Как влияют ферменты на биохимические реакции. Лекция по биохимии_4

Ферменты


Ферменты, или энзимы – это белковой природы, образующиеся и функционирующие во всех живых организмах. Слово фермент происходит от лат. fermentum – закваска, другое название ферментов – энзимы от греч. en zyme – в дрожжах.

Впервые ферментативные процессы были открыты в бродильном производстве. Современная ферментология или энзимология – это наука о ферментах, их структурной организации. Она решает задачи изучения механизмов действия ферментов, путей регуляции ферментной активности. Такой интерес к биокатализаторам не случаен. Ферменты – это важнейшие компоненты клетки, без них невозможны синтез, распад и взаимопревращения в живых организмах. Через ферментный аппарат и регуляцию его активности происходит и регуляция скорости метаболических реакций. Изучение важно для биологии, медицины, фармации, многих областей народного хозяйства. Установлено, что многие заболевания человека связаны с нарушением деятельности ферментов, целый ряд ферментов является лекарственными препаратами.

Общие и специфические свойства ферментов.
Являясь катализаторами, то есть веществами, ускоряющими реакции, ферменты имеют ряд общих свойств с химическими небиологическими катализаторами.
1. Ферменты и входят в состав конечных Р и выходят из реакции в неизменном виде, они не расходуются в процессе катализа.
2. Ферменты не могут возбудить реакций, противоречащим законам термодинамики, они ускоряют только те реакции, которые могут протекать и без них.
3. Ферменты, как правило, не смещают положения равновесия реакции, а лишь ускоряют его достижение.
Вместе с тем ферменты обладают и специфическими свойствами:
1. По химическому строению ферменты являются белками (99,9).
2. Эффективность ферментов на несколько порядков выше, чем небиологических катализаторов.
Например: H2O2  H2O + ½ O2
а) если реакция протекает без катализатора, то Еа = 75,7 кдж/моль, пузырьки О2 почти не видны;
б) если прибавить катализатор небиологический то Еа = 54,1 кдж/моль, пузырьки отчетливо видны;
в) если прибавить биологический катализатор каталазу, то Еа = 18 кдж/моль, раствор просто «кипит».
3. Высокая специфичность – каждый фермент катализирует одну единственную реакцию или одну группу реакций, тогда как неорганические катализаторы действуют при различных типах реакций.
4. Ферменты катализируют реакции в «мягких» условиях: при нормальном Р, рН = 7,0. Для неорганических катализаторов присуща необходимость экстремальных значений рН, нагревание до очень высоких температур.

Химическая природа и строение ферментов.
Важным доказательством белковой природы ферментов явились работы Пастера (инактивация ферментов брожения при кипячении), Павлова (доказал белковую природу пепсина – фермента желудочного сока) и т.д.
1) важный признак белковой природы ферментов – их большая Mr. Например, у ДГ Mr = 4 106; 4,8 105 и т.д.
2) растворы ферментов имеют коллоидный характер – они не проходят через полунепроницаемую мембрану, осаждаются из растворов теми же реактивами, что и белки;
3) ферменты денатурируют и теряют свою активность под влиянием высокой температуры, УЗ, сильных щелочей и других факторов;
4) ферменты, как и белки, обладают амфотерными свойствами, электрофоретической подвижностью и рI.
5) как и белки, ферменты обладают высокой специфичностью;
6) наконец, прямым доказательством белковой природы ферментов явился искусственный синтез ферментов (рибонуклеаза, лизоцим), которые не отличаются по свойствам и биологической активности от природных аналогов.
Ферменты

простые белки сложные белки
состоят только из ППЦ состоят из ППЦ + небелковый компонент
(гидролитические ферменты – пепсин, трипсин, уреаза и др.)
или ферменты–протеины (ацетил КоА, лактат ДГ и т.д.)
или ферменты–протеиды
В ферментах-протеидах белковая часть называется апоферментом, а небелковая – простетической группой. Общее название сложных ферментов – холофермент.
Если простетическая группа слабо связана с белковой частью и легко диссоциирует, она называется коферментом. Кофермент может соединяться с разными белками, и именно белковая часть определяет специфичность действия сложных ферментов. Вместе с тем, без кофермента сложный фермент не может функционировать, так как кофермент, как правило, непосредственно контактирует с субстратом (S) и служит в качестве переносчика ē, атомов или группы атомов.
Кофакторы, или коферменты это:
1) ионы Me – Mg2+, Ca2+, Cu2+, Mn2+ b lh/$
2) витамины и их фосфорные эфиры – витамин Н (биотин)(в составе коферментов карбоксилирования), липоевая, фолиевая кислоты, В1 и др.;
3) мононуклеотиды ФМН, АТФ, ГТФ и т.д.;
4) большая часть коферментов – это динуклеотиды НАД, НАДФ, HS-KoA и др.
При гиповитаминозах и авитаминозах недостаток витаминов ослабляет биосинтез многих ферментов и вызывает гипокоферментоз. Коферменты выполняют также важную роль в стабилизации и охране апоферментов. Последние без коферментов скорее разрушаются протеолитическими ферментами.
Таким образом, сами по себе ни коферменты, ни апоферменты каталитической активностью не обладают, а только в комплексе друг с другом.
Молекулы S-в чаще всего имеют небольшие размеры по сравнению с молекулами ферментов, поэтому при образовании Е-S-го комплекса в контакт с S вступает ограниченная часть аминокислот ППЦ, которая называется активным центром (АЦФ). У Е-протеидов в состав АЦФ входят также и простетические группы.
Таким образом, активный центр фермента – это уникальная комбинация аминокислотных остатков, обеспечивающих непосредственное взаимодействие Е и S и прямое участие в акте катализа.
АЦФ

связывающий центр каталитический центр
участок, где происходит связывание S и Е – это контактная или «якорная» площадка участок, где происходит превращение S после его связывания
При сближении Е и S и образовании ЕS-комплекса нуклеофильные и электрофильные группы АЦФ, отдавая или принимая ē-ны, тем самым как бы «расшатывают» электронную структуру S, активируя его и ускоряя химическую реакцию. Есть ферменты, имеющие несколько АЦФ – уреаза–3; алкоголь ДГ–4; ацетилхолингетераза – 25-30 АЦФ у разных животных.

