Компостирование органических отходов. Как ускорить созревание компоста? Препараты для ускорения созревания компоста

Искусство и наука компостирования

Введение

История компостирования уходит в глубь веков. Первые письменные упоминания об использовании компоста в сельском хозяйстве появились 4500 лет назад в Месопотамии, в междуречье Тигра и Евфрата (нынешний Ирак). Искусством компостирования владели все цивилизации Земли. Римляне, египтяне, греки активно практиковали компостирование, что нашло свое отражение в талмуде, библии и Коране. Археологические раскопки подтверждают, что цивилизация майя 2000 лет назад также занималась компостированием.

Несмотря на то, что искусство компостирования было известно садоводам с незапамятных времен, в ХIХ веке, когда большое распространение получили искусственные минеральные удобрения, оно было в значительной степени утрачено. По окончании второй мировой войны сельское хозяйство стало пользоваться результатами научных разработок. Сельскохозяйственная наука рекомендовала для повышения урожайности применять химические удобрения, пестициды во всех ипостасях. Химические удобрения пришли на смену компосту.

В 1962 году вышла в свет книга Рейчел Карсон (Rachel Carson) “Silent Spring” (Безмолвная весна), посвященная результатам повсеместного злоупотребления химическими пестицидами и другими загрязнителями. Это послужило сигналом к общественному протесту и запрещению производства и использования опасных продуктов. Многие начали заново открывать для себя преимущества ведения так называемого органического сельского хозяйства.

Одной из первых публикаций в этом аспекте была книга сэра Альберта Говарда (Albert Howard) “An Agricultural Testament” (Завет хлебопашца), вышедшая в свет в 1943 году. Книга вызвала огромный интерес к органическим методам в сельском хозяйстве и садоводстве. Сегодня каждый фермер признает значение компоста в стимулировании роста растений и в восстановлении истощенной и безжизненной почвы. Как бы заново произошло открытие этого древнего земледельческого искусства.

Органическое земледелие нельзя назвать полностью возвратом к старому, так как в его распоряжении имеются все достижения современной науки. Все химические и микробиологические процессы, протекающие в компостной куче, изучены досконально, и это дает возможность осознанно подходить к приготовлению компоста, регулировать и направлять процесс в нужную сторону.

Отходы, поддающиеся компостированию, варьируют от городского мусора, представляющего собой смесь органических и неорганических компонентов, до более гомогенных субстратов, таких как отходы животноводства и растениеводства, сырой активный ил и нечистоты. В естественных условиях процесс биодеградации протекает медленно, на поверхности земли, при температуре окружающей среды и, преимущественно, в анаэробных условиях. Компостирование – это способ ускорения естественной деградации в контролируемых условиях. Компостирование – результат понимания действия этих природных биологических и химических систем.

Компостирование – это искусство. Именно так сейчас оценивают исключительную важность компоста для огорода. К сожалению, у нас пока очень мало уделяют внимания правильному приготовлению компоста. А правильно приготовленный компост – это основа, залог будущего урожая.
Существует хорошо отработанные и проверенные общие принципы приготовления компоста.

1. Теоретические основы процесса компостирования

Процесс компостирования представляет собой сложное взаимодействие между органическими отходами, микроорганизмами, влагой и кислородом. В отходах обычно существует своя эндогенная смешанная микрофлора. Микробная активность возрастает, когда содержание влаги и концентрация кислорода достигают необходимого уровня. Кроме кислорода и воды микроорганизмам для роста и размножения необходимы источники углерода, азота, фосфора, калия и определенных микроэлементов. Эти потребности часто удовлетворяются веществами, содержащимися в отходах.

Потребляя органические отходы как пищевой субстрат, микроорганизмы размножаются и продуцируют воду, диоксид углерода, органические соединения и энергию. Часть энергии, получающейся при биологическом окислении углерода, расходуется в метаболических процессах, остальная – выделяется в виде тепла.

Компост как конечный продукт компостирования содержит наиболее стабильные органические соединения, продукты распада, биомассу мертвых микроорганизмов, некоторое количество живых микробов и продукты химического взаимодействия этих компонентов.

1.1. Микробиологические аспекты компостирования

Компостирование представляет собой динамический процесс, протекающий благодаря активности сообщества живых организмов различных групп.

Основные группы организмов, принимающих участие в компостировании:
микрофлора – бактерии, актиномицеты, грибы, дрожжи, водоросли;
микрофауна – простейшие;
макрофлора – высшие грибы;
макрофауна – двупароногие многоножки, клещи, ногохвостки, черви, муравьи, термиты, пауки, жуки.

В процессе компостирования принимает участие множество видов бактерий (более 2000) и не менее 50 видов грибов. Эти виды можно подразделить на группы по температурным интервалам, в которых каждая из них активна. Для психрофилов предпочтительна температура ниже 20 градусов Цельсия, для мезофилов – 20-40 градусов Цельсия и для термофилов – свыше 40градусов Цельсия. Микроорганизмы, преобладающие на последней стадии компостирования, являются, как правило, мезофилами.

Хотя количество бактерий в компосте очень велико (10 млн. – 1 млрд. м.к./г влажного компоста), из-за малых размеров они составляют менее половины общей микробной биомассы.

Актиномицеты растут гораздо медленнее, чем бактерии и грибы, и на ранних стадиях компостирования не составляют им конкуренции. Они более заметны на последующих стадиях процесса, когда их становится очень много, и налет белого или серого цвета, типичный для актиномицетов, отчетливо виден на глубине 10 см от поверхности компостируемой массы. Их численность ниже численности бактерий и составляет порядка 100 тыс. – 10 млн. клеток на грамм влажного компоста.

Грибы играют важную роль в деструкции целлюлозы, и состояние компостируемой массы должно регулироваться таким образом, чтобы оптимизировать активность этих микроорганизмов. Важным фактором является температура, так как грибы погибают, если она поднимается выше 55 градусов Цельсия. После понижения температуры они вновь распространяются из более холодных зон по всему объему.

В процессе компостирования принимают активное участие не только бактерии, грибы, актиномицеты, но и беспозвоночные. Эти организмы сосуществуют с микроорганизмами и являются основой «здоровья» компостной кучи. В дружной команде компостеров – муравьи, жуки, сороконожки, гусеницы озимой совки, ложные скорпионы, личинки фруктового жука, многоножки, клещи, нематоды, дождевые черви, уховертки, мокрицы, ногохвостки, пауки, пауки-сенокосцы, энхитрииды (белые черви) и др.. После того как достигнут максимум температуры, компост, остывая, становится доступным для широкого ряда почвенных животных. Многие почвенные животные вносят большой вклад в переработку компостируемого материала посредством его физического дробления. Эти животные также способствуют перемешиванию разных компонентов компоста. В умеренном климате главную роль в заключительных стадиях процесса компостирования и дальнейшего включения органического вещества в почву играют земляные черви.

