Относительная деформация. Продольные и поперечные деформации закон гука Продольная деформация закон гука


Рассмотрим прямой брус постоянного сечения длиной (рис. 1.5), заделанный одним концом и на­груженный на другом конце растягивающей силой Р. Под действием силы Р брус удлиняется на некото­рую величину , которая называется полным (или абсолютным) удлинением (абсолютной продольной деформацией).

Рис. 1.5. Деформация бруса

В любых точках рассматриваемого бруса имеется одинаковое напряжённое состояние и, следова­тельно, линейные деформации для всех его точек одинаковы. По­этому значение е можно определить как отношение абсолютного удлинения к первоначальной длине бруса , т.е.

Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности, опытом установлена следующая зависимость:

где N- продольная сила в поперечных сечениях бруса; F- площадь поперечного сечения бруса; Е- ко­эффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса σ = N/F, получаем ε = σ/Е. От­куда σ = εЕ.

Абсолютное удлинение бруса выражается формулой

Более общей является следующая формулировка закона Гука: относительная продольная деформа­ция прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука использует­ся не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е называется модулем упругости первого рода. Это физическая постоянная материала, характеризующая его жёсткость. Чем больше значение Е, тем меньше при прочих равных условиях продольная деформация. Модуль упругости выражается в тех же единицах, что и напряжение, т.е. в пас­калях (Па) (сталь Е=2* 10 5 МПа, медь Е= 1 * 10 5 МПа).

Произведение EF называется жёсткостью поперечного сечения бруса при растяжении и сжатии.

Кроме продольной деформации при действии на брус сжимающей или растягивающей силы наблю­дается также поперечная деформация. При сжатии бруса поперечные размеры его увеличиваются, а при растяжении - уменьшаются. Если поперечный размер бруса до приложения к нему сжимающих сил Р обозначить В, а после приложения этих сил В - ∆В, то величина ∆В будет обозначать абсолютную по­перечную деформацию бруса.

Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости, относительная попе­речная деформация прямо пропорциональна относительной продольной деформации, но имеет обрат­ный знак:

Коэффициент пропорциональности ц зависит от материала бруса. Он называется коэффициентом поперечной деформации (или коэффициентом Пуассона ) и представляет собой отношение относитель­ной поперечной деформации к продольной, взятое по абсолютной величине, т.е. коэффициент Пуассона наряду с модулем упругости Е характеризует упругие свойства материала.



Коэффициент Пуассона определяется экспериментально. Для различных материалов он имеет зна­чения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффици­ент Пуассона равен 0,25...0,30; для ряда других металлов (чугуна, цинка, бронзы, меди) он


имеет значе­ния от 0,23 до 0,36.

Рис. 1.6. Брус переменного поперечного сечения

Определение величины поперечного сечения стержня выполняется на основании условия прочно­сти

где [σ] - допускаемое напряжение.

Определим продольное перемещение δ а точки а оси бруса, растянутого си­лой Р( рис. 1.6).

Оно равно абсолютной деформации части бруса ad, заключённой между заделкой и сечением, проведённым через точку d, т.е. продольная деформация бруса определяется по формуле

Эта формула применима лишь, когда в пределах всего участка длиной продольные силы N и жёсткости EF попе­речных сечений бруса постоянны. В рассматриваемом случае на участке ab продольная сила N равна нулю (собственный вес бруса не учитываем), а на участке bd она равна Р, кроме того, площадь поперечного сечения бруса на участке ас отличается от площади сечения на участке cd. Поэтому продольную деформацию участка ad следует определять как сумму продольных деформаций трёх участков ab, Ьс и cd, для каждого из которых значения N и EF постоянны по всей его длине:

Продольные силы на рассматриваемых участках бруса

Следовательно,

Аналогично можно определить перемещения δ любых точек оси бруса, а по их значениям построить эпюру продольных перемещений (эпюруδ), т.е. график, изображающий изменение этих перемещений по длине оси бруса.