Аллостерические центры ферментов.
Кроме АЦФ, у ферментов имеются и аллостерические (греч. allos – другой) или инопространственные центры. Это место воздействия на ферменты разных регуляторных факторов. Взаимосвязь между АЦФ и АЛЦФ называется аллостерическими взаимодействиями. Важная особенность АЛЦФ – их более высокая по сравнению с АЦФ чувствительность к различным воздействиям.
Например, при повышении температуры и применении рН раньше затормаживается функция АЛЦФ. В частности, при повышении температуры аллостерический центр гексокиназы теряет чувствительность к регуляторному воздействию инсулина и глюкокортикоидов, а функциональная активность ферментов сохраняется и продолжает фосфорилировать глюкозу за счет АТФ.

Регуляторное воздействие на аллостерический центр оказывают: различные метаболиты ферментативных реакций, гормоны и продукты их обмена, медиаторы НС и т.д. Они называются эффекторами или модификаторами. Их молекулы не сходны с молекулами S-в.
Связываясь с аллостерическим центром, эффекторы изменяют ТС и ЧС ферментов, тем самым изменяют конфигурацию АЦФ, что приводит к повышению (активированию) или понижению (ингибированию) ферментативной активности.
Изоферменты – это молекулярные формы ферментов, возникающие вследствие генетических различий в ПС ферментного белка. Это группа ферментов, которые присутствуют внутри одного вида (ЛДГ) или внутри одной клетки (аминотрансферазы), имеют одинаковый механизм действия, но отличаются по некоторым физико-химическим свойствам: электрофоретической подвижности, иммунобиологическим реакциям. Например, существует в виде пяти изоферментов. Хотя они катализируют одну и ту же реакцию, отличаются по своей Кт. У них одинаковая Mr (134.000) и по 4 ППЦ с Mr 33.500. Пять изоферментов соответствую пяти различным комбинациям двух разных типов ППЦ, названных M – (muscle) и H– (heart) цепями. Изофермент М4 – находится в мышечной ткани, содержит идентичные 4М-цепи; Н4 – находится в сердце, содержит идентичные 4Н-цепи. Остальные три изофермента – это различные сочетания М3Н; М2Н2; МН3. Два типа цепей – М и Н, кодируются двумя различными генами, сочетание ППЦ находится под генетическим контролем. Наличие изоферментов и изменение их соотношения в организме – один из способов регуляции ферментов.

Современная классификация ферментов и их номенклатура
Согласно классификации, разработанной Международной комиссией по ферментам (1961г.) все ферменты делят на шесть классов. Классы делятся на подклассы, а последние – на подподклассы, внутри которых ферменту присваивается свой порядковый номер. Например, ЛДГ имеет шифр. 1.1.1.27. 1- название класса – оксидоредуктазы – указывает тип ферментной реакции; 2-я цифра показывает номер подкласса; подкласс уточняет действие фермента, так как указывает в общих чертах на природу химической группы S. Подподкласс – уточняет природу атакуемой химической связи S или природу акцептора. № 27 – порядковый № ЛДГ в подподклассе.
1) Оксидоредуктазы – катализируют реакции окисления-восстановления – содержат 17 подклассов и ~ 480 Е. Например: ЛДГ.
2) Трансферазы – катализируют реакции переноса различных групп от одного S (донор) к другому (акцептор). 8 подклассов в зависимости от вида переносимых групп и ~ 500 Е. Например: фермент холинацетилтрансфераза – катализирует перенос остатка уксусной кислоты на холин  ацетилхолин.
3) Гидролазы – катализируют разрыв связей в S с присоединением воды. Содержат 11 подклассов и ~ 460 Е. К гидролазам относятся пищеварительные ферменты, а также ферменты, входящие в состав лизосом и других органоидов клетки, где они способствуют распаду крупных молекул на более мелкие.
4) Лиазы – катализируют реакции разрыва связей в S без присоединения воды или окисления. Содержат 4 подкласса и ~ 230 Е – участвуют в промежуточных реакциях синтеза (синтазы) или распада (дегидратазы).
5) Изомеразы – катализируют превращение изомеров друг в друга. От типа реакции изомеризации – различают мутазы (рацемазы). Содержат 5 подклассов и ~ 80 Е.
6) Лигазы (синтетазы) – катализируют реакции соединения двух молекул S с использованием Е фосфатных связей. Источником ферментов является АТФ и др. Содержат 5 подклассов, ~ 80 Е (например, гексокиназа, фосфофруктокиназа).

Номенклатура ферментов.
Существует два типа названий ферментов:
1) рабочее, или тривиальное;
2) систематическое.
Рабочее название – название S + тип реакции + окончание аза. Лактат + реакция дегидрогенизации + аза ЛДГ.
Для некоторых ферментов оставлены их рабочие названия: пепсин, трипсин и т.д.
Систематическое название – название обоих S + тип реакции + аза.
-Лактат (S1): НАД+ (S2) – оксидоредуктаза.
Систематическое название дается только тем ферментам, структура которых полностью изучена. В одной клетке находится ~ 104 молекул ферментов, катализируется ~ 2000 разных реакций. В настоящее время известно около 1800 ферментов, в кристаллическом виде получено ~ 150 ферментов.
Общие представления о катализе
Вероятность протекания химической реакции определяется разницей между свободной Е исходных веществ и свободной Е продуктов реакции. Ферменты ускоряют химические реакции за счет энергии активации – Еа.
Еа – это дополнительная энергия, необходимая для перевода всех молекул одного вещества в активное состояние при данной температуре. (Аррениус – понятие об Еа).
Таким образом, Vфр зависит от энергетического барьера, который необходимо преодолеть реагирующим веществам, причем высота этого барьера неодинакова для различных реакций.
Чем выше энергия активации, тем медленнее протекает реакция. Ea не виляет на изменение свободных ферментов исходных веществ и продуктов реакции, то есть ∆G, то есть энергетическая возможность реакции не зависит от фермента.
Фермент понижает Ea (пик 2), то есть снижает высоту барьера в результате чего возрастает доля реакционноспособных молекул, а, следовательно, увеличивается Vфр. Чем больше снижается Ea, тем эффективнее действует катализатор и тем больше ускоряется реакция.
S - исходный субстрат

