Методы расчета состава асфальтобетонной смеси. Подбор составов асфальтобетонных смесей

Его во многом зависят от свойств ингредиентов смеси и их соотношением.

Различают несколько типов асфальтобетона, состав которых заметно отличается. В отдельных случаях состав и качества исходных ингредиентов оказываются связанными с методом производства.

  • Так, для 1–3 климатического пояса плотные и высокоплотные АБ изготавливают из щебня, чей класс морозостойкости равен F50. Пористые и высокопористые – из камня классом F 15 и F25.
  • Для зон 4 и 5 только высокоплотный горячий асфальт выполняют на основе щебня классом F 50

Про роль песка в составе асфальтобетона поговорим ниже.

Песок

Добавляется в любые виды АБ, но в некоторых – песчаный асфальтобетон, он выступает как единственная минеральная часть. применяют как природный – из карьеров, так и получаемый отсевом при дроблении. Требования к материалу диктует ГОСТ 8736.

  • Так, для плотных и высокоплотных подходит песок с классом прочности в 800 и 1000. Для пористых — уменьшается до 400.
  • Число глинистых частиц – в диаметре менее 0,16 мм, тоже регулируется: для плотных – 0,5%. Для пористых – 1%.
  • увеличивает способность АБ к набуханию и снижает морозостойкость, поэтому за этим фактором следят особо.

Минеральный порошок

Эта часть формирует вместе с битумом вяжущее вещество. Также порошок заполняет поры между крупными каменными частицами, что снижает внутреннее трение. Размеры зерна крайне малы – 0, 074 мм. Получают их из системы пылеуловителей.

По сути дела, минеральный порошок производят из отходов цементных предприятий и металлургических – это пыль-унос цемента, золошлаковые смеси, отходы переработки металлургических шлаков. Зерновой состав, количество водорастворимых соединений, водостойкость и прочее регулирует ГОСТ 16557.

Дополнительные компоненты

Для улучшения состава или придания каких-то определенных свойств в исходную смесь вводят различные добавки. Разделяют их на 2 основные группы:

  • компоненты, разработанные и изготавливаемые специально для улучшения свойств – пластификаторы, стабилизаторы, вещества, препятствующие старению и прочее;
  • отходы или вторичное сырье – сера, гранулированная резина и так далее. Стоимость таких добавок, конечно, намного меньше.

Подбор и проектирование состава дорожного и аэродромного асфальтобетона рассмотрены ниже.

Про отбор проб для оценки состава и качества асфальтобетона расскажет видео ниже:

Проектирование

Состав устройства покрытия из асфальтобетона подбирают исходя из назначения: улица в небольшом городе, скоростное шоссе и велосипедная дорожка требуют разного асфальта. Чтобы получить лучшее покрытие, но при этом не перерасходовать материалы, используют следующие принципы подбора.

Основные принципы

  • Зерновой состав минерального ингредиента, то есть, камня, песка и порошка, является базовым для обеспечения плотности и шероховатости покрытия. Чаще всего используют принцип непрерывной гранулометрии, и только в отсутствие крупного песка – метод прерывистой гранулометрии. Зерновой состав – диаметры частиц и правильное их соотношение, должны полностью соответствовать ТУ.

Смесь подбирают таким образом, чтобы кривая, помещалась на участке между предельными значениями и не включала переломов: последнее означает, что наблюдается избыток или недостаток какой-то фракции.