1.1.1. Стадии компостирования
Компостирование – комплексный, многостадийный процесс. Каждая его стадия характеризуется различными консорциумами организмов. Фазы компостирования состоят из (рисунок 1):
1. лаг-фазы (lag phase),
2. мезофильной фазы (mesophilic phase),
3. термофильной фазы (thermophilic phase),
4. фазы созревания (final phase).

РИСУНОК 1. СТАДИИ КОМПОСТИРОВАНИЯ.

Фаза 1 (lag phase) начинается сразу после внесения свежих отходов в компостную кучу. В течение этой фазы микроорганизмы адаптируются к типу отходов и условиям обитания в компостной куче. Распад отходов начинается уже на этой стадии, но общая численность популяции микробов еще невелика, температура невысока.

Фаза 2 (mesophilic phase). На протяжении этой фазы процесс распада субстратов усиливается. Численность микробной популяции возрастает преимущественно за счет мезофильных организмов, адаптирующихся к низким и умеренным температурам. Эти организмы быстро разлагают растворимые, легко деградируемые компоненты, такие как простые сахара и углеводы. Запасы этих веществ быстро истощаются, микробы начинают разлагать более сложные молекулы, такие как целлюлозу, гемицеллюлозу и белки. После потребления этих веществ микробы выделяют комплекс органических кислот, которые служат источником пищи для других микроорганизмов. Однако не все образовавшиеся органические кислоты поглощаются, что ведет к их избыточному накоплению и, как результат, к понижению рН среды. рН служит индикатором окончания второй стадии компостирования. Но это явление временное, поскольку избыток кислот ведет к гибели микроорганизмов.

Фаза 3 (thermophilic phase). В результате микробного роста и метаболизма происходит повышение температуры. Когда температура повышается до 40 градусов Цельсия и выше, мезофильные микроорганизмы замещаются микробами, более устойчивыми к высоким температурам – теромофилами. При достижении температуры 55 градусов Цельсия большинство патогенов человека и растений погибает. Но если температура превысит 65 градусов Цельсия, погибнут и аэробные термофилы компостной кучи. Благодаря высокой температуре происходит ускоренный распад белков, жиров и сложных углеводов типа целлюлозы и гемицеллюлозы – основных структурных компонентов растений. В результате исчерпания пищевых ресурсов обменные процессы идут на убыль, и температура постепенно снижается.

Фаза 4 (final phase). Вследствие падения температуры до мезофильного диапазона в компостной куче начинают доминировать мезофильные микроорганизмы. Температура является наилучшим индикатором наступления стадии созревания. В данной фазе оставшиеся органические вещества образуют комплексы. Этот комплекс органических веществ устойчив к дальнейшему разложению и называется гуминовыми кислотами или гумусом.

1.2. Биохимические аспекты компостирования

Компостирование – биохимический процесс, предназначенный для преобразования твердых органических отходов в стабильный, подобный гумусу продукт. Упрощенно компостированием называют биохимический распад органических составных частей органических отходов в контролируемых условиях. Применение контроля отличает компостирование от естественно протекающих процессов гниения или разложения.

Процесс компостирования зависит от активности микроорганизмов, которые нуждаются в источнике углерода для получения энергии и биосинтеза клеточного матрикса, а также в источнике азота для синтеза клеточных белков. В меньшей степени микроорганизмы нуждаются в фосфоре, калии, кальции и других элементах. Углерод, который составляет около 50% общей массы микробных клеток, служит источником энергии и строительным материалом для клетки. Азот является жизненно важным элементом при синтезе клеткой белков, нуклеиновых кислот, аминокислот и ферментов, необходимых для построения клеточных структур, роста и функционирования. Потребность в углероде у микроорганизмов в 25 раз выше, чем в азоте.

В большинстве процессов компостирования эти потребности удовлетворяются за счет исходного состава органических отходов, только отношение углерода к азоту (C:N) и, изредка, уровень фосфора могут нуждаться в корректировке. Свежие и зеленые субстраты богаты азотом (так называемые «зеленые» субстраты), а коричневые и сухие (так называемые «коричневые» субстраты) – углеродом (таблица 1).

ТАБЛИЦА 1.
СООТНОШЕНИЕ УГЛЕРОДА И АЗОТА В НЕКОТОРЫХ СУБСТРАТАХ.

Для образования компоста огромное значение имеет углерод-азотный баланс (отношение C:N). Соотношение C:N представляет собой отношение веса углерода (но не числа атомов!) к весу азота. Количество необходимого углерода значительно превосходит количество азота. Контрольное значение этого соотношения при компостировании равняется 30:1 (30г углерода на 1г азота). Оптимальным считается соотношение C:N, равное 25:1. Чем больше углерод-азотный баланс отклоняется от оптимального, тем медленнее протекает процесс.

Если твердые отходы содержат большое количество углерода в связанной форме, то допустимое углерод-азотное отношение может быть выше 25/1. Более высокое значение этого отношения приводит к окислению избыточного углерода. Если этот показатель значительно превышает указанное значение, доступность азота снижается, и микробный метаболизм постепенно затухает. Если соотношение меньше оптимального значения, как это бывает в активном иле или навозе, азот будет удаляться в виде аммиака, часто в больших количествах. Потеря азота за счет улетучивания аммиака может быть частично восполнена благодаря активности бактерий-азотфиксаторов, появляющихся, в основном, при мезофильных условиях на поздних стадиях биодеградации.

Основным вредным эффектом слишком низкого отношения C/N является потеря азота в результате образования аммиака и его последующего улетучивания. Между тем, сохранение азота очень важно для образования компоста. Потеря аммиака становится наиболее ощутимой при высокоскоростных процессах компостирования, когда возрастает степень аэрации, создаются термофильные условия и рН достигает 8 и более. Такое значение рН благоприятствует образованию аммиака, а высокая температура ускоряет его улетучивание.

Неопределенность величины потери азота делает сложным точное определение требуемого начального значения C:N, но на практике оно рекомендуется в пределах 25:1 – 30:1. При низких значениях этого соотношения потеря азота в форме аммиака может быть частично подавлена добавлением избыточных фосфатов (суперфосфат).

В процессе компостирования происходит существенное снижение соотношения от 30:1 до 20:1 в конечном продукте. Соотношение C:N постоянно снижается, поскольку во время поглощения углерода микробами 2/3 его высвобождается в атмосферу в виде углекислого газа. Оставшиеся 1/3 совместно с азотом включаются в состав микробной биомассы.

Поскольку при формировании компостной кучи не практикуется взвешивание субстрата, смесь готовится из равных частей «зеленого» и «коричневого» компонентов. Регулирование соотношения углерода и азота базируется на качестве и количестве того или иного вида отходов, которые используют при закладке кучи. Поэтому компостирование считается искусством и наукой одновременно.