P – конечный продукт

ΔG – стандартное изменение свободной энергии

Еа нфр – энергия активации неферментативной реакции

Еа фр – энергия активации ферментативной реакции

Механизм действия ферментов
Большую роль в развитии представлений о механизме действия ферментов сыграли классические работы Михаэлиса и Ментен, которые развили положения о Е-S-х комплексах. Согласно их представлениям (1915г.), ферменты обратимо соединяются со своим S, образуя нестойкий промежуточный продукт – Е-S-комплекс, который в конце реакции распадается на ферменты и продукты реакции (Р). Фактически в природе идет ступенчатое превращение S через целый ряд промежуточных реакций: ES1→ ES2→ ES3 … → E + P. Схематически преобразование S в Р можно представить таким образом:

АЦФ, как правило, располагается в глубине молекулы Е.
Математическая обработка реакции образование ЕS-комплекса позволила вывести уравнение, которое называется уравнением Михаэлиса-Ментен:

где Vфр – наблюдаемая скорость фр;
Vmax – максимальная скорость фр при неполном насыщении фермента S-том;
[S] – концентрация S;
Км – константа Михаэлиса-Ментен.
Графически уравнение Михаэлиса-Ментен имеет следующий вид:

При низкой [S] Vфр прямо пропорциональна [S] в каждый данный момент времени (реакция 1-го порядка).
Из уравнения Михаэлиса-Ментен также следует, что при низком значении Км и высоком значении [S] Vфр является максимальной (в) и не зависит от [S] – это реакция нулевого порядка. Реакция нулевого порядка соответствует явлению, которое называется полным насыщением фермента субстратом.
Гипербола, выражающая зависимость Vфр от [S], называется кривой Михаэлиса. Чтобы правильно определить активность ферментов, нужно добиться реакции нулевого порядка, то есть определять Vфр при насыщающих концентрациях S.
Км численно равна [S] (моль(л)), при которой V реакции равна половине от максимальной.
Для определения численного значения Км находят ту [S], при которой Vфр составляет от ½ от Vmax.
Таким образом, определение Км играет важную роль для выяснения МД модификаторов на активность фермента.

Иногда график строят методом двойных обратных величин – метод Лайнуивера-Бэрка:
Значение как Vmax, так и Км более точно определяется методом двойных обратных величин.

Ферменты (энзимы) - это высокоспецифичные белки, выполняющие функции биологических катализаторов. Катализатор - это вещество, которое ускоряет химическую реакцию, но само в ходе этой реакции не расходуется.

Условия необходимые для химического взаимодействия молекул, чтобы произошла химическая реакция:

  1. молекулы должны сблизиться (столкнуться). Но не всякое столкновение приводит к взаимодействию;
  2. необходимо, чтобы это столкновение стало эффективным - завершилось бы химическим превращением. Обязательное условие для эффективности столкновения - чтобы запас энергии молекул в момент столкновения был не ниже энергетического уровня реакции.

Энергетический уровень реакции - это запас энергии, которым должны обладать молекулы, чтобы их столкновение стало эффективным (чтобы произошла химическая реакция). Этот запас энергии является постоянной характеристикой (константой) для каждой данной реакции.

Средний энергетический уроовень молекул - это энергия, которой обладает большинство молекул системы в данный момент времени. Эта средняя величина энергетического запаса, которая характеризует совокупность данных молекул в данных конкретных условиях (температура, давление и другие). Энергетический запас молекул - это понятие статистическое (вероятностное). Молекулы постоянно находятся в тепловом движении. Поэтому энергетический запас каждой из них все время изменяется, колеблется около величины, которая и представляет собой средний энергетический уровень молекул.

В каждый момент времени наибольшая доля молекул данной совокупности обладает именно таким средним запасом энергии. И чем больше отличается энергия определенной группы молекул от среднего энергетического уровня (в любую сторону), тем малочисленнее эта группа. В любой совокупности молекул ее определенная доля обладает такой энергией, которая выше среднего энергетического уровня и достаточна для протекания химической реакции.

Разность между средним энергетическим уровнем молекул и энергетическим уровнем реакции называется энергетическим барьером или энергией активациии. Чем больше эта энергия активации, тем медленнее идет химическая реакция.

Как ускорить химическую реакцию? Повышение среднего энергетического уровня молекул (повышение температуры, давления и других параметров среды, которое используют на химических заводах и фабриках) невозможно для живых организмов, которые нормально функционируют только при постоянных значениях температуры, давления и других параметров. Невозможен и другой путь - уменьшение энергии активации путем снижения энергетического уровня реакции, поскольку эта величина является постоянной характеристикой данной реакции.

Поэтому, только явление катализа (применение катализаторов) может обеспечить ускорение химических реакций в живых организмах. Рассмотрим две реакции.

В общем случае энергии активации реакций 1, 2а и 2б не совпадают между собой, и все разнообразие возможных вариантов можно разделить на две группы:

  1. Еакт2а и/или Еакт2б больше, чем Еакт1.
  2. Во всех таких случаях реакция образования вещества "АВ" с участием вещества "К" пойдет медленнее. Значит, вещество "К" является ингибитором (замедлителем) этой реакции;
  3. Еакт2а и/или Еакт2б меньше, чем Еакт1.

В этих случаях реакция с участием вещества "К" пойдет быстрее, чем без него. Значит, вещество "К" является катализатором (ускорителем) данной химической реакции.

Катализатор - это вещество, которое направляет реакцию по такому обходному пути, на котором энергетические барьеры ниже.

Энергия, которую надо затратить для "подъема" молекулы от среднего энергетического уровня реакции, полностью компенсируется при самостоятельном "скатывании" молекулы по склону "вулкана". При дальнейшем самопроизвольном "скатывании" до подошвы "вулкана" (т. е., до среднего энергетического уровня молекул, которые являются продуктами данной реакции). Энергия, которая при этом выделяется, называется "энергетический итог реакции".

Энергетический итог реакции - это разность между энергетическим уровнем исходных веществ (субстратов) и энергетическим уровнем продуктов реакции.

Энергетический итог реакции не зависит от пути, по которому идет реакция (он одинаков и для реакции с участием катализатора, и для реакции без его участия). Он не зависит и от величины энергии активации - от нее зависит только скорость протекания каждого из путей этой реакции.

Вывод из уравнения Аррениуса: так как энергия активации в этом уравнении входит в показатель степени, то даже маленькое изменение энергии активации приводит к большим изменениям скорости реакции.

