярной дефектоскопии, возможность её использования в широком разнообразии форм и контролируемых объектов, начиная от металлов и заканчивая пластмассами.

При относительно низкой стоимости расходных материалов, оборудование для проведения люминесцентной и цветной дефектоскопии является более простым и менее дорогостоящим, чем для большинства других методов неразрушающего контроля.

Наборы для капиллярного контроля

Комплекты для цветной дефектоскопии на основе красных пенетрантов и белых проявителей

Стандартный набор для работы в диапазоне температур -10°C ... +100°C

Высокотемпературный набор для работы в диапазоне 0°C ... +200°C

Комплекты для капиллярной дефектоскопии на основе люминесцентных пенетрантов

Стандартный набор для работы в диапазоне температур -10°C ... +100°C в видимом и УФ свете

Высокотемпературный набор для работы в диапазоне 0°C ... +150°C с использованием УФ светильника λ=365 нм.

Набор для контроля особо ответственных изделий в диапазоне 0°C ... +100°C с использованием УФ светильника λ=365 нм.

Капиллярная дефектоскопия - обзор

Историческая справка

Метод исследования поверхности объекта проникающими пенетрантами , который также известен как капиллярная дефектоскопия (капиллярный контроль), появился в нашей стране в 40-х годах прошлого столетия. Капиллярный контроль впервые стали применять в авиастроении. Его простые и понятные принципы остались неизменными до настоящего времени.

За рубежом, примерно в это же время был предложен, а вскоре и запатентован красно-белый метод обнаружения поверхностных дефектов. Впоследствии, он получил название - метод контроля проникающими жидкостями (Liquid penetrant testing). Во второй половине 50-х годов прошлого века материалы для капиллярной дефектоскопии были описаны в военной спецификации США (MIL-1-25135).

Контроль качества проникающими веществами

Возможность контроля качества изделий, деталей и узлов проникающими веществами - пенетрантами существует благодаря такому физическому явлению, как смачивание. Дефектоскопическая жидкость (пенетрант) смачивает поверхность, заполняет устье капилляра, тем самым создавая условия для появления капиллярного эффекта.

Проникающая способность - комплексное свойство жидкостей. Это явление - основа капиллярного контроля. Проникающая способность зависит от следующих факторов:

  • свойства исследуемой поверхности и степень её очистки от загрязнений;
  • физико-химические свойства материала объекта контроля;
  • свойства пенетранта (смачиваемость, вязкость, поверхностное натяжение);
  • температура объекта исследования (влияет на вязкость пенетранта и смачиваемость)

Среди прочих видов неразрушающего контроля (НК) капиллярный метод играет особую роль. Во-первых, по совокупности качеств, это идеальный способ контроля поверхности на наличие невидимых глазу микроскопических несплошностей. От других видов НК его выгодно отличают портативность и мобильность, стоимость контроля единицы площади изделия, относительная простота реализации без использования сложного оборудования. Во-вторых, капиллярный контроль более универсален. Если, к примеру, применяется только для контроля ферромагнитных материалов имеющих относительную магнитную проницаемость более 40, то капиллярная дефектоскопия применима к изделиям практически любой формы и материала, где геометрия объекта и направление дефектов особой роли не играют.

Развитие капиллярного контроля как метода неразрушающего контроля

Развитие методов дефектоскопии поверхностей, как одного из направлений неразрушающего контроля напрямую связано с научно-техническим прогрессом. Производители промышленного оборудования всегда были озабочены экономией материалов и людских ресурсов. При этом, эксплуатация оборудования зачастую связана с повышенными механическими нагрузками на некоторые его элементы. В качестве примера приведём лопатки турбин авиационных двигателей. В режиме интенсивных нагрузок именно трещины на поверхности лопаток представляют собой известную опасность.

В этом частном случае, как и во многих других, капиллярный контроль оказался как нельзя кстати. Производители быстро оценили , он был взят на вооружение и получил устойчивый вектор развития. Капиллярный метод оказался одним из самых чувствительных и востребованных методов неразрушающего контроля во многих отраслях. Главным образом, в машиностроении, серийном и мелкосерийном производстве.