Вычисление отношения углерода к азоту (C:N)

Существует несколько способов вычисления отношения углерода к азоту. Мы приводим самый простой, взяв в качестве образца навоз. В органическом веществе полуперепревшего и перепревшего навоза содержится примерно 50% углерода (С). Зная это, а также зольность навоза и общее содержание в нем азота в пересчете на сухое вещество, можно определить отношение C:N по следующей формуле:

C:N = ((100-A)*50)/(100*X)

Где А – зольность навоза, %;
(100 – А) – содержание органического вещества, %;
Х – содержание общего азота в расчете на абсолютно сухой вес навоза, %.
Например, если зольность А = 30%, а содержание общего азота в навозе = 2%, тогда

C:N = ((100-30)*50)/(100*2) = 17

1.3. Критические факторы компостирования

Процесс естественного разложения субстрата при компостировании может быть ускорен благодаря контролю не только за соотношением углерода и азота, но и за влажностью, температурой, уровнем кислорода, размером частиц, размером и формой компостной кучи, рН.

1.3.1. Питательные вещества и добавки

Помимо вышеуказанных веществ, необходимых для роста и размножения микроорганизмов – основных деструкторов органических отходов, для увеличения скорости компостирования применяются различные химические, растительные и бактериальные добавки. За исключением возможной потребности в дополнительном азоте, большинство отходов содержит все необходимые питательные вещества и широкий спектр микроорганизмов, что делает их доступными для компостирования. Очевидно, что начало термофильной стадии можно ускорить возвращением некоторого количества готового компоста в систему.

Носители (древесная щепа, солома, опилки и др.) обычно необходимы для поддержания структуры, обеспечивающей аэрацию при компостировании таких отходов, как сырой активный ил и навоз.

1.3.2. рН

РН является наиболее важным показателем «здоровья» компотной кучи. Как правило, рН бытовых отходов во второй фазе компостирования достигает 5,5–6,0. Фактически эти значения рН являются индикатором того, что процесс компостирования начался, то есть вступил в лаг-фазу. Уровень рН определяется активностью кислотообразующих бактерий, которые разлагают сложные углеродсодержащие субстраты (полисахариды и целлюлозу) до более простых органических кислот.

Значения рН поддерживаются также ростом грибов и актиномицетов, способных разлагать лигнин в аэробной среде. Бактерии и другие микроорганизмы (грибы и актиномицеты) в различной степени способны разлагать гемицеллюлозу и целлюлозу.

Микроорганизмы, которые продуцируют кислоты, могут также утилизировать их в качестве единственного источника питания. Конечным результатом является рост рН до 7,5–9,0. Попытки контролировать рН соединениями серы неэффективны и нецелесообразны. Поэтому более важным является управление аэрацией посредством контроля анаэробных условий, узнаваемых по ферментации и гнилостному запаху.

Роль рН в компостировании определяется тем, что многие микроорганизмы, как и беспозвоночные, не могут выживать в очень кислой среде. К счастью, рН, как правило, контролируется естественным путем (карбонатная буферная система). Следует иметь в виду, если вы решили корректировать рН посредством нейтрализации кислоты или щелочи, то это приведет к образованию соли, что может вызвать негативное воздействие на «здоровье» кучи. Компостирование легко протекает при значениях рН, равных 5,5–9,0, но наиболее эффективно – в диапазоне 6,5–9,0. Важным требованием ко всем компонентам, вовлекаемым в компостирование, является слабая кислотность или слабая щелочность в начальной стадии, но зрелый компост должен иметь рН в интервале, близком к нейтральным значениям рН (6,8–7,0). В случае, если система превращается в анаэробную, накопление кислоты может привести к резкому снижению рН до 4,5 и значительному ограничению микробной активности. В таких ситуациях аэрация становится тем спасительным кругом, который вернет рН до допустимых значений.

Оптимальный диапазон рН для большинства бактерий находится в пределах 6-7,5, а для грибов он может быть между 5,5 и 8.

1.3.3. Аэрация

При нормальных условиях компостирование представляет собой аэробный процесс. Это означает, что для метаболизма и дыхания микробов необходимо присутствие кислорода. В переводе с греческого aero означает воздух, а bios – жизнь. Микробы используют кислород чаще других окисляющих агентов, поскольку с его участием реакции протекают в 19 раз энергичнее. Идеальной считается концентрация кислорода, равная 16 – 18,5%. В начале компостирования концентрация кислорода в порах составляет 15-20%, что равноценно его содержанию в атмосферном воздухе. Концентрация углекислого газа варьирует в диапазоне 0,5-5,0%. В процессе компостирования концентрация кислорода снижается, а углекислого газа – возрастает.

Если концентрация кислорода падает ниже 5%, возникают анаэробные условия. Контроль содержания кислорода в выходящем воздухе полезен для регулировки режима компостирования. Самый простой способ такого контроля – обоняние, так как запахи разложения указывают на начало анаэробного процесса. Поскольку анаэробная активность характеризуется дурными запахами, то допускаются небольшие концентрации дурно пахнущих веществ. Компостная куча действует как биофильтр, улавливающий и обезвреживающий зловонные компоненты.

Некоторые компостные системы способны пассивно поддерживать адекватную концентрацию кислорода посредством природной диффузии и конвекции. Другие системы нуждаются в активной аэрации, обеспечиваемой продуванием воздуха или переворачиванием и смешиванием компостируемых субстратов. При компостировании таких отходов, как сырой активный ил и навоз, для поддержания структуры, обеспечивающей аэрацию, обычно используются носители (древесная щепа, солома, опилки и др.).

Аэрация может осуществляться естественной диффузией кислорода в компостируемую массу посредством перемешивания компоста вручную, с помощью механизмов или принудительной аэрации. Аэрация имеет и другие функции в процессе компостирования. Поток воздуха удаляет диоксид углерода и воду, образующиеся в процессе жизнедеятельности микроорганизмов, а также отводит теплоту благодаря испарительному теплопереносу. Потребность в кислороде меняется в течение процесса: она низка в мезофильной стадии, возрастает до максимума в термофильной стадии и падает до нуля во время стадии остывания и созревания.

При естественной аэрации центральные участки компостируемой массы могут оказаться в условиях анаэробиоза, поскольку скорость диффузии кислорода слишком низка для протекающих метаболических процессов. Если материал, образующий компост, имеет анаэробные зоны, то могут возникнуть масляная, уксусная и пропионовая кислоты. Однако кислоты вскоре используются бактериями в качестве субстрата, и с образованием аммиака начинает подниматься уровень рН. В таких случаях перемешивание вручную или механическое позволяет воздуху проникнуть в анаэробные участки. Перемешивание способствует также диспергированию крупных фрагментов сырья, что увеличивает удельную поверхность, необходимую для биодеградации. Управление процессом перемешивания обеспечивает переработку большей части сырья в термофильных условиях. Чрезмерное перемешивание приводит к охлаждению и высыханию компостируемой массы, к разрывам в мицелии актиномицетов и грибов. Перемешивание компоста в кучах может быть слишком затратным с точки зрения использования машин и ручного труда, и поэтому частота перемешивания представляет собой компромисс между экономичностью и потребностями процесса. При использовании установок для компостирования рекомендуется чередовать периоды активного перемешивания с периодами без перемешивания.