Общие свойства катализаторов

  1. Катализаторы сами не вызывают химическую реакцию, а только ускоряют реакцию, которая протекает и без них.
  2. Не влияют на энергетический итог реакции.
  3. В обратимых реакциях катализаторы ускоряют как прямую, так и обратную реакцию, причем в одинаковой степени, из чего следует, что катализаторы:
    1. не влияют на направленность обратимой реакции, которая определяется только соотношением концентраций исходных веществ (субстратов) и конечных продуктов;
    2. не влияют на положение равновесия обратимой реакции, а только ускоряют его достижение.

Особенности ферментов как биологических катализаторов

Ферменты обладают всеми общими свойствами обычных катализаторов. Но, по сравнению с обычными катализаторами, все ферменты являются белками. Поэтому они обладают особенностями, отличающими их от обычных катализаторов.

Эти особенности ферментов, как биологических катализаторов, иногда называют общими свойствами ферментов. К ним относится следующее.

  1. Высокая эффективность действия. Ферменты могут ускорять реакцию в 10 8 -10 12 раз.
  2. Высокая избирательность ферментов к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия).
  3. Высокая чувствительность ферментов к неспецифическим физико-химическим факторам среды - температуре, рН, ионной силе раствора и т.д.
  4. Высокая чувствительность к химическим реагентам.
  5. Высокая и избирательная чувствительность к физико-химическим воздействиям тех или иных химических веществ, которые благодаря этому могут взаимодействовать с ферментом, улучшая или затрудняя его работу.

Строение ферментов

Субстратом (S) называют вещество, химические превращения которого в продукт (Р) катализирует фермент (Е). Тот участок поверхности молекулы фермента, который непосредственно взаимодействует с молекулой субстрата, называется активным центром фермента.

Активный центр фермента образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных полипептидных цепей, пространственно сближенных. Образуется на уровне третичной структуры белка-фермента.

В его пределах различают Адсорбционный участок (центр) и каталитический участок (центр). Кроме того, вне активного центра фермента встречаются особые функциональные участки; каждый из них обозначают термином аллостерический центр.

Каталитический центр - это та область (зона) активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. Формируется он за счет радикалов двух, иногда трех аминокислот, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи. Например, каталитический центр "серин-гистидиновых" ферментов формируется за счет радикалов аминокислот серина и гистидина. Если фермент является сложным белком, то в формировании каталитического центра нередко участвует простетическая группа молекулы фермента (кофермент). Коферментную функцию выполняют все водорастворимые витамины и жирорастворимый витамин K.

Адсорбционный центр - это участок активного центра молекулы фермента, на котором происходит сорбция (связывание) молекулы субстрата. Он формируется одним, двумя, чаще тремя радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная его функция - связывание молекулы субстрата и передача этой молекулы каталитическому центру в наиболее удобном положении (для каталитического центра). Эта сорбция происходит только за счет слабых типов связей и потому является обратимой. По мере формирования этих связей происходит конформационная перестройка адсорбционного центра, которая приводит к более тесному сближению субстрата и активного центра фермента, более точному соответствию между их пространственными конфигурациями. Такое соответствие - не заранее "готовое", а формирующееся в ходе взаимодействия - американский ученый Кошленд положил в основу теории индуцированного соответствия (или наведенного соответствия), которая преодолела ограниченность существовавшей ранее теории ключа и замка (жесткого соответствия структуры субстрата структуре адсорбционного центра).

Очевидно, что именно структура адсорбционного центра определяет субстратную специфичность фермента, т. е. требования фермента к молекуле химического вещества, чтобы она могла стать для него подходящим субстратом.

Некоторые вещества, обладающие подходящими характеристиками (т. е. похожие на субстрат), могут тоже связываться с адсорбционным центром фермента. Но если в их молекуле нет такой химической связи, на которую может воздействовать каталитический центр данного фермента, то химических превращений этого вещества не произойдет. Занимая активный центр фермента, такие молекулы блокируют его работу, т. е. являются обратимыми ингибиторами данного фермента (обратимыми, потому что связаны с ферментом слабыми типами связей). Повышая концентрацию субстрата, их можно вытеснить из адсорбционного центра. Поэтому такие ингибиторы называют конкурентными. Они конкурируют с истинным субстратом данного фермента за обладание его адсорбционным центром.

Аллостерическими центрами называют такие участки молекулы фермента вне его активного центра, которые способны связываться слабыми типами связей (значит - обратимо) с тем или иным веществом (лигандом). Причем такое связывание приводит к такой конформационной перестройке молекулы фермента, которая распространяется и на активный центр, облегчая, либо затрудняя (замедляя) его работу. Соответственно такие вещества называются аллостерическими активаторами или аллостерическими ингибаторами данного фермента.

Термин "аллостерический" (т. е. "имеющий иную пространственную структуру") появился в связи с тем, что эти эффекторы по своей пространственной конфигурации совсем не похожи на молекулу субстрата данного фермента (и потому не могут связываться с активным центром фермента). Было сделано заключение, что и аллостерический центр не похож по своей структуре на активный центр фермента.

Аллостерические центры найдены не у всех ферментов. Они есть у тех ферментов, работа которых может изменяться под действием гормонов, медиаторов и других биологически активных веществ. Некоторые искусственно синтезированные лекарства обладают биологической активностью потому, что их молекулы комплементарны аллостерическому центру некоторых ферментов организма.

Специфичность ферментов

Различают два главных вида специфичности ферментов: субстратную специфичность и специфичность действия.

Субстратная специфичность, это способность фермента катализировать превращения только одного определенного субстрата или же группы сходных по строению субстратов. Определяется структурой адсорбционного участка активного центра фермента.

Различают 3 типа субстратной специфичности:

  1. абсолютная субстратная специфичность - это способность фермента катализировать превращение только одного, строго определенного субстрата;
  2. относительная субстратная специфичность - способность фермента катализировать превращения нескольких, сходных по строению, субстратов;
  3. стереоспецифичность - способность фермента катализировать превращения определенных стереоизомеров.

Например, фермент оксидаза L-аминокислот способен окислять все аминокислоты, но относящиеся только к L-ряду. Таким образом, этот фермент обладает относительной субстратной специфичностью и стереоспецифичностью одновременно.

Специфичность действия - это способность фермента катализировать только определенный тип химической реакции.

В соответствии со специфичностью действия все ферменты делятся на 6 классов. Классы ферментов обозначаются латинскими цифрами. Название каждого класса ферментов соответствует этой цифре.