В настоящее время совершенствование методов капиллярного контроля осуществляется в четырёх направлениях:

  • повышение качества дефектоскопических материалов, направленное на расширение диапазона чувствительности;
  • снижение вредного воздействия материалов на окружающую среду и человека;
  • использование систем электростатического напыления пенетрантов и проявителей для более равномерного и экономного их нанесения на контролируемые детали;
  • внедрение схем автоматизации в многооперационный процесс диагностики поверхностей на производстве.

Организация участка цветной (люминесцентной) дефектоскопии

Организация участка для цветной (люминесцентной) дефектоскопии осуществляется в соответствии с отраслевыми рекомендациями и стандартами предприятий: РД-13-06-2006. Участок закрепляется за лабораторией неразрушающего контроля предприятия, которая аттестуется в соответствии с Правилами аттестации и основными требованиями к лабораториям неразрушающего контроля ПБ 03-372-00.

Как в нашей стране, так и за рубежом, использование методов цветной дефектоскопии на крупных предприятиях описано во внутренних стандартах, которые, полностью основаны на национальных. Цветная дефектоскопия описана в стандартах компаний Pratt&Whitney, Rolls-Royce, General Electric, Aerospatiale и других.

Капиллярный контроль - плюсы и минусы

Преимущества капиллярного метода

  1. Низкие затраты на расходные материалы.
  2. Высокая объективность результатов контроля.
  3. Может применяться почти для всех твёрдых материалов (металлы, керамика, пластмассы и т.д.) за исключением пористых.
  4. В большинстве случаев, капиллярный контроль не требует использования технологически сложного оборудования.
  5. Осуществление контроля в любом месте при любых условиях, в том числе стационарных с использованием соответствующего оборудования.
  6. Благодаря высокой производительности контроля возможна быстрая проверка крупных объектов имеющих большую площадь исследуемой поверхности. При использовании данного метода на предприятиях с непрерывным производственным циклом возможен поточный контроль изделий.
  7. Капиллярный метод идеально подходит для обнаружения всех типов поверхностных трещин, обеспечивая чёткую визуализацию дефектов (при осуществлении контроля должным образом).
  8. Прекрасно подходит для контроля изделий со сложной геометрией, лёгких металлических деталей, например, турбинных лопаток в аэрокосмической отрасли и энергетике, деталей двигателей в автомобильной промышленности.
  9. При определённых обстоятельствах метод может быть применён для испытаний на герметичность. Для этого пенетрант наносится на одну сторону поверхности, а проявитель на другую. В месте утечки пенетрант вытягивается на поверхность проявителем. Контроль герметичности для обнаружения и определения местонахождения утечек чрезвычайно важен для таких изделий как резервуары, ёмкости, радиаторы, гидравлические системы и т.п.
  10. В отличие от рентгеновского контроля капиллярная дефектоскопия не требует специальных мер безопасности, таких как применение средств радиационной защиты. Во время проведения исследований оператору достаточно проявлять элементарную осторожность при работе с расходными материалами и пользоваться респиратором.
  11. Отсутствие специальных требований, касающихся знаний и квалификации оператора.

Ограничения для цветной дефектоскопии

  1. Основным ограничением капиллярного метода контроля является возможность обнаружения только тех дефектов, которые открыты к поверхности.
  2. Фактором, снижающим эффективность капиллярного тестирования, является шероховатость объекта исследований, - пористая структура поверхности приводит к получению ложных показаний.
  3. К особым случаям, хотя и достаточно редким, следует причислить малую смачиваемость поверхности некоторых материалов пенетрантами как на водной основе, так и на основе органических растворителей.
  4. В некоторых случаях к недостаткам метода можно отнести сложность выполнения подготовительных операций, связанных с удалением лакокрасочных покрытий, оксидных плёнок и сушкой деталей.

Капиллярный контроль - термины и определения

Капиллярный неразрушающий контроль

Капиллярный неразрушающий контроль базируется на проникновении пенетрантов в полости, которые образуют дефекты на поверхности изделий. Пенетрант - это краситель . Его след, после соответствующей обработки поверхности, регистрируется визуально или с помощью приборов.

В капиллярном контроле применяются различные способы тестирования, основанные на использования пенетрантов, материалов для подготовки поверхности, проявителей и для капиллярных исследований. В настоящее время на рынке имеется достаточное количество расходных материалов для капиллярного контроля, которые позволяют провести выбор и разработку методик, удовлетворяющих, по существу, любым требованиям чувствительности, совместимости и экологии.