4.2.3. Условия прочности. Расчет на жёсткость.

При проверке напряжений площади поперечных сечений F и продольные силы известны и расчёт заключается в вычислении расчётных (фактических) напряжений σ в характерных сечениях элементов. Полученное при этом наибольшее напряжение сравнивают затем с допускаемым:

При подборе сечений определяют требуемые площади [F] поперечных сечений элемента (по из­вестным продольным силам N и допускаемому напряжению [σ]). Принимаемые площади сечений F должны удовлетворять условию прочности, выраженному в следующем виде:

При определении грузоподъёмности по известным значениям F и допускаемому напряжению [σ] вычисляют допускаемые величины [N] продольных сил:

По полученным значениям [N] за­тем определяются допускаемые величины внешних нагрузок [P ].

Для этого случая условие прочности имеет вид

Величины нормативных коэффициентов запаса прочности устанавливаются нормами. Они зависят от класса конструкции (капитальная, временная и т.п.), намечаемого срока её эксплуатации, нагрузки (статическая, циклическая и т.п.), возможной неоднородности изготовления материалов (например, бе­тона), от вида деформации (растяжение, сжатие, изгиб и т.д.) и других факторов. В ряде случаев прихо­дится снижать коэффициент запаса в целях уменьшения веса конструкции, а иногда увеличивать коэф­фициент запаса - при необходимости учитывать износ трущихся частей машин, коррозию и загнивание материала.

Величины нормативных коэффициентов запаса для различных материалов, сооружений и нагрузок имеют в большинстве случаев значения: - 2,5...5 и - 1,5...2,5.

Под проверкой жёсткости элемента конструкции, находящегося в состоянии чистого растяжения - сжатия, понимается поиск ответа на вопрос: достаточны ли значения жёсткостных характеристик эле­мента (модуля упругости материала Е и площади поперечного сечения F), чтобы максимальное из всех значений перемещений точек элемента, вызванных внешними силами, u max не превысило некоторого заданного предельного значения [u]. Считается, что при нарушении неравенства u max < [u] конструкция переходит в предельное состояние.

Пусть в результате деформации первоначальная длина стержня l станет равной. l 1. Изменение длины

называется абсолютным удлинением стержня.

Отношение абсолютного удлинения стержня к его первоначальной длине называется относительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.

Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:

Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона или коэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах . Например, для пробки , для каучука , для стали , для золота .

Продольные и поперечные деформации. Коэффициент Пуассона. Закон Гука

При действии растягивающих сил по оси бруса длина его увеличивается, а по­перечные размеры уменьшаются. При действии сжимающих усилий происходит обратное явление. На рис. 6 показан брус, растягиваемый двумя силами Р. В результате рас­тяжения брус удлинился на величину Δl , которая называется абсолютным удлинением, и получим абсолютное поперечное сужение Δа.

Отношение величины абсолютного удлинения и укорочения к первоначальной длине или ширине бруса называется относительной деформацией . В данном случае относительная деформация называется продольной деформацией , а — относительной поперечной деформацией . Отношение относительной поперечной деформации к относительной продольной деформации называется коэффициентом Пуассона : (3.1)

Коэффициент Пуассона для каждого материала как упругая константа определяется опытным путем и находится в пределах: ; для стали .

В пределах упругих деформаций установлено, что нормальное напряжение прямо пропорционально относительной продольной деформации. Эта зависимость называется законом Гука:

, (3.2)

где Е — коэффициент пропорциональности, называемый модулем нормальной упругости .

Если мы в формулу закона Гука подставим выражение и , тo получим формулу для определения удлинения или укорочения при растяжении и сжатии:

, (3.3)

где произведение ЕF называется жесткостью при растяжении, сжатии.

Продольные и поперечные деформации. Закон Гука

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений.

Уметь проводить расчеты на прочность и жесткость ста­тически определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 4.13).