Классификация ферментов

I класс - оксидоредуктазы

К данному классу относятся ферменты, катализирующие окислительно-восстановительные реакции. При окислении может происходить либо отнятие водорода от окисляемого вещества, либо присоединение кислорода к окисляемому веществу. В зависимости от способа окисления различают следующие подклассы оксидоредуктаз:

  1. дегидрогеназы. Катализируют реакции, при которых происходит отнятие водорода от окисляемого вещества;
  2. оксигеназы. Ферменты этого подкласса катализируют включение кислорода в окисляемое вещество:
    1. монооксигеназы - включают один атом кислорода в окисляемое вещество;
    2. диоксигеназы - включают 2 атома кислорода в окисляемое вещество. Часто это сопровождается разрывом циклической структуры. По месту разрыва связи присоединяются атомы кислорода.

II класс - трансферазы

Катализируют реакции переноса химических групп с молекулы одного вещества на молекулу другого вещества.

III класс - гидролазы

Катализируют реакции разрушения химических связей с участием воды.

IV класс - лиазы

Катализируют реакции разрушения химических связей без участия воды.

V класс - изомеразы

Катализируют реакции изомерных превращений.

VI класс - лигазы (сингазы, синтетазы)

Катализируют реакции синтеза.

Основные этапы ферментативного катализа

Любая ферментативная реакция протекает через ряд промежуточных стадий.

Различают три основных этапа ферментативного катализа.

1 этап. Ориентировочная сорбция субстрата на активном центре фермента с образованием обратимого E-S комплекса (фермент-субстратного). На этом этапе происходит взаимодействие адсорбционного центра фермента с молекулой субстрата. При этом и субстрат подвергается конформационной перестройке. Все это происходит за счет возникновения слабых типов связей между субстратом и адсорбционным центром фермента. В результате этого молекула субстрата подается на каталитический центр в наиболее удобном для него положении. Этот этап является легко обратимым, потому что здесь участвуют только слабые типы связей. Кинетическая характеристика 1-го этапа ферментативного катализа - константа Михаэлиса (Км).

2 этап. Химические превращения молекулы субстрата в составе фермент-субстратного комплекса с образованием комплекса фермента с химически преобразованным субстратом. На этом этапе разрываются одни ковалентные связи и возникают новые. Поэтому этот этап протекает значительно медленнее, чем 1-й и 3-й этапы. Именно скорость второго этапа определяет скорость всей ферментативной реакции в целом. Значит, скорость ферментативного процесса в целом характеризуется величиной k+2, которая является почти всегда самой маленькой из всех частных констант скоростей. Кинетическая характеристика 2-го этапа - максимальная скорость (Vmax).

3 этап. Десорбция готового продукта из его комплекса с ферментом. Этот этап протекает легче, чем 2-й. Он, как и 2-й этап, тоже необратим. Исключение - обратимые ферментативные реакции.

Специфика ферментативного катализа

Любая химическая реакция характеризуется, кроме принципиальной возможности ее протекания (обусловленной законами термодинамики), скоростью процесса. Скорость ферментативной реакции - изменение [S] или [P] в единицу времени. Измерив ее скорость, т. е. скорость в присутствии фермента, мы должны измерить скорость реакции и в отсутствии фермента (спонтанно протекающая реакция). Именно эта разность и характеризует работу фермента.

Измеряя скорость реакции всегда надо измерять начальную скорость процесса, т. е. скорость ферментативной реакции, в достаточно короткий промежуток времени, когда концентрация субстрата меняется, не настолько значительно, чтобы это отразилось на скорости процесса. Единицы измерения скорости реакции могут быть разными. Лучше пользоваться молярными единицами, а время - это минуты или секунды, реже часы. Поэтому скорость реакции может выражаться, например, в мкмоль/мин или ммоль/час. Величина скорости определяется законом действующих масс. В общем случае скорость химической реакции пропорциональна произведению концентрации реагирующих веществ. В случае ферментативной кинетики - одно из реагирующих веществ - фермент, концентрация которого на много порядков меньше, чем концентрация субстрата. Это определяет некоторые особенности кинетики ферментативного катализа.

V = k+2 [E] x [S].

Зависимость скорости ферментативной реакции от концентрации ([E]) при постоянной и довольно большой концентрации субстрата ([S]>>[E], [S]=const).

Отклонение от линейности графика при очень высокой концентрации фермента возникает из-за нехватки субстрата, поэтому снижается скорость поступления субстрата на активный центр фермента. Определять скорость ферментативной реакции надо только в том диапазоне концентраций фермента, в котором график линеен.

Линейность этого графика позволяет выразить его одной цифрой - тангенс угла наклона к оси абсцисс. Этот тангенс представляет собой величину активности фермента. Именно работа (эффективность) каждого фермента количественно характеризуется величиной его активности, т. е. величиной скорости ферментативной реакции в расчете на единицу количества фермента. Единицы активности могут быть различными: мкмоль S/мин.мг или мкмоль S/мин.мл сыворотки крови.

Молекулярная активность - это количество молекул субстрата, которые превращаются одной молекулой фермента за одну минуту при 30 °С и прочих оптимальных условиях. Преимущество этой единицы - в том, что можно сравнивать не только активность ферментов из разных источников, но и эффективность разных ферментов. Например, молекулярная активность фермента каталазы составляет 5 х 10 6 , а карбоангидразы - 36 х 10 6 .

Из линейности графика следует, что по скорости реакции можно судить о количестве фермента:

  1. катал - это количество фермента, которое обеспечивает превращение 1 моля субстрата за 1 с;
  2. юнит - это количество фермента, которое превращает 1 мкмоль субстрата за 1 мин. 1 юнит = 16,67 нкатал.

Зависимость скорости ферментативной реакции от концентрации субстрата при [E] = const и [S] >> [E]: чем выше концентрация субстрата, тем выше скорость реакции. Эта зависимость гиперболическая.

Предельное значение, к которому стремится гипербола - Vmax данной реакции - характеризует максимальную работоспособность фермента: Vmax=k+2 x [E].

Таким образом, Vmax - это предел, к которому стремится скорость реакции при бесконечном повышении концентрации субстрата.

kм - это константа Михаэлиса. Она численно равна той концентрации субстрата, при которой скорость реакции составляет половину от максимального значения.

Эта кривая описывается уравнением Михаэлиса-Ментен.

Физический смысл Км заключается в том, что она представляет собой константу равновесия между двумя реакциями, приводящими к распаду фермент-субстратного комплекса и той реакцией, которая ведет к образованию этого комплекса.