  • Различные типы асфальта могут формировать каркасную и бескаркасную структуру минеральной составляющей. В первом случае щебня достаточно, чтобы камни соприкасались друг с другом и в готовом продукте образовывали четко выраженную структуру асфальтобетона. Во втором случае камни и зерна крупного песка не соприкасаются. Несколько условной границей между двумя структурами выступает содержание щебня в пределах 40–45%. При подборе это нюанс нужно учитывать.
  • Максимальную прочность гарантирует щебень кубовидной или тетраэдральной формы. Такой камень наиболее износостоек.
  • Шероховатость поверхности сообщает 50–60% щебня из труднополируемых горных пород или песка из них. Такой камень сохраняет шероховатость естественного скола, а это важно для обеспечения сдвигоустойчивости асфальта.
  • В общем случае асфальт на основе дробленного песка более сдвигоустойчив, чем на основе карьерного благодаря гладкой поверхности последнего. По тем же причинам долговечность и стойкость материала на основе гравия, особенно морского меньше.
  • Избыточное измельчение минпорошка ведет к повышению пористости, а, значит, к расходу битума. А таким свойством обладает большинство промышленных отходов. Чтобы снизить параметр, минеральный порошок активируют – обрабатывают ПАВ и битумом. Такая модификация не только снижает содержание битума, но и повышает водо- и морозостойкость.
  • При подборе битума следует ориентироваться не только на его абсолютную вязкость – чем она выше, тем выше плотность асфальт, но и на погодные условия. Так, в засушливых районах подбирают состав, обеспечивающий минимально возможную пористость. В холодных смесях, наоборот, снижают объем битума на 10–15%, чтобы снизить уровень слеживаемости.

Подбор состава

Процедура подбора в общем виде одинакова:

  • оценка свойств минеральных ингредиентов и битума. Имеется в виду не только абсолютные показатели, но их соответствие конечной цели;
  • вычисляют такое соотношение камня, песка и порошка, чтобы эта часть асфальта обретала максимально возможную плотность;
  • в последнюю очередь вычисляют количество битума: достаточное, чтобы на базе выбранных материалов, обеспечить нужные технические свойства готового продукта.

Сначала проводят теоретические расчеты, а затем – лабораторные испытания. В первую очередь, проверяют остаточную пористость, а затем – соответствие всех остальных характеристик предполагаемым. Расчеты и испытания проводят до тех пор, пока не будет получена смесь, полностью удовлетворяющая тех заданию.

Как и всякой сложный строительный материал АБ не имеет однозначных качеств – плотности, удельного веса, прочности и так далее. Его параметры определяют состав и метод приготовления.

О том, как происходит проектирование асфальтобетонного состава в США, расскажет следующий познавательный видеосюжет:

В России наибольшее распространение получил подбор составов минеральной части асфальтобетонных смесей по предельным кривым зерновых составов. Смесь щебня, песка и минерального порошка подбирают таким образом, чтобы кривая зернового состава расположилась в зоне, ограниченной предельными кривыми, и была по возможности плавной. Фракционный состав минеральной смеси рассчитывается в зависимости от содержания выбранных компонентов и их зерновых составов по следующей зависимости:

j - номер компоненты;

n - количество компонент в смеси;

При подборе зернового состава асфальтобетонной смеси, особенно с использованием песка из отсевов дробления, необходимо учитывать содержащиеся в минеральном материале зерна мельче 0,071 мм., которые при нагреве в сушильном барабане выдуваются и оседают в системе пылеулавливания.

Эти пылевидные частицы могут либо удаляться из смеси, либо дозироваться в смесительную установку вместе с минеральным порошком. Порядок использования пыли улавливания оговаривается в технологическом регламенте на приготовление асфальтобетонных смесей с учетом качества материала и особенностей асфальты смесительной установки.

Далее в соответствии сГОСТ 12801-98 определяют среднюю и истинную плотность асфальтобетона и минеральной части и по их значениям рассчитывают остаточную пористость и пористость минеральной части. Если остаточная пористость не соответствует нормируемому значению, то вычисляют новое содержание битума Б (% по массе) по следующей зависимости:

С рассчитанным количеством битума вновь готовят смесь, формуют из нее образцы и снова определяют остаточную пористость асфальтобетона. Если она будет соответствовать требуемой, то рассчитанное количество битума принимается за основу. В противном случае процедуру подбора содержания битума, основанную на приближении к нормируемому объему пор в уплотненном асфальтобетоне, повторяют.

Из асфальтобетонной смеси с заданным содержанием битума формуют стандартным методом уплотнения серию образцов и определяют полный комплекс показателей физико-механических свойств, предусмотренный ГОСТ 9128-97. Если асфальтобетон по каким-либо показателям не будет отвечать требованиям стандарта, то состав смеси изменяют.