Начальные размеры бруса: - начальная длина, - начальная ширина. Брус удлиняется на величину Δl; Δ1 - абсолютное удлинение. При растя­жении поперечные размеры уменьшают­ся, Δ а - абсолютное сужение; Δ1 > 0; Δ а 0.

В сопротивлении материалов приня­то рассчитывать деформации в относи­тельных единицах: рис.4.13

— относительное удлинение;

Относительное сужение.

Между продольной и поперечной деформациями существует зависимость ε′=με, где μ – коэффициент поперечной деформации, или коэффициент Пуассона, — характеристика пластичности материала.

Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и.

Деформация продольная при растяжении (сжатии)

Экспериментально установлено, что отношение поперечной деформации ej. к продольной деформации е при растяжении (сжатии) до предела пропорциональности для данного материала - величина постоянная. Обозначив абсолютную величину данного отношения (X, получим

Опытами установлено, что относительная поперечная деформация ео при растяжении (сжатии) составляет некоторую часть продольной деформации е, т. е.

Отношение поперечной деформации к продольной при растяжении (сжатии), взятое ио абсолютной величине.

В предыдущих главах сопротивления материалов были рассмотрены простые виды деформации бруса - растяжение (сжатие), сдвиг, кручение, прямой изгиб, характерные тем, что в поперечных сечениях бруса возникает лишь один внутренний силовой фактор при растяжении (сжатии) - продольная сила, при сдвиге - поперечная сила, при кручении - крутящий момент, при чистом прямом изгибе - изгибающий момент в плоскости, проходящей через одну из главных центральных осей поперечного сечения бруса. При прямом поперечном изгибе возникает два внутренних силовых фактора- изгибающий момент и поперечная сила, но этот вид деформации бруса относят к простым, так как при расчетах на прочность совместное влияние указанных силовых факторов не учитывают.

При растяжении (сжатии) изменяются также и поперечные размеры. Отношение относительной поперечной деформации е к относительной продольной деформации е является физической константой материала и называется коэффициентом Пуассона V = е /е.

При растяжении (сжатии) бруса его продольные и поперечные размеры получают изменения, характеризуемые деформациями продольной прод (бг) и поперечной (е, е). которые связаны соотношением

Как показывает опыт, при растяжении (сжатии) бруса его объем несколько изменяется при увеличении длины бруса на величину Аг каждая сторона его сечения уменьшается на Будем называть относительной продольной деформацией величину

Продольные и поперечные упругие деформации, возникающие при растяжении или сжатии, связаны друг с другом зависимостью

Итак, рассмотрим брус из изотропного материала. Гипотеза плоских сечений устанавливает такую геометрию деформаций при растяжении сжатии, что все продольные волокна бруса имеют одинаковую деформацию х, независимо от их положения в поперечном сечении F, т.е.

Экспериментальное исследование объемных деформаций проводилось при растяжении и сжатии образцов стеклопластиков при одновременной регистрации на осциллографе К-12-21 изменения продольных, поперечных деформаций материала и усилия при нагружении (на испытательной машине ЦД-10). Испытание до достижения максимальной нагрузки проводилось практически при постоянных скоростях нагружения, что обеспечивалось специальным регулятором, которым снабжена машина.

Как показывают опыты, отношение поперечной деформации ь к продольной деформации е при растяжении или сжатии для данного материала в пределах применения закона Гука есть величина постоянная. Это отношение, взятое по абсолютной величине, называется коэффициентом поперечной деформации или коэффициентом Пуассона

Здесь /р(сж) - продольная деформация при растяжении (сжатии) /и - поперечная деформация при изгибе I - длина деформируемого бруса Р - площадь его поперечного сечения / - момент Инерции площади поперечного сечения образца относительно нейтральной оси - полярный момент инерции Р - приложенное усилие -момент кручения - коэффициент, учи-