Ks - субстратная константа. Характеризует константу равновесия 1-го этапа ферментативной реакции. Следовательно, Км обычно тоже довольно близка к Кs. Следовательно, Км, как и Кs, характеризует сродство субстрата к данному ферменту. Но экспериментально определить k-1 и k+2 очень трудно, поэтому трудно определить и Кs. А вот Км можно просто определить, используя координаты Лайнуивера-Бэрка.

С помощью Км можно характеризовать сродство данного фермента к данному субстрату. Чем меньше Км, тем больше сродство фермента к данному субстрату, а значит тем больше равновесие первого этапа ферментативной реакции сдвинуто вправо - в сторону образования фермент-субстратного комплекса. Значит, будут созданы наилучшие условия для протекания и второго этапа ферментативного процесса. При таких условиях для достижения эффективного превращения субстрата требуется малая концентрация субстрата. Значит, и Vmax теоретически может быть достигнута при малых количествах субстрата.

Если Км высока, то это означает, что сродство фермента к такому субстрату низкое и реакция при небольших концентрациях субстрата протекает неэффективно.

Км и Vmax - это две кинетические константы, с помощью которых можно характеризовать эффективность работы фермента, в том числе и in vivo.

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке?

Ферменты. Определение

Термин "фермент" происходит от латинского fermentum - закваска. Также они могут называться энзимами от греческого en zyme - "в дрожжах".

Ферменты - биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:

1) Энзим ускоряет биохимическую реакцию, но при этом не расходуется.

2) Величина константы равновесия не меняется, а лишь ускоряется достижение этого значения.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Т. к. энзимы в большинстве случаев имеют белковую природу, они находятся в третичной или четвертичной структуре. Объясняется это опять же специфичностью молекулы.

Функции энзимов в клетке

Главная задача фермента - ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:

1) Ферменты с абсолютной специфичностью, когда катализируется только одна-единственная реакция. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

2) Ферменты с относительной специфичностью. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции.

Заключительный этап - отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы.

Схематично работу фермента на каждом этапе можно записать так:

1) S + E ——> SE

2) SE ——> SP

3) SP ——> S + P , где S - это субстрат, E - фермент, а P - продукт.

Классификация ферментов

В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор. Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп.

  1. Оксидоредуктазы.

Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом.

Среди оксидоредуктаз часто встречаются следующие подгруппы:

а) Дегидрогеназы. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат. Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. В составе дегидрогеназ обязательно присутствует кофермент в виде НАД/НАДФ или флавопротеидов ФАД/ФМН. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени (лактатдегидрогеназа, глутаматдегидрогеназа и т. д.).

б) Оксидазы. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода (H 2 0, H 2 0 2). Примеры ферментов: цитохромоксидаза, тирозиназа.

в) Пероксидазы и каталазы - энзимы, катализирующие распад H 2 O 2 на кислород и воду.

г) Оксигеназы. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза - один из примеров таких энзимов.

2. Трансферазы.

Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

а) Метилтрансферазы. ДНК-метилтрансферазы - основные ферменты, контролирующие процесс репликации нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

б) Ацилтрансферазы. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза (переносит функциональную группу с жирной кислоты на холестерин), лизофосфатидилхолинацилтрансфераза (ацильная группа переносится на лизофосфатидилхолин).

в) Аминотрансферазы - ферменты, которые участвуют в превращении аминокислот. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

г) Фосфотрансферазы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам (чаще всего к глюкозе) и к аспарагиновой кислоте соответственно.

3. Гидролазы - класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды. Вещества, которые относятся к этой группе, - основные ферменты пищеварения.

а) Эстеразы - разрывают эфирные связи. Пример - липазы, которые расщепляют жиры.

б) Гликозидазы. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров (полисахаридов и олигосахаридов). Примеры: амилаза, сахараза, мальтаза.

в) Пептидазы - энзимы, катализирующие разрушение белков до аминокислот. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза.

г) Амидазы - расщепляют амидные связи. Примеры: аргиназа, уреаза, глутаминаза и т. д. Многие ферменты-амидазы встречаются в

4. Лиазы - ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

а) Декарбоксилазы. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза.

б) Гидратазы и дегидратазы - ферменты, которые катализируют реакцию расщепления связей С-О.

в) Амидин-лиазы - разрушают С-N связи. Пример: аргининсукцинатлиаза.

г) Р-О лиазы. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза.

Биохимия ферментов основана на их строении

Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент - это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции.

Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:

1) Каталитический центр - это специальная область белка, по которой происходит присоединение фермента к субстрату. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что находится в третичном или четвертичном состоянии.

2) Адсорбционный центр - выполняет роль «держателя». Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима.

3) Аллостерические центры могут располагаться как в активном центре, так и по всей поверхности фермента в целом. Их функция - регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов.

Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента (конкурентное ингибирование), либо она присоединяется к другой области белка (неконкурентное ингибирование). считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра.

Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент - белковую часть, кофермент - органическую часть, и кофактор - неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор - это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства. Разнообразные виды ферментов - это результат комбинирования всех перечисленных факторов образования комплекса.

Регуляция работы ферментов

Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу.

Т. к. ферменты имеют белковую природу, они легко разрушаются при высоких температурах. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

pH также играет большую роль в регуляции. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH (7,0-7,2). Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна. В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Такая защита от «самопоедания» основана на особенностях работы гидролаз.

Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Номенклатура ферментов

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по используют в названии не один, а два субстрата.

Примеры названия некоторых энзимов:

  1. Ферменты печени: лактат-дегидроген-аза, глутамат-дегидроген-аза.
  2. Полное систематическое название фермента: лактат-НАД+-оксидоредукт-аза.

Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Процесс синтеза ферментов

Функции ферментов определяются еще на генетическом уровне. Т. к. молекула по большому счету - белок, то и ее синтез в точности повторяет процессы транскрипции и трансляции.

Синтез ферментов происходит по следующей схеме. Вначале с ДНК считывается информация о нужном энзиме, в результате чего образуется мРНК. Матричная РНК кодирует все аминокислоты, которые входят в состав энзима. Регуляция ферментов может происходить и на уровне ДНК: если продукта катализируемой реакции достаточно, транскрипция гена прекращается и наоборот, если возникла потребность в продукте, активизируется процесс транскрипции.