1.3.4. Влажность

Компостные микробы нуждаются в воде. Разложение осуществляется гораздо быстрее в тонких жидких пленках, образованных на поверхностях органических частиц. 50–60% влаги считается оптимальным содержанием для осуществления процесса компостирования, но при использовании носителей возможны и большие значения. Оптимальная влажность варьирует и зависит от природы и размера частиц. Содержание влаги менее 30% подавляет бактериальную активность. При влажности менее 30% от общей массы скорость биологических процессов резко падает, а при влажности 20% они могут вовсе прекратиться. Влажность более 65% препятствует диффузии воздуха в кучу, что значительно снижает деградацию и сопровождается зловонием. При слишком большой влажности пустоты в структуре компоста заполняются водой, которая ограничивает доступ кислорода к микроорганизмам.

Наличие влаги определяется на ощупь при нажатии на комочек компоста. Если при нажатии выделяется 1-2 капли воды, то влажность компоста достаточная. Материалы типа соломы устойчивы к высокой влажности.

Вода образуется в ходе компостирования за счет жизнедеятельности микроорганизмов и теряется за счет испарения. В случае применения принудительной аэрации потери воды могут быть значительными, и возникает необходимость в дополнительном внесении воды в компост. Это может быть достигнуто поливом водой или добавлением активного ила и других жидких отходов.

1.3.5. Температура

Температура служит хорошим показателем процесса компостирования. Температура в компостной куче начинает подниматься через несколько часов с момента закладки субстрата и меняется в зависимости от стадий компостирования: мезофильной, термофильной, остывание, созревание.

В течение стадии остывания, которая следует за температурным максимумом, рН медленно падает, но остается щелочным. Термофильные грибы из более холодных зон вновь захватывают весь объем и вместе с актиномицетами потребляют полисахариды, гемицеллюлозу и целлюлозу, разрушая их до моносахаридов, которые впоследствии могут быть утилизированы широким спектром микроорганизмов. Скорость тепловыделения становится очень низкой, и температура падает до значений таковой окружающей среды.
Первые три стадии компостирования протекают относительно быстро (за дни или недели) в зависимости от типа используемой системы компостирования. Заключительная стадия компостирования – созревание, в течение которой потери массы и тепловыделения малы, – длится несколько месяцев. В этой стадии происходят сложные реакции между остатками лигнина из отходов и белками погибших микроорганизмов, приводящие к образованию гуминовых кислот. Компост не разогревается, в нем не происходят анаэробные процессы при хранении, он не отнимает азот у почвы при внесении в нее (процесс иммобилизации азота микроорганизмами). Конечное значение рН – слабощелочное.

Высокая температура часто считается необходимым условием успешного компостирования. На самом деле при слишком высокой температуре процесс биодеградации подавляется из-за ингибирования роста микроорганизмов, очень немногие виды сохраняют активность при температуре свыше 70 градусов Цельсия. Порогом, после которого наступает подавление, служит температура около 60 градусов Цельсия, и поэтому высокие температуры в течение длительного периода должны быть исключены при быстром компостировании. Однако температура порядка 60 градусов Цельсия полезна для борьбы с термочувствительными патогенными микроорганизмами. Поэтому необходимо поддерживать условия, при которых, с одной стороны, будет гибнуть патогенная микрофлора, а с другой – развиваться микроорганизмы, ответственные за деградацию. Для этих целей рекомендуемым оптимумом является температура 55 градусов Цельсия. Управление температурой может быть достигнуто с помощью принудительной вентиляции в ходе компостирования. Отвод тепла осуществляется с помощью системы испарительного охлаждения.

Основными факторами в разрушении патогенных организмов в процессе образования компоста являются тепло и антибиотики, продуцируемые микроорганизмами-деструкторами. Высокая температура держится в течение времени, достаточного для гибели патогенов.

Наилучшими условиями для образования компоста являются мезофильный и термофильный температурные пределы. Благодаря многим группам организмов, принимающим участие в процессе образования компоста, диапазон оптимальных температур для этого процесса в целом является очень широким – 35-55 градусов Цельсия.

1.3.6. Дисперсность частиц

Основная микробная активность проявляется на поверхности органических частиц. Следовательно, уменьшение размера частицы ведет к увеличению площади поверхности, а это, в свою очередь, казалось бы, должно сопровождаться ростом микробной активности и скорости разложения. Однако, когда частицы слишком малы, они плотно слипаются друг с другом, ухудшая циркуляцию воздуха в куче. Это уменьшает поступление кислорода и существенно понижает микробную активность. Размер частиц влияет также на доступность углерода и азота. Допустимый размер частиц находится в диапазоне 0,3–5 см, но варьирует в зависимости от характера сырья, размера кучи и погодных условий. Необходим оптимум в размере частиц. Для механизированных установок с перемешиванием и принудительной аэрацией частицы могут иметь размер после измельчения 12,5 мм. Для неподвижных куч с естественной аэрацией наилучшим является размер частиц порядка 50 мм.
Желательно также, чтобы сырье для компостирования содержало максимум органического материала и минимум неорганических остатков (стекло, металл, пластмасса и др.).

1.3.7. Размер и форма компостной кучи

Различные органические соединения, присутствующие в компостируемой массе, имеют различную теплоту сгорания. Белки, углеводы и липиды имеют теплоту сгорания в пределах 9-40 кДж. Количество выделяющейся при компостировании теплоты весьма значительно, так что при компостировании больших масс могут достигаться температуры порядка 80-90 градусов Цельсия. Эти температуры намного превосходят оптимальную, равную 55 градусов Цельсия, и в таких случаях может понадобиться испарительное охлаждение посредством испарительной аэрации. Малые количества компостируемого материала имеют высокое отношение поверхности к объему.

Компостная куча должна иметь достаточный размер для предотвращения быстрой потери тепла и влаги и обеспечения эффективной аэрации во всем объеме. При компостировании материала в кучах в условиях естественной аэрации их не следует складывать больше 1,5 м в высоту и 2,5 м в ширину, в противном случае диффузия кислорода к центру кучи будет затруднена. При этом куча может быть вытянута в компостный ряд любой длины. Минимальный размер кучи – около одного метра кубического. Максимально приемлемый размер кучи – 1,5м х 1,5м при любой длине.

Штабель может быть любой длины, но его высота имеет определенное значение. Если штабель уложен слишком высоко, то материал будет сжат собственной массой, в смеси не будет пор, и начнется анаэробный процесс. Низкий компостный штабель слишком быстро теряет тепло, и в нем нельзя поддерживать температуру, оптимальную для термофильных организмов. Кроме того, из-за большой потери влаги замедляется степень образования компоста. Опытным путем установлены наиболее приемлемые высоты компостных штабелей для любых видов отходов.

Равномерное разложение обеспечивается перемешиванием наружных краев к центру компостного штабеля. При этом любые личинки насекомых, патогенные микробы или яйца насекомых подвергаются воздействию гибельной для них температуры внутри компостного штабеля. При избыточном количестве влаги рекомендуется частое перемешивание.