При недостаточной величине коэффициента внутреннего трения следует увеличивать содержание крупных фракций щебня или дробленых зерен в песчаной части смеси.

При низких показателях сцепления при сдвиге и прочности при сжатии при 50°С следует увеличивать (в допустимых пределах) содержание минерального порошка или применять более вязкий битум. При высоких значениях прочности при 0°С рекомендуется снижать содержание минерального порошка, уменьшать вязкость битума, применять полимерно-битумное вяжущее или использовать пластифицирующие добавки.

При недостаточной водостойкости асфальтобетона целесообразно увеличивать содержание минерального порошка либо битума, но в пределах, обеспечивающих требуемые значения остаточной пористости и пористости минеральной части. Для повышения водостойкости эффективно применять поверхностно-активные вещества (ПАВ), активаторы и активированные минеральные порошки. Подбор состава асфальтобетонной смеси считают завершенным, если все показатели физико-механических свойств, полученные при испытании асфальтобетонных образцов, будут отвечать требованиям стандарта. Однако в рамках стандартных требований к асфальтобетону состав смеси рекомендуется оптимизировать в направлении повышения эксплуатационных свойств и долговечности устраиваемого конструктивного слоя дорожной одежды.

Оптимизацию состава смеси, предназначенной для устройства верхних слоев дорожных покрытий, до последнего времени связывали с повышением плотности асфальтобетона. В связи с этим в дорожном строительстве сформировались три метода, применяемые при подборе зерновых составов плотных смесей. Первоначально они назывались как:

  • - экспериментальный (немецкий) метод подбора плотных смесей, заключающийся в постепенном заполнении одного материала другим;
  • - метод кривых, основанный на подборе зернового состава, приближающегося к заранее определенным математически «идеальным» кривым плотных смесей;
  • - американский метод стандартных смесей, основанный на апробированных составах смесей из конкретных материалов.

Эти методы были предложены около 100 лет назад и получили дальнейшее развитие.

Сущность экспериментального метода подбора плотных смесей заключается в постепенном заполнении пор одного материала с более крупными зернами другим более мелким минеральным материалом. Практически подбор смеси осуществляется в следующем порядке.

К 100 весовым частям первого материала добавляют последовательно 10, 20, 30 и т. д., весовых частей второго, определяя после их перемешивания и уплотнения среднюю плотность и выбирая смесь с минимальным количеством пустот в уплотненном состоянии.

Если необходимо составить смесь из трех компонентов, то к плотной смеси из двух материалов добавляют постепенно увеличивающимися порциями третий материал и также выбирают наиболее плотную смесь. Хотя данный подбор плотного минерального остова трудоемкий и не учитывает влияния содержания жидкой фазы и свойств битума на уплотняемость смеси, тем не менее он до сих пор применяется при проведении экспериментально-исследовательских работ.

Кроме того, экспериментальный метод подбора плотных смесей был положен в основу расчетных методов составления плотных бетонных смесей из сыпучих материалов различной крупности и получил дальнейшее развитие в методах планирования эксперимента. Принцип последовательного заполнения пустот использован в методике проектирования оптимальных составов дорожных асфальтобетонов, в которых используются щебень, гравий и песок с любой гранулометрией.

По мнению авторов работы, предлагаемая расчетно-экспериментальная методика позволяет оптимально управлять структурой, составом, свойствами и стоимостью асфальтобетона. В роли варьируемых структурно-управляющих параметров используются:

  • - коэффициенты раздвижки зерен щебня, гравия и песка;
  • - объемная концентрация минерального порошка в асфальтовом вяжущем;
  • - критерий оптимальности состава, выраженный минимальной общей стоимостью компонентов на единицу продукции.

По принципу последовательного заполнения пустот в щебне, песке и минеральном порошке был рассчитан ориентировочный состав смеси для асфальтобетонов повышенной плотности на основе жидких битумов.

Содержание компонентов в смеси вычислялось на основании результатов предварительно установленных значении истинной и насыпной плотности минеральных материалов. Окончательный состав уточнялся экспериментально при совместном варьировании содержанием всех компонентов смеси методом математического планирования эксперимента на симплексе. Состав смеси, обеспечивающий минимальную пористость минерального остова асфальтобетона, считался оптимальным.