Деформация стержня при растяжении или сжатии заключается в изменении его длины и поперечного сечения. Относительные продольная и поперечная деформации определяются соответственно по формулам

Отношение высоты боковых пластин (стенок бака) к ширине в аккумуляторах значительных габаритов, как правило, больше двух, что позволяет рассчитывать стенки бака по формулам цилиндрического изгиба пластин. Крышка бака не имеет жесткого скрепления со стенками и не может помешать их выпучиванию. Пренебрегая влиянием дна, можно свести расчет бака при действии на него горизонтальных усилий к расчету замкнутой статически неопределимой рамки-полоски, выделенной из бака двумя горизонтальными сечениями. Модуль нормальной упругости стеклопласта сравнительно мал, поэтому конструкции из этого материала чувствительны к продольному изгибу. Пределы прочности стеклопласта при растяжении, сжатии и изгибе различны. Сопоставление расчетных напряжений с предельными должно производиться для той деформации, которая является преобладающей.

Введем обозначения, используемые в алгоритме величины с индексами 1,1-1 относятся к текущей и предыдущей итерации на временном этапе т - Ат, т и 2 - соответственно скорость продольной (осевой) деформации при растяжении (i > > 0) и сжатии (2 деформации связаны соотношением

Зависимости (4.21) и (4.31) были проверены на большом числе материалов и при различных условиях нагружения. Испытания были проведены при растяжении-сжатии с частотой около одного цикла в минуту и одного цикла за 10 мин в широком интервале температур. Для измерений деформаций использовались как продольные, так и поперечные деформометры. При этом были испытаны сплошные (цилиндрические и корсетные) и трубчатые образцы из котельной стали 22к (при температурах 20-450 С и асимметриях - 1, -0,9 -0,7 и -0,3, кроме того, образцы сварные и с надрезом), теплоустойчивой стали ТС (при температурах 20-550° С и асимметриях -1 -0,9 -0,7 и -0,3), жаропрочного никелевого сплава ЭИ-437Б (при 700° С), стали 16ГНМА, ЧСН, Х18Н10Т, сталь 45, алюминиевого сплава АД-33 (при асимметриях -1 0 -Ь0,5) и др. Все материалы испытывались в состоянии поставки.

Коэффициент пропорциональности Е, связывающ.и нормальное напряжение и продольную деформацию, на зывается модулем упругости при растяжении-сжатий материала. Этот коэффициент имеет и другие названия модуль упругости 1-го рода, модуль Юнга. Модуль упругости Е является одной из важнейших физических постоянных, характеризующих способность материала сопротивляться упругому деформированию. Чем больше эта величина, тем менее растягивается или сжимается брус при приложении одной и той же силы Р.

Если считать, что на рис. 2-20, а вал О является ведущим, а валы О1 и О2 ведомыми, то при отключении разъединителя тяги ЛЛ1 и Л1Л2 будут работать на сжатие, а при включении - на растяжение. Пока расстояния между осями валов О, 0 и О2 невелики (до 2000 мм), разница между деформацией тяги при растяжении и при сжатии (продольный изгиб) не сказывается на работе синхронной передачи. В разъединителе на 150 кВ расстояние между полюсами 2800 мм, на 330 кВ- 3500 мм, на 750 кВ- 10 000 мм. При таких больших расстояниях между центрами валов и значительных нагрузках, которые они должны передавать, мол / > d. Такая длина выбирается из сообралсений большей устойчивости, так как длинный образец помимо сжатия может испытывать деформацию продольного изгиба, о котором пойдет речь во второй части курса. Образцы из строительных материалов изготовляются в форме куба с размерами 100 X ЮО X ЮО или 150 X X 150 X 150 мм. При испытании на сжатие цилиндрический образец принимает первоначально бочкообразную форму. Если он изготовлен из пластичного материала, то дальнейшее нагружение приводит к расплющиванию образца, если материал хрупкий, то образец внезапно растрескивается.