1.3.8. Свободный объем

Компостируемую массу упрощенно можно рассматривать как трехфазную систему, в которую входят твердая, жидкая и газовая фазы. Структура компоста представляет собой сеть твердых частиц, в которую заключены пустоты различного размера. Пустоты между частицами заполнены газом (преимущественно кислородом, азотом, диоксидом углерода), водой или газожидкостной смесью. Если пустоты целиком заполнены водой, то это сильно затрудняет перенос кислорода. Порозность компоста определяют как отношение свободного объема к общему объему, а свободное газовое пространство – как отношение газового объема к общему объему. Минимальное свободное газовое пространство должно быть порядка 30%.

Оптимальная влажность компостируемой массы варьирует и зависит от природы и дисперсности материала. Различные материалы могут иметь разную влажность до тех пор, пока поддерживается соответствующий объем свободного газового пространства.

1.3.9. Время созревания компоста

Время, необходимое для созревания компоста, зависит от перечисленных выше факторов. Более короткий период созревания связан с оптимальным содержанием влаги, соотношением C:N и частотой аэрации. Процесс замедляется при недостаточной влажности субстрата, низких температурах, высоком значении соотношения C:N, больших размерах частиц субстрата, высоком содержании древесных материалов и неадекватной аэрации.
Процесс компостирования сырья протекает гораздо быстрее, если соблюдаются все условия, необходимые для роста микроорганизмов. Оптимальные условия процесса компостирования представлены в таблице 2.

ТАБЛИЦА 2
ОПТИМАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ПРОЦЕССА КОМПОСТИРОВАНИЯ

Задача состоит в том, чтобы реализовать набор этих параметров в виде недорогих, но надежных систем компостирования.

Необходимая продолжительность процесса образования компоста зависит и от условий окружающей среды. В литературе можно встретить различные значения длительности компостирования: от нескольких недель до 1-2 лет. Это время колеблется от 10-11 суток (образование компоста из огородных отходов) до 21 суток (отходы с высоким отношением C/N – 78:1). С помощью специального оборудования продолжительность этого процесса сокращается до 3-х суток. При активном компостировании длительность процесса составляет 2–9 месяцев (в зависимости от методов компостирования и природы субстрата), но возможен и более короткий период: 1–4 месяца.

В ходе компостирования физическая структура материала подвергается изменению. Он приобретает темный цвет, ассоциируемый с компостом. Заслуживает внимания изменение запаха компостируемого материала от зловонного до «запаха земли», обусловленного геосмином и 2-метилизоборнеолом – продуктами жизнедеятельности актиномицетов.

Конечным результатом этапа образования компоста является стабилизация органических веществ. Степень стабилизации относительна, поскольку окончательная стабилизация органического вещества связана с образованием СО2, Н2О и минеральной золы.

Желательная степень стабильности – та, при которой не возникает проблем при хранении продукта даже во влажном состоянии. Сложность заключается в том, чтобы определить этот момент. Темный цвет, типичный для компоста, может появиться задолго до достижения нужной степени стабилизации. То же можно сказать о «запахе почвы».

Кроме внешнего вида и запаха параметрами стабильности являются: окончательное падение температуры, степень самонагревания, количество разложившегося и стабильного вещества, повышение окислительно-восстановительного потенциала, поглощение кислорода, рост нитевидных грибов, крахмальная проба.

Пока не разработаны однозначные критерии для оценки приемлемых уровней стабильности и «зрелости» компоста. Компостирующий потенциал можно определить путем оценки темпов конверсии органических соединений в почвенные составляющие и гумус, повышающие плодородие почв.

Образование гумуса (гумификация) – некая совокупность всех процессов, вовлеченных в преобразование свежего органического вещества в гумус. Определение темпов этой конверсии является сложной задачей и, в свою очередь, – важным инструментом для научного исследования процесса компостирования.

Из ряда работ, выполненных различными исследователями в этой области, становится очевидным, что параметры, которые могут использоваться в качестве показателей темпов гумификации, «зрелости» и стабильности компостов, составляют две категории. Показатели первой категории – pH, общее количество органического углерода (TOC), показатель гумификации (HI) и отношение углерода к азоту (C/N) – за время периода компостирования снижаются. Другие химические показатели и параметры гумификации – содержание общего азота (TON), общее содержание экстрагируемого углерода (TEC) и гуминовых кислот (HA), отношение гуминовых кислот к фульвокислотам (HA:PhA), степень гумификации (DH), скорость гумификации (HR), показатель зрелости (MI), показатель гумификации (IHP) – с течением времени увеличиваются, и качество компостов стабилизируется.

В ряду анализируемых химических параметров отношение гуминовых кислот к фульвокислотам, скорость гумификации, степень гумификации, показатель гумификации, показатель зрелости, показатель гумификации, отношение углерода к азоту до сих пор считались ключевыми параметрами для оценки темпов и степени конверсии органических отходов при компостировании.

S.M. Tiquia предложил более простой подход к оценке степени «зрелости» компоста на основе свиного навоза, переработка которого в полноценное и безопасное органическое удобрение является важной сельскохозяйственной и экологической проблемой. Следует подчеркнуть универсальность этого подхода. С его помощью можно оценивать не только естественно протекающий в природе процесс компостирования, но и осуществляемый с применением биотехнологических методов. В разряд последних входят вермикомпостирование с помощью навозных червей, а также использование специальных микробных «заквасок».

Поскольку компостирование осуществляется за счет жизнедеятельности микробного сообщества навоза, индикаторами «зрелости» компоста были приняты микробиологические показатели. Из шести исследованных микробиологических показателей наиболее информативным и адекватным оказался тест дегидрогеназной активности. В сравнении с другими критериями он оказался более простым, быстрым и дешевым методом, позволяющим проводить мониторинг стабильности и готовности компоста. После того как материал признан достаточно стабильным для хранения, его сортируют по фракциям путем просеивания.

Естественный процесс переработки органики ускоряют с помощью препаратов-деструкторов. Они приготовлены на основе спор различного рода эффективных микроорганизмов (ЭМ-препараты).

Коротко про деструкторы органики

Препараты разводят в дехлорированной воде - дождевой, родниковой или в водопроводной, но отстоянной 2 суток, с температурой + 25… + 32 ˚ C . В противном случае «хорошие» бактерии не будут размножаться. Биопрепараты имеют разную степень концентрации, влияющую на количество получаемого рабочего раствора. Жидкие препараты выпускаются в пластиковых ёмкостях. Чтобы удалить лишний воздух, бутылку сдавливают, при этом содержимое поднимается до горлышка, вытесняя воздух; завинчивают крышку.

Лишний воздух из пластиковой бутылки легко выдавить, без него биопрепарат хорошо хранится

Без доступа кислорода бактерии не теряют жизнеспособность на протяжении всего срока хранения.