Физические основы капиллярной дефектоскопии

Основа капиллярной дефектоскопии - это капиллярный эффект, как физическое явление и пенетрант, как вещество с определёнными свойствами. На капиллярный эффект оказывают влияние такие явления как поверхностное натяжение, смачивание, диффузия, растворение, эмульгирование. Но для того, чтобы эти явления работали на результат, поверхность объекта контроля должна быть хорошо очищена и обезжирена.

Если поверхность подготовлена должным образом, капля пенетранта, попавшая на неё быстро растекается, образуя пятно. Это говорит о хорошем смачивании. Под смачиванием (прилипанием к поверхности) понимают способность жидкого тела образовывать устойчивую поверхность раздела на границе с твёрдым телом. Если силы взаимодействия между молекулами жидкости и твёрдого тела превышают силы взаимодействия между молекулами внутри жидкости, то происходит смачивание поверхности твёрдого тела.

Частицы пигмента пенетранта , во много раз меньше по размеру, чем ширина раскрытия микротрещин и прочих повреждений поверхности объекта исследования. Кроме того, важнейшим физическим свойством пенетрантов является низкое поверхностное натяжение. За счёт этого параметра пенетранты обладают достаточной проникающей способностью и хорошо смачивают различные виды поверхностей - от металлов, до пластика.

Проникновение пенетранта в несплошности (полости) дефектов и последующее извлечение пенетранта в процессе проявки происходит под действием капиллярных сил. А расшифровка дефекта становится возможной за счёт разницы в цвете (цветная дефектоскопия) или свечении (люминесцентная дефектоскопия) между фоном и участком поверхности над дефектом.

Таким образом, при обычных условиях, очень мелкие дефекты на поверхности объекта контроля человеческому глазу не видны. В процессе поэтапной обработки поверхности специальными составами, на котором и основана капиллярная дефектоскопия, над дефектами образуется легко читаемый, контрастный индикаторный рисунок.

В цветной дефектоскопии , за счёт действия проявителя пенетранта, который "вытягивает" пенетрант на поверхность силами диффузии, размер индикации обычно оказывается существенно больше, чем размер самого дефекта. Размер индикаторного рисунка в целом, при соблюдении технологии контроля, зависит от поглощённого несплошностью объёма пенетранта. При оценке результатов контроля можно провести некоторую аналогию с физикой "эффекта усиления" сигналов. В нашем случае, "выходной сигнал" - это контрастный индикаторный рисунок, который по размеру может быть в несколько раз больше чем "входной сигнал" - нечитаемое глазом изображение несплошности (дефекта).

Дефектоскопические материалы

Дефектоскопические материалы для капиллярного контроля это средства, которые используются при контроле жидкостью (контроль пенетрацией), проникающей в поверхностные несплошности проверяемых изделий.

Пенетрант

Пенетрант - это индикаторная жидкость, проникающее вещество (от английского penetrate - проникать) .

Пенетрантами называют капиллярный дефектоскопический материал, который способен проникать в поверхностные несплошности контролируемого объекта. Проникновение пенетранта в полость повреждения происходит под действием капиллярных сил. В результате малого поверхностного натяжения и действия сил смачивания, пенетрант заполняет пустоту дефекта через устье, открытое к поверхности, образуя, при этом, вогнутый мениск.

Пенетрант - главный расходный материал для капиллярной дефектоскопии. Пенетранты различают по способу визуализации на контрастные (цветные) и люминесцентные (флуоресцентные), по способу удаления с поверхности на водосмываемые и удаляемые очистителем (пост-эмульгируемые), по чувствительности на классы (в порядке убывания - I, II, III и IV классы по ГОСТ 18442-80)

Зарубежные стандарты MIL-I-25135E и AMS-2644 в отличие от ГОСТ 18442-80 разделяют уровни чувствительности пенетрантов на классы в порядке возрастания: 1/2 - ультранизкая чувствительность, 1 - низкая, 2 - средняя, 3 - высокая, 4 - сверхвысокая.

К пенетрантам предъявляют целый ряд требований, главное из которых - хорошая смачиваемость. Следующий, важный для пенетрантов параметр, - вязкость. Чем она ниже, тем меньше времени требуется для полной пропитки поверхности объекта контроля. В капиллярном контроле учитываются такие свойства пенетрантов, как:

  • смачиваемость;
  • вязкость;
  • поверхностное натяжение;
  • летучесть;
  • точка воспламенения (температура вспышки);
  • удельный вес;
  • растворимость;
  • чувствительность к загрязнениям;
  • токсичность;
  • запах;
  • инертность.