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние и, следовательно, линейные деформации (см. 1.5) для всех его тo eк одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения А/ к первоначальной длине бруса /, т. е. е, = А///. Линейную деформацию при растяжении или сжатии брустев называют обычно относительным удлинением (и ли относительной продольной деформацией) и обозначают е.

Смотреть страницы где упоминается термин Деформация продольная при растяжении (сжатии) : Технический справочник железнодорожника Том 2 (1951) — [ c.11 ]

Продольные и поперечные деформации при растяжении - сжатии. Закон Гука

При приложении к стержню растягивающих нагрузок его первоначальная длина / увеличивается (рис. 2.8). Обозначим приращение длины через А/. Отношение приращения длины стержня к его первоначальной длине называется относительным удлинением или продольной деформацией и обозначается через г:

Относительное удлинение - величина безразмерная, в некоторых случаях ее принято выражать в процентах:

При растяжении изменяются размеры стержня не только в продольном направлении, но и в поперечном - происходит сужение стержня.

Рис. 2.8. Деформация стержня при растяжении

Отношение изменения А а размера поперечного сечения к его первоначальному размеру называется относительным поперечным сужением или поперечной деформацией’.

Опытным путем установлено, что между продольной и поперечной деформациями существует зависимость

где р называется коэффициентом Пуассона и являются постоянной величиной для данного материала.

Коэффициент Пуассона представляет собой, как это видно из приведенной формулы, отношение поперечной деформации к продольной:

Для различных материалов значения коэффициента Пуассона лежат в пределах от 0 до 0,5.

В среднем для металлов и сплавов коэффициент Пуассона приблизительно равен 0,3 (табл. 2.1).

Значение коэффициента Пуассона

При сжатии происходит обратная картина, т.е. в поперечном направлении первоначальные размеры уменьшаются, а в поперечном - увеличиваются.

Многочисленные опыты показывают, что до определенных пределов нагружения для большинства материалов напряжения, возникающие при растяжении или сжатии стержня, находятся в определенной зависимости от продольной деформации. Эта зависимость носит название закона Гука , который может быть сформулирован следующим образом.

В известных пределах нагружения между продольной деформацией и соответствующим нормальным напряжением существует прямо пропорциональная зависимость

Коэффициент пропорциональности Е называется модулем продольной упругости. Он имеет ту же размерность, что и напряжение, т.е. измеряется в Па, МПа.

Модуль продольной упругости - физическая постоянная данного материала, характеризующая способность материала сопротивляться упругим деформациям. Для данного материала величина модуля упругости колеблется в узких пределах. Так, для стали разных марок Е= (1,9. 2,15) 10 5 МПа.

Для наиболее часто применяемых материалов модуль упругости имеет следующие значения в МПа (табл. 2.2).