После того как мРНК вышла в цитоплазму клетки, начинается следующий этап - трансляция. На рибосомах эндоплазматической сети синтезируется первичная цепочка, состоящая из аминокислот, соединенных пептидными связями. Однако молекула белка в первичной структуре еще не может выполнять свои ферментативные функции.

Активность ферментов зависит от структуры белка. На той же ЭПС происходит скручивание протеина, в результате чего образуются сначала вторичная, а потом третичная структуры. Синтез некоторых ферментов останавливается уже на этом этапе, однако для активизации каталитической активности зачастую необходимо присоединение кофермента и кофактора.

В определенных областях эндоплазматической сети происходит присоединение органических составляющих энзима: моносахаридов, нуклеиновых кислот, жиров, витаминов. Некоторые ферменты не могут работать без наличия кофермента.

Кофактор играет решающую роль в образовании Некоторые функции ферментов доступны только при достижении белком доменной организации. Поэтому для них очень важно наличие четвертичной структуры, в которой соединяющим звеном между несколькими глобулами белка является ион металла.

Множественные формы ферментов

Встречаются ситуации, когда необходимо наличие нескольких энзимов, катализирующих одну и ту же реакцию, но отличающихся друг от друга по каким-либо параметрам. Например, фермент может работать при 20 градусах, однако при 0 градусов он уже не сможет выполнять свои функции. Что делать в подобной ситуации живому организму при низких температурах среды?

Эта проблема легко решается наличием сразу нескольких ферментов, катализирующих одну и ту же реакцию, но работающих в разных условиях. Существуют два типа множественных форм энзимов:

  1. Изоферменты. Такие белки кодируются разными генами, состоят из разных аминокислот, однако катализируют одну и ту же реакцию.
  2. Истинные множественные формы. Эти белки транскрибируются с одного и того же гена, однако на рибосомах происходит модификация пептидов. На выходе получают несколько форм одного и того же фермента.

В результате первый тип множественных форм сформирован на генетическом уровне, когда второй - на посттрансляционном.

Значение ферментов

В медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Различные ферменты в клетке катализируют большое количество реакций, связанных с поддержанием жизнедеятельности. Одними из таких энизмов являются представители группы нуклеаз: эндонуклеазы и экзонуклеазы. Их работа заключается в поддержании постоянного уровня нуклеиновых кислот в клетке, удалении поврежденных ДНК и РНК.

Не стоит забывать о таком явлении, как свертывание крови. Являясь эффективной мерой защиты, данный процесс находится под контролем ряда ферментов. Главным из них является тромбин, который переводит неактивный белок фибриноген в активный фибрин. Его нити создают своеобразную сеть, которая закупоривает место повреждения сосуда, тем самым препятствуя излишней кровопотере.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Интересные факты, о которых вы не знали

Все ферменты организма имеют огромную массу - от 5000 до 1000000 Да. Это связано с наличием белка в составе молекулы. Для сравнения: молекулярная масса глюкозы - 180 Да, а углекислого газа - всего 44 Да.

На сегодняшний день открыто более чем 2000 ферментов, которые были обнаружены в клетках различных организмов. Однако большинство из этих веществ до конца еще не изучено.

Активность ферментов используется для получения эффективных стиральных порошков. Здесь энзимы выполняют ту же роль, что и в организме: они разрушают органические вещества, и это свойство помогает в борьбе с пятнами. Рекомендуется использовать подобный стиральный порошок при температуре не выше 50 градусов, иначе может пойти процесс денатурации.

По статистике, 20% людей по всему миру страдает от недостатка какого-либо из ферментов.

О свойствах энзимов знали очень давно, однако только в 1897 году люди поняли, что для сбраживания сахара в спирт можно использовать не сами дрожжи, а экстракт из их клеток.

В первую очередь следует помнить, что ферменты - это белковые вещества и все свойства, характерные для белков, присущи и ферментам. Белковая природа ферментов была признана после того, как Джон Говард Норт- роп (1891 - 1987) в 1930-х гг. получил в кристаллическом виде пепсин и трипсин. Позднее химическая сущность ферментов получила подтверждение с помощью рентгеноструктурного анализа.

При скручивании и сворачивании иолипептидных цепей молекул ферментов в определенную структуру образуются особые участки с характерными свойствами. Их называют центрами фермента: активный , каталитический , субстратный и схематично изображают в виде углублений различной формы в молекуле фермента (рис. 6.2).

Рис. 6.2.

субстратный - место, куда присоединяется субстрат, центр отвечает за специфичность фермента; каталитический - область, где протекает реакция; аллостерический (иначе регуляторный, метаболический) есть не у всех ферментов, реагирует на действие внешних

факторов

По химической природе вес ферменты делят на простые (однокомно- нентные) и сложные (двухкомионентные). Как очевидно из рис. 6.3, разница заключается в том, что в составе сложных ферментов есть небелковый компонент. Он может быть прочно связан с ферментом (простетическая группа) или легко отделяться от него (кофермент ).

Однако, в любом случае, каталитическая реакция протекает при взаимодействии субстрата с небелковой частью сложного фермента.

И простые, и сложные ферменты могут быть представлены разными молекулярными формами (табл. 6.2, рис. 6.3).

В олигомерах, катализирующих одну реакцию, выделяют изоферменты. Изоферменты - это ферменты, катализирующие одну реакцию, но отличающиеся друг от друга аминокислотным составом, последовательностью аминокислот, физико-химическими свойствами, локализацией в разных тканях. Например, глюкокиназа и гексокиназа катализируют одно и то же превращение - образование гл-6-фосфата из глюкозы, но обладают разным сродством к субстрату, разной локализацией и т.д. (см. параграф 10.6)

Таблица 6.2

Молекулярные формы ферментов


Рис. 63.

Важно подчеркнуть, что все центры фермента не жесткие структуры. Они могут изменять форму в процессе ферментативного катализа. Часто с присоединением субстрата происходит одновременное сближение каталитического центра. В таких случаях говорят об одном активном центре фермента.

Нельзя полностью идентифицировать белки и ферменты с живыми существами, но аналогию провести можно. Фермент и субстрат не ждут случайного соударения при хаотичном движении частиц, как это происходит в неорганической химии. В живой клетке превращения протекают как по сценарию. Определенный фермент узнает и захватывает соответствующий ему субстрат, поворачивает, если необходимо, или изменяет свою пространственную конфигурацию, и осуществляет каталитическое превращение. В результате выделяются фермент в неизменном виде и продукт реакции. Существует много примеров, когда фермент тут же передает преобразованный субстрат (продукт) другому ферменту, как по цепочке на конвейере. Этим во многом и объясняется и особая избирательность, и высокая эффективность действия ферментов.