Существует определённая последовательность зарядки кучи «ускорителем» созревания:

  • По мере формирования кучи каждый слой органики толщиной 15–20 см проливают препаратом (если это порошок, то поливают водой).

    Обработка органики биопрепаратом проводится послойно

  • Присыпают слоем земли толщиной около 5 см или притрушивают травой.

    От пересыхания каждый обработанный органический слой укрывают травой или землёй

  • Кучу прикрывают агроволокном, плёнкой от пересыхания, потому что бактерии «работают» только во влажной среде.

    Компостник накрывают плёнкой независимо от степени наполнения

Готовая куча имеет вид слоёного пирога.

Схематично компостная куча, удобренная послойно, похожа на торт

Жидкие препараты

Перед использованием флакон встряхивают. Если содержимое выливается полностью, бутылку ополаскивают водой и остаток выливают в рабочий раствор, который обычно готовят в пропорции 100 мл препарата на 10 л воды.

  • Эмбико - на 1 м 3 органики.

    Эмбико имеет приятный кефирно-силосный запах

  • Экомик Урожайный - расход: 5 л на 1 м 2 для каждого слоя компоста; зреет 2–4 месяца.
  • Экомик Урожайный концентрат - в комплект входит флакон с концентратом, питательной средой и биодобавкой. Компоненты растворяют в 5 л воды, настаивают. Рабочий раствор готовят в стандартной пропорции.

    100 мл препарата Экомик Урожайный концентрат из флакона рассчитано на 5 л воды

  • Возрождение - созревание 1–2 месяца.

    Биопрепарат Возрождение безопасен как для людей, так и для животных

  • Гуми-Оми Компостин - 50 мл на ведро воды. Под земляным укрытием компост зреет 1,5–2 месяца, под тёмной плёнкой - 1–2 месяца.

    Использование компоста с Гуми-Оми Компостином заметно снижает риск поражения растений грибком

  • Оксизин - выпускается во флаконах по 20 мл с капельницей. Расход: 40 капель на 1–1,5 л воды для 100 кг органики. Препарат добавляют в воду, не наоборот, потому что будет сильное пенообразование. Время созревания 3–5 недель.

    Оксизин производится на основе ферментированной свёклы

  • Компостелло - 1 пакет рассчитан на 1 м 3 . Порошок растворяют в 20 л воды, настаивают 30–45 минут. Раствор используют в течение дня. Действует при температуре +10 °C. Куча зреет 6–8 недель.

    Компостелло «переваривает» даже семена сорняков

  • Байкал ЭМ-1 - применяется послойно (зреет 2–3 месяца) или одноразово в сентябре по готовой куче. В этом случае используют очень тёплую воду - примерно + 35… + 40 ˚C, кучу утепляют на зиму.

    Байкал ЭМ-1 - классический образец и представитель современного поколения концентратов

В прошлом году я «завела» компостную кучу вторым способом. Кроме травы и пищевых отходов, ¼ часть органики составлял козий помёт. В апреле начала использовать то, что получилось. Сверху куча покрылась плотной коркой, под которой оказался компост приличного качества, правда, не очень рассыпчатый. Использовать в стаканчиках его было неудобно, но для внесения в лунки подошёл отлично.

Видео: как приготовить рабочий раствор из концентрата

Порошковые препараты

  • ЭМ-Бокаши - на основе ферментированных отрубей пшеницы. Расход: 100 г порошка на 10 кг сырья. Созревание длится 2–3 летние недели.
  • Доктор Робик 209 - на основе почвенных бактерий, поэтому припорошённую Робиком органику присыпают землёй. Действует при +5 ˚C. Расход: 1 пакет (60 г) на слой площадью 1–1,5 м 2 , собранный в течение месяца.

Самодельные деструкторы органики

Домашние бокаши готовят на ржаных или пшеничных отрубях. В 1 литре воды разводят 2 ст. ложки ЭМ препарата (Байкал, Сияние) и 1 ст. ложку сахара или варенья. Раствор выдерживают 30 минут, смачивают отруби до состояния комковатости, выкладывают смесь в пакет, плотно завязывают, выпуская воздух, оставляют созревать на 7–14 дней в тёмном тёплом месте. Готовая масса имеет фруктовый запах. Её подсушивают, используют так же, как и средство от производителя.

Видео: как самому приготовить бокаши

Народные средства:

  • Травяной настой - соединяют траву, куриный помёт и воду в пропорции 5:2:20. Настаивают неделю.
  • Дрожжевой настой - смесь из 3 л тёплой воды, 0,5 стакана сахара, 1 ч. ложка любых дрожжей сбраживают, доводят водой до объёма 15 л. Чтобы сохранить баланс кальция, сначала кучу поливают зольным настоем: три литровые банки золы настаивают сутки в 10 л тёплой воды, процеживают. На ведро воды берут 1 стакан настоя.
  • Моча животных и людей, разбавленная вчетверо водой.

Видео: как приготовить травяной настой

Питательную среду (землю для прослойки органики - авт.) я заменяю картофельным отваром, азот - мочевиной. Кладу пол-объёма крапивы в кучку, поливаю из баклажки по ладони водой, в которой картошка варилась (крахмал), и, посыпав мочевиной, нахлобучиваю сверху остаток травы. И так каждый раз по приезде привожу с собой 2 литра компостного чая и проливаю. Компост зреет без навоза и имеет не меньшую питательную ценность.

ОсгудФилдингlll

https://olkpeace.org/forum/viewtopic.php?f=157&t=51985&start=1600

Бактерии тоже могут быть другом человека, если использовать их деятельность во благо. Биопрепараты для ускорения созревания компоста тому доказательство.

Приготовление компоста. Анаэробный и аэробный типы разложения. Соотношение углерода и азота. Как правильно заложить компостную кучу.

Компост – удобрение, получаемое в результате микробного разложения органических веществ.

Компост применяют почти все садоводы, независимо от того, какой агротехники они придерживаются, копают ли почву, или только рыхлят её, применяют минеральные удобрения, или обходятся без них.

Почти в любом саду, и огороде, есть куча, или яма, для переработки отходов с кухни и садового мусора. Кто-то для компостирования строит всевозможные ящики, барьеры, используя металлические сетки, доски, шифер – любой материал, ограждающий место, приспособленное для компостирования органических отходов.

Получаемый компост, имеет рыхлую, воздухопроницаемую структуру и обогащен всеми элементами питания, необходимыми растениям. По сути, компост в саду – это очень хорошо!

И почти каждый садовод, считает себя специалистом в этом деле, но некоторые просто не задумываются, что компост можно приготовить различными способами: «Что тут трудного? Накидал в кучу сорняков, травы, вывалил туда же кухонные отходы, полил, и жди, пока всё это не перегниёт!»

В общем-то, правильно. Но хотелось бы чуть подробнее разобраться с биологическими процессами, протекающими при разложении органики, чтобы компостирование в огороде проходило не спонтанно, а по запланированному сценарию.