Значение модуля упругости для наиболее часто применяемых материалов

  • Нравственное и патриотическое воспитание может стать элементом образовательного процесса Разработаны меры по обеспечению патриотического и нравственного воспитания детей и молодежи. Соответствующий законопроект 1 внесен в Госдуму членом Совета Федерации Сергеем […]
  • Как оформить иждивение? Вопросы необходимости оформления иждивения возникают не часто, поскольку большая часть иждивенцев являются таковыми в силу закона, и проблема установления факта иждивения отпадает сама по себе. Вместе с тем, в ряде случаев необходимость оформления […]
  • Срочное оформление и получение загранпаспорта Никто не застрахован от ситуации, когда резко возникает необходимость быстро оформить загранпаспорт в Москве или любом другом российском городе. Что делать? Куда обращаться? И во сколько обойдётся подобная услуга? Необходимо […]
  • Налоги в Швеции и перспективы развития бизнеса Прежде чем отправиться в Швецию в качестве бизнес-эмигранта, нелишним будет узнать больше о налоговой системе страны. Налоги в Швеции – это сложная, и, как сказали бы наши соотечественники, мудрёная система. Некоторых она […]
  • Налог на выигрыш: размер в 2017 году За предыдущие годы можно четко проследить тенденцию, которой придерживаются государственные органы власти. Принимаются все более жесткие меры по контролю доходов игрового бизнеса, а также населения, получающего выигрыши. Так, в 2014 […]
  • Уточнение исковых требований После принятия судом иска и даже в процессу судебного разбирательства истец имеет право заявить уточнение исковых требований. В порядке уточнений можно указать новые обстоятельства или дополнить старые, увеличить или уменьшить сумму иска, […]
  • Как правильно удалять программы с компьютера? Казалось бы, что сложного в удалении программ с компьютера? Но я знаю, что множество начинающих пользователей испытывают с этим проблемы. Вот, например, выдержка из одного письма, которое я получил: «…У меня к Вам такой вопрос: […]
  • ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ С 01.01.2002 трудовые пенсии назначаются и выплачиваются в соответствии с Федеральным законом «О трудовых пенсиях в Российской Федерации» от 17.12.2001 № 173-ФЗ. При установлении размера трудовой пенсии согласно названному […]

Рассмотрим прямой стержень постоянного поперечного сечения, жестко закрепленный сверху. Пусть стержень имеет длину и нагружен растягивающей силой F . От действия этой силы длина стержня увеличивается на некоторую величину Δ (рис.9.7,а).

При сжатии стержня такой же силой F длина стержня сократится на такую же величину Δ (рис.9.7,б).

Величина Δ , равная разности между длинами стержня после деформации и до деформации, называется абсолютной линейной деформацией (удлинением или укорочением) стержня при его растяжении или сжатии.

Отношение абсолютной линейной деформации Δ к первоначальной длине стержня называется относительной линейной деформацией и обозначается буквой ε илиε x ( где индекс x указывает направление деформации). При растяжении или сжатии стержня величину ε просто называют относительной продольной деформацией стержня. Она определяется по формуле:

Многократные исследования процесса деформирования растянутого или сжатого стержня в упругой стадии, подтвердили существование прямой пропорциональной зависимости между нормальным напряжением и относительной продольной деформацией. Эта зависимость называется законом Гука и имеет вид:

Величина E называется модулем продольной упругости или модулем первого рода. Она является физической постоянной (константой) для каждого вида материала стержня и характеризует его жесткость. Чем больше величина E , тем меньше будет продольная деформация стержня. Величина E измеряется в тех же единицах, что и напряжение, то есть в Па , МПа , и тому подобное. Величины модуля упругости содержатся в таблицах справочной и учебной литературы. Например, величина модуля продольной упругости стали принимается равной E = 2∙10 5 МПа , а древесины

E = 0,8∙10 5 МПа.

При расчете стержней на растяжение или сжатие, часто возникает необходимость определения величины абсолютной продольной деформации , если известна величина продольной силы, площадь поперечного сечения и материал стержня. Из формулы (9.8) найдем: . Заменим в этом выражении ε его значением из формулы (9.9). В результате получим = . Если использовать формулу нормального напряжения , тополучим окончательную формулу для определения абсолютной продольной деформации:

Произведение модуля продольной упругости на площадь поперечного сечения стержня называется его жесткостью при растяжении или сжатии.

Анализируя формулу (9.10) сделаем существенный вывод: абсолютная продольная деформация стержня при растяжении (сжатия) прямо пропорциональная произведению продольной силы на длину стержня и обратно пропорциональная его жесткости .

Заметим, что формула (9.10) может быть использована в том случае, когда поперечное сечение стержня и продольная сила имеют постоянные значения по всей его длине. В общем случае, когда стержень имеет ступенчато переменную жесткость и загружен по длине несколькими силами, нужно разделить его на участки и определить абсолютные деформации каждого из них по формуле (9.10).