Одним из первых идею о центрах связывания фермента с субстратом высказал немецкий химик-органик Эмиль Герман Фишер (1852-1919). Его теория получила название «ключа и замка» (рис. 6.4). Это значит, что форма активного центра фермента должна подходить к субстрату, как ключ к замку.

В соответствии с общей схемой ферментативного катализа (см. рис. 6.1) фермент и подходящий ему по форме субстрат образуют фермент-субст-


Рис. 6.4.

стадии I, II, III соответствуют общей схеме ферментативного катализа

ратный комплекс, в котором происходят определенные изменения, способствующие образованию активированного фермснт-субстратного комплекса. В результате выделяются новый продукт и фермент в неизменном виде.

Основное положение этой теории абсолютно справедливо и сейчас, но по мере изучения структур различных ферментов представления о ферментативном катализе значительно расширились. Известно, что у ряда ферментов активный центр может изменять форму в зависимости от окружающих условий. Речь идет об аллостерических ферментах , имеющих аллостерический (регуляторный, метаболический) центр, чувствительный к действию различных клеточных метаболитов.

Аллостерический центр всегда пространственно удален от субстратного и каталитического центра и обладает характерной специфичностью, т.е. связывает только индивидуальные для него лиганды. Связывание всегда не ковалентно и обратимо.

Метаболиты, присоединяющиеся к аллостерическому центру, называются общим термином: эффекторы. Однако по направлению оказываемого ими эффекта их делят на две группы:

  • активаторы увеличивают активность фермента, т.е. обладают положительной стимуляцией;
  • ингибиторы уменьшают активность фермента, т.е. обладают отрицательной стимуляцией.

Активаторами часто являются исходные вещества, а ингибиторами - продукты реакции. Например, гексокиназа ингибируется продуктом реакции - гл-6-фосфатом, а активность синтазы-ВЖК (см. подпараграф 11.8.2.) снижается при высокой концентрации продукта процесса - пальмитил-КоА.

В некоторых ферментах есть несколько аллостерических центров, каждый из которых специфичен к своему эффектору.

Таким образом, в аллостерических ферментах сценарий процесса будет зависеть от окружающих условий: наличия метаболических активаторов или ингибиторов.

Эта особенность ферментов учитывается теорией «индуцированного (вынужденного ) взаимодействия» Дэниела Кошланда (1920-2007). В соответствии с этой теорией после образования фермент-субстратного комплекса, в молекуле фермента могут наблюдатьея некие конфирмационные изменения, которые индуцируют соответствующие изменения в молекуле субстрата. Эти сведения подтверждены методом рентгеноструктурного анализа. Также ряд свойств ферментов указывает на различие их конформации в отсутствии и присутствии субстрата. У некоторых ферментов в присутствии субстрата меняются оптические и седиментационные характеристики, возрастает устойчивость к тепловой денатурации, прекращается диссоциация на субъединицы.

  • Дж. Г. Нортроп совместное Уэнделлом Мередит Стенли и Джеймсом Бстчеллсром Самнером удостоены Нобелевской премии по химии «За получение в чистом виде вирусных белков» в 1946 г.

Ферменты и витамины

Роль биологических молекул, входящих в состав организма.

Лекция № 7

(2 часа)

Общая характеристика ферментов

Строение ферментов

Основные этапы ферментативного катализа

Свойства ферментов

Номенклатура и классификация ферментов

Ингибиторы и активаторы ферментов

Классификация витаминов

Жирорастворимые витамины

Витамины, растворимые в воде

Витамины группы В

Общие признаки ферментов и катализаторов неорганической природы:

Катализируют только энергетически возможные реакции,

Не изменяют направление реакции,

Не расходуются в процессе реакции,

Не участвуют в образовании продуктов реакции.

Отличия ферментов от небиологических катализаторов :

Белковое строение;

Высокая чувствительность к физико-химическим факторам среды, работают в более мягких условиях (Р атмосферное, 30-40 о С, рН близкое к нейтральному);

Высокая чувствительность к химическим реагентам ;

Высокая эффективность действия (могут ускорять реакцию в 10 8 -10 12 раз; одна молекула Ф может катализировать 1000-1000000 молекул субстрата за 1 мин);

Высокая избирательность Ф к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия);

Активность Ф регулируется особыми механизмами.

По строению ферменты делятся на простые (однокомпонентные) и сложные (двукомпонентные). Простой состоит только из белковой части, сложный (холофермент ) - из белковой и небелковой частей. Белковая часть - апофермент , небелковая - кофермент (витамины В 1 , В 2 , В 5 , В 6 , Н, Q и др.). Отдельно апофермент и кофермент не обладают каталитической активностью. Участок на поверхности молекулы фермента, который взаимодействует с молекулой субстрата - активный центр.

Активный центр образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных сближенных полипептидных цепей . Образуется на уровне третичной структуры белка-фермента. В его пределах различают субстратный (адсорбционный) центр и каталитический центр. Кроме активного центра встречаются особые функциональные участки - аллостерические (регуляторные) центры.

Каталитический центр - это область активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. КЦ простых ферментов - это сочетание нескольких аминокислотных остатков, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи (серин , цистеин , тирозин , гистидин , аргинин , асп. и глут. кислоты). КЦ сложного белка устроен сложнее, т.к. участвует простетическая группа фермента - кофермент (водорастворимые витамины и жирорастворимый витамин K).


Субстратный (адсорбционный) цент р - это участок активного центра фермента, на котором происходит сорбция (связывание) молекулы субстрата. СЦ формируется одним, двумя, чаще тремя радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная функция СЦ - связывание молекулы субстрата и ее передача каталитическому центру в наиболее удобном для него положении.

Аллостерический центр ("имеющий иную пространственную структуру") - участок молекулы фермента вне его активного центра, который обратимо связывается с каким-либо веществом. Такое связывание приводит к изменению конформации молекулы фермента и его активности. Активный центр либо начинает работать быстрее, либо медленнее. Соответственно такие вещества называют аллостерическими активаторами либо аллостерическими ингибиторами.

Аллостерические центры найдены не у всех ферментов. Они есть у ферментов, работа которых изменяется под действием гормонов, медиаторов и других биологически активных веществ.