Анаэробное

Его же называют «холодным», протекает при температурах 15 – 35°С, при участии микроорганизмов анаэробов, получающих энергию при отсутствии доступа кислорода.

Компостную кучу при таком компостировании трамбуют, закрывают плёнкой, или закладывают в ямы. Но, от подобного метода компостирования лучше отказаться. Почему?

Существенным недостатком этого метода считается медленное разложение органики, а сам процесс гниения при недостатке кислорода может приобрести вредное для растений направление, провоцируя развитие грибков, в том числе, патогенных.

При анаэробном брожении углерод, присутствующий в ферментирующихся материалах, превращается не в углекислый газ, как при аэробном брожении, а в метан. Отсюда и неприятный запах. В природе этот процесс происходит на дне болот, а в компостных кучах может возникнуть при высокой влажности компоста.

Аэробное

Более быстрое, протекает при более высоких температурах, без неприятного запаха. Большинство садоводов предпочтение отдают аэробному компостированию, то есть, с доступом воздуха.

Хотя надо признать, что в компостной куче и аэробный, и анаэробный процессы протекают одновременно. Если в верхних слоях компостной кучи больше кислорода (воздуха), то, соответственно там будет преобладать аэробное компостирование.

Аэробное брожение происходит в природе в широких масштабах и является доминирующим способом, при котором отходы с полей и лесов превращаются в перегной, полезный для почв и их обитателей.
Поэтому и садоводы чаще всего стремятся использовать именно этот метод, систематически перемешивая (перекладывания) разлагающуюся органику в куче, чтобы обеспечить её воздухом.

Бывает, что компостная масса нагревается порой до 70° С, как бы, «перегорает». Радоваться таким температурам, или нет?

Существует мнение, что горячее компостирование ведёт к уничтожению патогенных организмов, а так же, к тому, что семена сорной травы, попавшие в компостную кучу, теряют всхожесть.

Как показали опыты, семена, прошедшие тепловую обработку в компостной куче, частично всё же всходят, поэтому закладывая траву для компостирования, следует избегать сбора сорняков после их цветения.

Более детально о самом процессе компостирования

На первом этапе все присутствующие микробы принимают участие в переработке отходов. В это же время идёт интенсивный процесс окисления, то есть, взаимодействие с кислородом, при котором выделяется тепло.
Самый яркий и быстрый пример окисления, как химического процесса – горение. Что касается разложения органики, это окисление медленное, и тепло (энергия) при этом процессе выделяется медленно.

Но что в это время происходит с микроорганизмами? Они, ведь погибнут от повышенной температуры ? Дело в том, что существует ряд, так называемых, термофильных бактерий, которые развиваются при высоких температурах, (выше 50, до 90° С, в зависимости от видов).

Оболочка клетки термофилов обладает устойчивостью к действию температуры. Это обусловлено ее строением и химическим составом. Именно эти бактерии и продолжают свою работу, именно они разогревают компостную кучу до критической температуры, при которой остальные микроорганизмы прекращают свою деятельность.

Часть микроорганизмов погибает, а часть переходит в неактивную форму (цисты), чтобы сохраниться, как вид. Циста (от греч. kystis - пузырь), временная форма существования многих одноклеточных растений и животных. Имеет защитную оболочку, которая также называется цистой.

Некоторые простейшие могут существовать в неблагоприятных условиях в форме цисты несколько лет.
Позже активность термофилов снизится, так же, как и температура в самой компостной куче. Бактерии, уснувшие в цистах, оживут и продолжат свою работу. При благоприятных показателях температуры и влажности новые микроорганизмы заселят компост и продолжат процесс разложения компонентов компостной кучи.
Из вышеизложенного следует, что высокие температуры, действительно, частично могут уничтожить определённые виды микроорганизмов – и вредные, и полезные.

Но, патогенные микробы лучше переносят неблагоприятные условия, поэтому утверждение, что горячее компостирование обеззараживает компост, не вполне правомерно.
Многие опытные садоводы делают компостные кучи, небольшими, невысокими, чтобы нагревание в них не было столь сильным. Такие кучи быстрее заселяются червяками, что в свою очередь ведёт к получению более ценного и питательного компоста.
Закладывая органику для компостирования, стоит учесть ещё одно обстоятельство.

Органика – это не что иное, как соединение различных химических элементов с углеродом.

Кроме углерода большое значение в природе играет азот – важный строительный материал для аминокислот, белков, нуклеиновых кислот и других соединений.
А органические материалы, которые мы используем для компостирования, содержат в себе и углерод, и азот и характеризуются соотношением этих химических элементов.
Так, например, в опилках примерное соотношение углерода к азоту: С/N =500/1
в соломе С/N =100/1
в листве С/N =50/1;
в газонной траве С/N =15/1
в овощных отходах С/N =13/1
навозном компосте С/N =10/1
Значит, компост, полученный в результате разложения травы, будет более насыщен азотом, чем компост, полученный с преобладанием опилок.

Поэтому, закладывая компостную кучу, следует чередовать, или перемешивать азотистые компоненты, с компонентами углеродистыми.

То есть, опилки неплохо перемешать, с навозом, а овощные отходы переложить сухой листвой, и т. п. Ветки деревьев обязательно следует измельчать, траву измельчать, по возможности.

Чем мельче компоненты, тем быстрее будет протекать процесс разложения.

Что обычно закладывают в компостную кучу?


Отходы с кухни: овощные очистки, яичную скорлупу, потроха и кости рыбы. А так же, стружку, опилки, бумагу, сорняки, скошенную с газонов траву, собранные из-под деревьев листья, солому, хворост.

Слои компонентов желательно пересыпать древесной золой тогда компост будет более питательным.
Через слой 25-35 сантиметров добавляют немного земли «для закваски».
Каждый слой желательно пролить ЭМ – препаратом, это существенно ускорит процесс компостирования. Через 5 – 10 дней кучу, по возможности, перемешивают, а при высыхании, увлажняют.
Если садоводу недоступны ЭМ — препараты, для ускорения компостирования нужно заложить немного готового компоста, насыщенного микроорганизмами. Если нет и такой возможности, следует использовать закваску, из травы, навоза, земли с грядки. Ну, а можно ничего не добавлять, воспользовавшись правилом «И так сойдёт!», но тогда зрелый компост будет получен в более поздние сроки.

Компостирование позволяет получить ценное органическое удобрение и утилизировать отходы, которые становятся безвредными для окружающей среды.

«Быстрое приготовление компоста. Компост за один сезон делают личинки» —

На сегодняшний день существует 3 основных технологии промышленной переработки пищевых и садовых отходов: рядковое компостирование, компостирование в закрытых реакторах, анаэробная переработка. Для первых двух необходим кислород, для третьего — нет. По мере того, как усложняется технология переработки, растут издержки, но также растут возможности технологии и ценность материала на выходе.

I. Рядковое компостирование (windrow composting)

Материал выкладывается в ряды (1-3 метра высотой, 2-6м в ширину и сотни метров в длину), поступление кислорода обеспечивается за счет регулярного механического перемешивания вещества/подачи кислорода внутрь кучи. Это самая проверенная технология, самая простая из существующих, но она имеет и ряд недостатков.