В состав пенетранта обычно входят высококипящие растворители, красители (люминофоры) на основе пигмента или растворимые, поверхностно-активные вещества (ПАВ), ингибиторы коррозии, связующие. Пенетранты выпускаются в баллонах для аэрозольного нанесения (наиболее подходящая форма выпуска для выездных работ), пластиковых канистрах и бочках.

Проявитель

Проявитель - материал для капиллярного неразрушающего контроля, который благодаря своим свойствам извлекает на поверхность находящийся в полости дефекта пенетрант.

Проявитель пенетранта, как правило, имеет белый цвет и выступает в качестве контрастирующего фона для индикаторного изображения.

Проявитель наносится на поверхность объекта контроля тонким, равномерным слоем после её очистки (промежуточная очистка) от пенетранта. После процедуры промежуточной очистки некоторое количество пенетранта остаётся в зоне дефекта. Проявитель, под действием сил адсорбции, абсорбции или диффузии (в зависимости от типа действия) "вытягивает" на поверхность оставшийся в капиллярах дефектов пенетрант.

Таким образом, пенетрант под действием проявителя "подкрашивает" участки поверхности над дефектом, образуя чёткую дефектограмму - индикаторный рисунок, повторяющий расположение дефектов на поверхности.

По типу действия проявители разделяют на сорбционные (порошки и суспензии) и диффузионные (краски, лаки и плёнки). Чаще всего проявители представляют собой химически нейтральные сорбенты из соединений кремния, белого цвета. Такие проявители, покрывая поверхность создают слой, имеющий микропористую структуру, в которую, под действием капиллярных сил, легко проникает красящий пенетрант. При этом слой проявителя над дефектом окрашивается в цвет красителя (цветной метод), либо смачивается жидкостью с добавкой люминофора, которая в ультрафиолетовом свете начинает флуоресцировать (люминесцентный метод). В последнем случае использование проявителя не обязательно - он лишь увеличивает чувствительность контроля.

Правильно выбранный проявитель должен обеспечивать равномерное покрытие поверхности. Чем выше сорбционные свойства проявителя, тем лучше он "вытягивает" пенетрант из капилляров в ходе проявки. Это важнейшие свойства проявителя, определяющие его качество.

Капиллярный контроль предполагает использование сухих и мокрых проявителей. В первом случае речь идёт о порошковых проявителях, во втором о проявителях на водной основе (водные, водосмываемые), или на основе органических растворителей (не водные).

Проявитель в составе дефектоскопической системы, как и остальные материалы этой системы подбирается исходя из требований к чувствительности. Например, для выявления дефекта, имеющего ширину раскрытия до 1 микрона, в соответствии с американским стандартом AMS-2644 для диагностики движущихся деталей газотурбинной установки следует применять порошковый проявитель и люминесцентный пенетрант.

Порошковые проявители обладают хорошей дисперсностью и наносятся на поверхность электростатическим или вихревым способом, с образованием тонкого и равномерного слоя, необходимого для гарантированного вытягивания небольшого объёма пенетранта из полостей микротрещин.

Проявители на водной основе не всегда обеспечивают создание тонкого и равномерного слоя. В этом случае, при наличии на поверхности мелких дефектов, пенетрант не всегда выходит на поверхность. Слишком толстый слой проявителя может маскировать дефект.

Проявители могут химически взаимодействовать с индикаторными пенетрантами. По характеру этого взаимодействия проявители разделяют на химически активные и химически пассивные. Последние получили наиболее широкое распространение. Химически активные проявители реагируют с пенетрантом. Обнаружение дефектов, в этом случае, производится по наличию продуктов реакции. Химически пассивные проявители выступают лишь в роли сорбента.

Проявители пенетрантов выпускаются в баллонах для аэрозольного нанесения (наиболее подходящая форма выпуска для выездных работ), пластиковых канистрах и бочках.

Эмульгатор пенетранта

Эмульгатор (гаситель пенетранта по ГОСТ 18442-80) - это дефектоскопический материал для капиллярного контроля, применяемый для промежуточной очистки поверхности при использовании постэмульгируемого пенетранта.