Второй метод подбора зернового состава асфальтобетона основывается на подборе плотных минеральных смесей, зерновой состав которых приближается к идеальным кривым Фуллера, Графа, Германа, Боломея, Тэлбот-Ричарда, Китт-Пеффа и других авторов. Эти кривые в большинстве случаев представляются степенными зависимостями требуемого содержания зерен в смеси от их крупности. Например, кривая гранулометрического состава плотной смеси по Фуллеру задается следующим уравнением:

D - наибольшая крупность зерен в смеси, мм.

Для нормирования зернового состава асфальтобетонной смеси в современном американском методе проектирования «Superpave» также принимаются гранулометрические кривые максимальной плотности, соответствующие степенной зависимости с показателем степени 0,45.

Причем, кроме контрольных точек, ограничивающих диапазон содержания зерен, приводится также внутренняя зона ограничения, которая располагается вдоль гранулометрической кривой максимальной плотности в промежутке между зернами размером 2,36 и 0,3 мм. Считается, что смеси с гранулометрическим составом, проходящим по ограничительной зоне, могут иметь проблемы с уплотнением и сдвиговая устойчивость, так как они более чувствительны к содержанию битума и становятся пластичными при случайной передозировке органического вяжущего.

Следует отметить, что ГОСТ 9128-76 также предписывал для кривых зернового состава плотных смесей ограничительную зону, расположенную между предельными кривыми непрерывной и прерывистой гранулометрии. На рис. 1 эта зона заштрихована.

Рис. 1. - Зерновые составы минеральной части мелкозернистой:

Однако в 1986 г. при переиздании стандарта это ограничение было отменено, как несущественное. Более того, в работах Ленинградского филиала Союздорнии (А.О. Саль) было показано, что проходящие по заштрихованной зоне так называемые «полупрерывистые» составы смесей в ряде случаев предпочтительней непрерывных из-за меньшей пористости минеральной части асфальтобетона, а прерывистых - из-за большей устойчивости к расслоению.

В основу отечественного метода построения кривых гранулометрического состава плотных смесей легли известные исследования В.В. Охотина, в которых было показано, что наиболее плотную смесь можно получить при условии, если диаметр частичек, составляющих материал, будет уменьшаться в пропорции 1:16, а весовые их количества - как 1:0,43. Однако, учитывая склонность к сегрегации смесей, составленных с таким соотношением крупных и мелких фракций, было предложено добавлять промежуточные фракции. При этом весовое количество фракции с диаметром, в 16 раз меньшим, совершенно не изменится, если заполнять пустоты не просто этими фракциями, а, например, фракциями с диаметром зерен в 4 раза меньшего размера.

Если при заполнении фракциями в 16 раз меньшим диаметром их весовое содержание равнялось 0,43, то при заполнении фракциями диаметром зерен, в 4 раза меньшим, их содержание должно быть равным к = 0,67. Если ввести еще одну промежуточную фракцию с диаметром, уменьшающимся в 2 раза, то соотношение фракций должно быть к = 0,81. Таким образом, весовое количество фракций, которые будут все время уменьшаться на одну и ту же величину, можно выразить математически как ряд геометрической прогрессии:

Y1 - количество первой фракции;

к - коэффициент сбега;

n - число фракций в смеси.

Из полученной прогрессии выводится количественное значение первой фракции:

Таким образом, коэффициентом сбега принято называть весовое соотношение фракций, размеры частиц которых относятся как 1:2, т. е., как соотношение ближайших размеров ячеек в стандартном наборе сит.

Хотя теоретически самые плотные смеси рассчитываются по коэффициенту сбега 0,81, на практике более плотными оказались смеси с прерывистым зерновым составом.

Это объясняется тем, что представленные теоретические выкладки составления плотных смесей по коэффициенту сбега не учитывают раздвижку крупных зерен материала более мелкими зернами. В связи с этим еще П.В. Сахаров отмечал, что положительные результаты с точки зрения увеличения плотности смеси получаются только при ступенчатом (прерывистом) подборе фракций.