Алгебраическая сумма абсолютных деформаций каждого участка будет равняться абсолютной деформации всего стержня, то есть:

Продольные деформации стержня от действия равномерно распределенной нагрузки вдоль его оси (например, от действия собственного веса), определяется следующей формулой, которую приводим без доказательства:

В случае растяжения или сжатия стержня, кроме продольных деформаций возникают также поперечные деформации, как абсолютные, так и относительные. Обозначим через b размер поперечного сечения стержня до деформации. При растяжении стержня силой F этот размер уменьшится на величину Δb , которая является абсолютной поперечной деформацией стержня. Эта величина имеет отрицательный знак.При сжатии, напротив, абсолютная поперечная деформация будет иметь положительный знак (рис. 9.8).

9. Абсолютная и относительная деформация при растяжении (сжатии). Коэффициент Пуассона.

Если под действием силы брус длиной изменил свою продольную величину на , то эта величина называется абсолютной продольной деформацией (абсолютное удлинение или укорочение). При этом наблюдается и поперечная абсолютная деформация .

Отношение называется относительной продольной деформацией, а отношение - относительной поперечной деформацией.

Отношение называется коэффициентом Пуассона, который характеризует упругие свойства материала.

Коэффициент Пуассона имеет значение . (для стали он равен )

10. Сформулировать закон Гука при растяжении (сжатии).

I форма. В поперечных сечениях бруса при центральном растяжении (сжатии) нормальные напряжения равны отношению продольной силы к площади поперечного сечения:

II форма. Относительная продольная деформация прямо пропорциональна нормальному напряжению , откуда .

11. Как определяются напряжения в поперечных и наклонных сечениях бруса?

– сила, равная произведению напряжения на площадь наклонного сечения :

12. По какой формуле можно определить абсолютное удлинение (укорочение) бруса?

Абсолютное удлинение (укорочение) бруса (стержня) выражается формулой:

, т.е.

Учитывая, что величина представляет собой жесткость поперечного сечения бруса длиной можно сделать вывод: абсолютная продольная деформация прямо пропорциональна продольной силе и обратно пропорциональна жесткости поперечного сечения. Этот закон впервые сформулировал Гук в 1660 году.

13. Как определяются температурные деформации и напряжения?

При повышении температуры у большинства материалов механические характеристики прочности уменьшаются, а при понижении температуры – увеличиваются. Например, у стали марки Ст3 при и ;

при и , т.е. .

Удлинение стержня при нагревании определяется по формуле , где - коэффициент линейного расширения материала стержня, - длина стержня.

Возникающее в поперечном сечении нормальное напряжение . При понижении температуры происходит укорочение стержня и возникают напряжения сжатия.

14. Дать характеристику диаграммы растяжения (сжатия).

Механические характеристики материалов определяются путем испытаний образцов и построением соответствующих графиков, диаграмм. Наиболее распространенным является статическое испытание на растяжение (сжатие).

Предел пропорциональности (до этого предела справедлив закон Гука);

Предел текучести материала;

Предел прочности материала;

Разрушающее (условное) напряжение;

Точка 5 соответствует истинному разрушающему напряжению.

1-2 площадка текучести материала;

2-3 зона упрочнения материала;

и - величина пластической и упругой деформации.

Модуль упругости при растяжении (сжатии), определяемый как: , т.е. .

15. Какие параметры характеризуют степень пластичности материала?

Степень пластичности материала может быть охарактеризовано величинами:

Остаточным относительным удлинением – как отношение остаточной деформации образца к первоначальной его длине:

где - длина образца после разрыва. Величина для различных марок стали находится в пределах от 8 до 28 %;

Остаточным относительным сужением – как отношение площади поперечного сечения образца в месте разрыва к первоначальной площади:

где - площадь поперечного сечения разорванного образца в наиболее тонком месте шейки. Величина находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до 60 % для малоуглеродистой стали.

16. Задачи, решаемые при расчете на прочность при растяжении (сжатии).