В процессе эмульгирования оставшийся на поверхности пенетрант взаимодействует с эмульгатором. Впоследствии, полученная смесь удаляется водой. Целью процедуры является очистка поверхности от избытка пенетранта.

Процесс эмульгирования может оказывать существенное влияние на качество визуализации дефектов, особенно при контроле объектов с шероховатой поверхностью. Выражается это в получении контрастирующего фона необходимой чистоты. Для получения хорошо читаемого индикаторного рисунка, яркость фона не должна превышать яркость индикации.

В капиллярном контроле применяют липофильные и гидрофильные эмульгаторы. Липофильный эмульгатор - изготавливается на масляной основе, гидрофильный - на водной. Различаются они механизмом действия.

Липофильный эмульгатор, покрывая поверхность изделия, переходит в оставшийся пенетрант под действием сил диффузии. Получившаяся смесь легко удаляется с поверхности водой.

Гидрофильный эмульгатор действует на пенетрант иным образом. При его воздействии пенетрант разделяется на множество частиц меньшего объёма. В результате образуется эмульсия, и пенетрант утрачивает свойства к смачиванию поверхности объекта контроля. Полученная эмульсия удаляется механически (смывается водой). Основа гидрофильных эмульгаторов - растворитель и поверхностно-активные вещества (ПАВ).

Очиститель пенетранта (поверхности)

Очиститель для капиллярного контроля - это органический растворитель для удаления излишков пенетранта (промежуточная очистка), очистки и обезжиривания поверхности (предварительная очистка).

Существенное влияние на смачивание поверхности оказывают её микрорельеф и степень очистки от масел, жиров и прочих загрязнений. Для того, чтобы пенетрант проникал даже в самые мелкие поры, в большинстве случаев, механической очистки недостаточно. Поэтому, перед проведением контроля поверхность детали обрабатывают специальными очистителями, изготовленными на основе высококипящих растворителей.

Степень проникновения пенетранта в полости дефектов:

Важнейшими свойствами современных очистителей поверхности для капиллярного контроля являются:

  • способность к обезжириванию;
  • отсутствие нелетучих примесей (способность к испарению с поверхности без оставления следов);
  • минимальное содержание вредных веществ, оказывающих влияние на человека и окружающую среду;
  • диапазон рабочих температур.
Совместимость расходных материалов для капиллярного контроля

Дефектоскопические материалы для капиллярного контроля по физическим и химическим свойствам должны быть совместимы как между собой, так и с материалом объекта контроля. Компоненты пенетрантов, очищающих средств и проявителей не должны приводить к потере эксплуатационных свойств контролируемых изделий и к порче оборудования.

Таблица совместимости расходных материалов Элитест для капиллярного контроля:

Расходники
Р10 Р10Т Э11 ПР9 ПР20 ПР21 ПР20Т Система электростатического напыления

Описание

* по ГОСТ Р ИСО 3452-2-2009
** изготавливается по особой, экологически чистой технологии со сниженным содержанием галогенных углеводородов, соединений серы и других веществ, негативно влияющих на окружающую среду.

Р10 × × Очиститель био**, класс 2 (негалогенизированный)
Р10Т × Очиститель высокотемпературный био**, класс 2 (негалогенизированный)
Э11 × × × Эмульгатор гидрофильный био** для очищения пенетрантов. Разводится в воде в пропорции 1/20
ПР9 Проявитель порошковый белого цвета, форма a
ПР20 Проявитель белого цвета на основе ацетона, форма d, e
ПР21 Проявитель белого цвета на основе растворителя, форма d, e
ПР20Т × × Проявитель высокотемпературный на основе растворителя, форма d, e
П42 Красный пенетрант, 2 (высокий) уровень чувствительности*, метод A, C, D, E
П52 × Красный пенетрант био**, 2 (высокий) уровень чувствительности*, метод A, С, D, E
П62 × Красный пенетрант высокотемпературный, 2 (высокий) уровень чувствительности*, метод A, С, D
П71 × × × Люм. пенетрант высокотемпературный на водной основе, 1 (низкий) уровень чувствительности*, метод A, D
П72 × × × Люм. пенетрант высокотемпературный на водной основе, 2 (средний) уровень чувствительности*, метод A, D
П71К × × × Концентрат люм. высокотемпературного пенетранта био**, 1/2 (сверхнизкий) уровень чувствительности*, метод A, D
П81 × Люминесцентный пенетрант, 1 (низкий) уровень чувствительности*, метод A, С
Люминесцентный пенетрант, 1 (низкий) уровень чувствительности*, метод B, C, D
П92 Люминесцентный пенетрант, 2 (средний) уровень чувствительности*, метод B, C, D Люминесцентный пенетрант, 4 (сверхвысокий) уровень чувствительности*, метод B, C, D