Если же соотношение размеров смешиваемых фракций меньше, чем 1:2 или 1:3, то мелкие частицы не заполняют промежуток между крупными зернами, а раздвигают их.

Кривые гранулометрического состава минеральной части асфальтобетона с различными коэффициентами сбега показаны на рис. 2.

Рис. 2. - Гранулометрический состав минеральной части асфальтобетонных смесей с различными коэффициентами сбега:

Позже было уточнено соотношение диаметров частиц смежных фракций, исключающих раздвижку крупных зерен в много фракционной минеральной смеси. По данным П.И. Боженова, чтобы исключить раздвижку крупных зерен мелкими, отношение диаметра мелкой фракции к диаметру крупной фракции должно быть не более 0,225 (т. е., как 1:4,44). Учитывая проверенные на практике составы минеральных смесей, Н.Н. Иванов предложил применять для подбора смесей кривые гранулометрического состава с коэффициентом сбега в пределах от 0,65 до 0,90.

Гранулометрические составы плотных асфальтобетонных смесей, ориентированные на удобоукладываемость, были нормированы в СССР с 1932 по 1967 гг. В соответствии с этими нормами асфальтобетонные смеси содержали ограниченное количество щебня (26-45%) и повышенное количество минерального порошка (8-23%). Опыт применения таких смесей показал, что в покрытиях, особенно на дорогах с тяжелым и интенсивным движением, образуются волны, сдвиги и другие пластические деформации. При этом шероховатость поверхности покрытий была также недостаточной, чтобы обеспечить высокое сцепление с колесами автомобилей, исходя из условий безопасности движения.

Принципиальные изменения в стандарт на асфальтобетонные смеси были внесены в 1967 г. В ГОСТ 9128-67 вошли новые составы смесей для каркасных асфальтобетонов с повышенным содержанием щебня (до 65%), которые стали предусматривать в проектах дорог с высокой интенсивностью движения. В асфальтобетонных смесях также было снижено количество минерального порошка и битума, что обосновывалось необходимостью перехода от пластичных к более жестким смесям.

Составы минеральной части много щебенистых смесей рассчитывались по уравнению кубической параболы, привязанной к четырем контрольным размерам зерен: 20;5;1,25 и 0,071 мм.

При исследовании и внедрении каркасного асфальтобетона большое значение придавалось повышению шероховатости покрытий. Методы устройства асфальтобетонных покрытий с шероховатой поверхностью нашли отражение в рекомендациях, разработанных в начале 60-х годов прошлого столетия и получивших первоначальное внедрение на объектах Главдорстроя Минтрансстроя СССР. По данным разработчиков, созданию шероховатости должно было предшествовать образование пространственного каркаса в асфальтобетоне. Практически это достигалось уменьшением количества минерального порошка в смеси, увеличением содержания крупных дробленых зерен, полным уплотнением смеси, при котором зерна щебня и крупных фракций песка соприкасаются между собой. Получение асфальтобетона с каркасной структурой и шероховатой поверхностью обеспечивалось при содержании 50-65% по массе зерен крупнее 5 (3) мм. в мелкозернистых смесях типа А и 33-55% зерен крупнее 1,25 мм. в песчаных смесях типа Г при ограниченном содержании минерального порошка (4-8% в мелкозернистых смесях и 8-14% в песчаных).

Рекомендации по обеспечению сдвигоустойчивости асфальтобетонных покрытий в результате применения каркасных асфальтобетонов за счет повышения внутреннего трения минерального остова присутствуют и в зарубежных публикациях.

Например, дорожные фирмы из Великобритании при строительстве асфальтобетонных покрытий в тропических и субтропических странах специально применяют зерновые составы, подбираемые по уравнению кубической параболы.

Устойчивость покрытий из таких смесей обеспечивается главным образом в результате механической заклинки частиц угловатой формы, которые должны быть либо прочным щебнем, либо дробленым гравием. Применять недробленый гравий в таких смесях не разрешается.