1) компостные ряды, перемешиваемые механически (для обеспечения доступа кислорода);

Продукт на выходе : компост

$15-$40/тонна

≈3 месяца

Диапазон температуры: 10-55

Плюсы:

  • Издержки минимальны по сравнению с другими технологиями;
  • В случае внепланового увеличения поступившего сырья, ряды могут быть увеличены.

Минусы :

  • нельзя перерабатывать большое количество пищевых отходов (богатых азотом), требуется большое количество материала, богатого углеродом (например, листва, ветки);
  • могут образовываться анаэробные участки в рядах из-за сложности прохода кислорода, что ведет к проблемам с запахом от базы компостирования и выделению метана в атмосферу;
  • проблемы с запахом от компостной базы, если строго не соблюдаются все правила компостирования: соотношение азота и углерода,
  • излишки осадков приводят к вымыванию ценных веществ из материала, загрязняют компост и нарушают процесс разложения вещества.

2) аэрируемые компостные ряды (подача кислорода через трубы внутри ряда);

Продукт на выходе : компост

Затраты на создание компоста (США, 2010г.): $25-$60/т

Длительность компостирования: ≈3 месяца

Диапазон температуры: 10-55 °C, что позволяет избавляться от патогенных веществ, личинок и сорняков.

Плюсы :

  • Позволяет перерабатывать большие объемы пищевых отходов, чем первый вид компостирования;

Минусы : дороже, чем первый тип рядкового компостирования.

3) аэрируемые ряды с синтетическим накрытием (для поддержания необходимого уровня влажности и стабилизации температуры).

Продукт на выходе : компост

Затраты на создание компоста (США, 2010г.): $55-$65/ т

Длительность компостирования: ≈ 2-4 месяца

Диапазон температуры: 10-55 °C, что позволяет избавляться от патогенных веществ, личинок и сорняков.

Плюсы :

  • Нет проблем с контролем запаха с компостной базы;
  • Сравнительно простой контроль за уровнем влажности.

Минусы :

  • дороже, чем первый и второй типы рядкового компостирования.

По окончании активной стадии любого из трех приведенных типов компостирования, начинается стадия вызревания (curing phase), которая длится 3-6 недель. Далее материал просеивается для удаления посторонних элементов (пластик, стекло и т.д.).

II. Компостирование в закрытых реакторах (In Vessel composting )

Материал загружается постепенно в реактор, внутри которого осуществляется перемешивание материала и постоянная подача кислорода. При этом идет строгий контроль за уровнем влажности и кислорода. В случае необходимости материал увлажняется.

Применяется в условиях ограниченности земельных ресурсов. Аэрация (снабжение кислородом) осуществляется с помощью подачи горячего воздуха. Отсеки обычно имеют размеры 2м в основании и 8м в высоту.

Продукт на выходе: компост

Затраты на создание компоста (США, 2010г.): $80-$110/т

Длительность компостирования: 4-10 недель (1-3 активная стадия, 3-6 недель – стадия вызревания)

Плюсы:

  1. Сравнительно быстрый процесс компостирования;
  2. Не требуется большой территории;
  3. Можно перерабатывать большее количество ПО, чем при рядковом компостировании;
  4. Нет проблем с контролем запаха;
  5. Хорошая аэрация процесса (не допускается образование анаэробных участков).

Минусы:

  1. Дороже чем рядковое компостирование.

III. Анаэробные установки

Анаэробоне сбраживание – процесс, при котором органическая масса разлагается под воздействием микроорганизмов в условиях отсутствия (или минимального присутствия) кислорода. Существует насколько параметров, которые определяют успешность процесса: соотношение азота и углерода, уровень кислотности, размер элементов вещества, температура, масса volatile organic solids.

Оптимальными показателями являются:

C/N (азот/углерод)=20:1-40:1

Влажность = 75-90%

Кислотность = 5.5-8.5

Размер элементов вещества = 2-5 см в диаметре

Продукт на выходе: сухой дигестат, жидкая фракция, биогаз (состоящий из метана на 60-70%), углекислого газа (30-40%) и других элементов в минимальном количестве. При отделении метана от других элементов, он может быть использован для генерации электроэнергии, тепла или продан как топливо для автомобилей.

Затраты на создание компоста (США, 2010г.): $110-$150/тонна

Длительность переработки: 5-10 недель

Плюсы:

  • Производство биогаза из отходов;
  • Минимизация утечки метана в атмосферу;
  • Хорошо справляется с патогенными веществами;
  • Нет необходимости в большой территории (для реактора достаточно 12-24 м 2), хотя это если не считать территорию для пост-компостирования дигестата.

Минусы:

  • Дорого по сравнению с другими вариантами создания компоста;
  • Не гибкая система в отношении изменения объема материала;
  • Требуется очень строгий контроль запаха.

Анаэробная переработка может протекать при высоких (55°C и выше) и низкой (30-35°C) температуре. Преимущества первого варианта – большие объемы материала, производство большого количества метана, эффективная ликвидация патогенных веществ, личинок. Второй вариант позволяет лучше контролировать процесс переработки, но при этом требуется меньшее количество материала, меньше метана выделяется и нужно дополнительно обрабатывать материал для удаления патогенов.

Анаэробный дигестат (сухая часть вещества, прошедшего переработку) производится с помощью отжима субстанции. Жидкая фракция может быть использована для стабилизации влажности следующих циклов переработки или как жидкое удобрение. Сухой дигестат может быть использован далее для создания компоста (необходим этап рядкового компостирования или компостирование в закрытых реакторах – любое аэробное компостирование).

Анаэробные установки являются дорогим выбором, поэтому часто для их нормального функционирования требуется государственное субсидирование (как это происходит в Европе). США в основном сейчас используется технология рядкового компостирования, хотя все больше становится и анаэробных систем. К 2011 г США было 176 установок (для переработки навоза). Но также перерабатывали пищевые отходы, жиры, масла и смазочные материалы.

Один из самых привлекательных сторон такой переработки – возможность генерировать электороэнергию, что соответствует программе увеличения доли возобновляемых источников в электрогенерации. По заявлению корпорации экономического развития и департамента санитарного управления Нью-Йорка (New York City Economic Development Corporation and New York City Department of Sanitation.), анаэробная переработка и биогазовая энергия являются более дешевыми, чем существующие технологии обращения с отходами, а также выигрывает по ряду показателей: меньшее воздействие на окружающую среду (запахи, объемы метана), меньшее воздействие на лэндфиллы .

Литература:

  1. Food Scrap Recycling: A Primer for Understanding Large-Scale Food Scrap Recycling Technologies for Urban Areas (U.S. EPA Region I, October 2012)
  2. New York City Economic Development Corporation and New York City Department of Sanitation. Evaluation of New and Emerging Solid Waste Management Technologies. September 16, 2004.