⚫ - рекомендуется использовать; - можно использовать; × - нельзя использовать
Скачать таблицу совместимости расходных материалов для капиллярного и магнитопорошкового контроля:

Оборудование для капиллярного контроля

Оборудование, используемое при капиллярном контроле:

  • эталонные (контрольные) образцы для капиллярной дефектоскопии;
  • источники ультрафиолетового освещения (УФ фонари и светильники);
  • испытательные панели (тест-панель);
  • пневмогидропистолеты;
  • пульвелизаторы;
  • камеры для капиллярного контроля;
  • системы электростатического нанесения дефектоскопических материалов;
  • системы очистки воды;
  • сушильные шкафы;
  • баки для иммерсионного нанесения пенетрантов.

Выявляемые дефекты

Методы капиллярной дефектоскопии позволяют выявлять дефекты, выходящие на поверхность изделия: трещины, поры, раковины, непровары, межкристаллитная коррозия и другие несплошности с шириной раскрытия менее 0,5 мм.

Контрольные образцы для капиллярной дефектоскопии

Контрольные (стандартные, эталонные, испытательные) образцы для капиллярного контроля представляют собой пластины из металла с нанесёнными на них искусственными трещинами (дефектами) определённого размера. Поверхность контрольных образцов может иметь шероховатость.

Контрольные образцы изготавливаются по зарубежным нормативам, в соответствии с европейскими и американскими стандартами EN ISO 3452-3, AMS 2644C, Pratt & Whitney Aircraft TAM 1460 40 (стандарт предприятия - крупнейшего американского производителя авиационных двигателей).

Контрольные образцы используют:
  • для определения чувствительности тест-систем на основе разных дефектоскопических материалов (пенетрант, проявитель, очиститель);
  • для сравнения пенетрантов, один из которых может быть взят за образцовый;
  • для оценки качества смываемости люминесцентных (флуоресцентных) и контрастных (цветных) пенетрантов в соответствии с нормами AMS 2644C;
  • для общей оценки качества капиллярного контроля.

Использование контрольных образцов для капиллярного контроля в российском ГОСТ 18442-80 не регламентировано. Тем не менее, в нашей стране контрольные образцы активно применяются в соответствии с ГОСТ Р ИСО 3452-2-2009 и нормами предприятий (например, ПНАЭГ-7-018-89) для оценки пригодности дефектоскопических материалов.

Методики капиллярного контроля

На сегодняшний день накоплен достаточно большой опыт применения капиллярных методов для целей эксплуатационного контроля изделий, узлов и механизмов. Однако, разработку рабочей методики для проведения капиллярного контроля часто приходится осуществлять отдельно для каждого конкретного случая. При этом учитываются такие факторы, как:

  1. требования к чувствительности;
  2. состояние объекта;
  3. характер взаимодействия дефектоскопических материалов с контролируемой поверхностью;
  4. совместимость расходных материалов;
  5. технические возможности и условия выполнения работ;
  6. характер ожидаемых дефектов;
  7. прочие факторы, влияющие на эффективность капиллярного контроля.

ГОСТ 18442-80 определяет классификацию основных капиллярных методов контроля в зависимости от типа проникающего вещества - пенетранта (раствор, либо суспензия частиц пигмента) и в зависимости от способа получения первичной информации:

  1. яркостный (ахроматический);
  2. цветной (хроматический);
  3. люминесцентный (флуоресцентный);
  4. люминесцентно-цветной.

Стандарты ГОСТ Р ИСО 3452-2-2009 и AMS 2644 описывают шесть основных методов капиллярного контроля по типу и группам:

Тип 1. Флуоресцентные (люминесцентные) методы:
  • метод А: водосмываемый (Группа 4);
  • метод В: последующего эмульгирования (Группы 5 и 6);
  • метод С: органорастворимый (Группа 7).
Тип 2. Цветные методы:
  • метод А: водосмываемый (Группа 3);
  • метод В: последующего эмульгирования (Группа 2);
  • метод С: органорастворимый (Группа 1).