Сопротивление покрытий сдвиговым деформациям можно повысить увеличением крупности щебня. В стандарте СШАASTM D 3515-96 были предусмотрены асфальтобетонные смеси, дифференцированные на девять марок в зависимости от максимальной крупности зерен от 1,18 до 50 мм.

Чем выше марка, тем крупнее щебень и тем меньше содержание минерального порошка в составе смеси. Кривые зерновых составов, построенные по кубической параболе, обеспечивают при уплотнении покрытия жесткий каркас из крупных зерен, который оказывает основное сопротивление транспортным нагрузкам.

В большинстве случаев минеральная часть асфальтобетонной смеси подбирается из крупнозернистой, среднезернистой и мелкозернистой составляющих. Если истинная плотность составляющих минеральных материалов существенно различается между собой, то содержание их в смеси рекомендуется рассчитывать по объему.

Проверенные на практике зерновые составы минеральной части асфальтобетонных смесей стандартизованы во всех технически развитых странах с учетом области их применения. Эти составы, как правило, согласуются между собой.

В целом принято считать, что наиболее разработанным элементом проектирования состава асфальтобетона является подбор гранулометрического состава минеральной части либо по кривым оптимальной плотности, либо по принципу последовательного заполнения пор. Сложнее обстоит дело с выбором битумного вяжущего нужного качества и с обоснованием его оптимального содержания в смеси. До сих пор отсутствует единое мнение о надежности расчетных методов назначения содержания битума в асфальтобетонной смеси.

Действующие экспериментальные методы подбора содержания вяжущего предполагают разные методы изготовления и испытания асфальтобетонных образцов в лаборатории и, главное, не позволяют достаточно надежно прогнозировать долговечность и эксплуатационное состояние дорожных покрытий в зависимости от условий эксплуатации.

П.В. Сахаров предлагал проектировать состав асфальтобетона по предварительно подобранному составу асфальтового вяжущего вещества. Количественное соотношение битума и минерального порошка в асфальтовом вяжущем веществе подбиралось экспериментально в зависимости от показателя пластической деформации (методом водоупорности) и от предела прочности на растяжение образцов-восьмерок. Учитывалась также и термическая устойчивость асфальтового вяжущего вещества сопоставлением показателей прочности при температурах 30, 15 и 0°С. На основании экспериментальных данных было рекомендовано придерживаться величин отношения битума к минеральному порошку по массе (Б/МП) в пределах от 0,5 до 0,2.

В итоге составы асфальтобетона характеризовались повышенным содержанием минерального порошка. В дальнейших исследованиях И.А. Рыбьева было показано, что рациональные значения Б/МП могут быть равны 0,8 и даже выше. Основываясь на законе прочности оптимальных структур (правиле створа), был рекомендован метод проектирования состава асфальтобетона по заданным эксплуатационным условиям работы дорожного покрытия. Констатировалось, что оптимальная структура асфальтобетона достигается при переводе битума в пленочное состояние.

В то же время было показано, что оптимальное содержание битума в смеси зависит не только от количественного и качественного соотношения компонентов, но и от технологических факторов и режимов уплотнения.

Поэтому научное обоснование требуемых эксплуатационных показателей асфальтобетона и рациональных способов их достижения продолжает оставаться основной задачей, связанной с повышением долговечности дорожных покрытий.

Существуют несколько расчетных способов назначения содержания битума в асфальтобетонной смеси как по толщине битумной пленки на поверхности минеральных зерен, так и по количеству пустот в уплотненной минеральной смеси.

Первые попытки их применения при проектировании асфальтобетонных смесей часто заканчивались неудачей, что вынуждало совершенствовать расчетные методы определения содержания битума в смеси. Н.Н. Иванов предлагал учитывать лучшую уплотняемость горячей асфальтобетонной смеси и некоторый запас на температурное расширение битума, если расчет содержания битума ведется по пористости уплотненной минеральной смеси:

Б - количество битума, %;

Р - пористость уплотненной минеральной смеси, %;

с6 - истинная плотность битума, г/см. куб.;

с - средняя плотность уплотненной сухой смеси, г/см. куб.;

0,85 - коэффициент уменьшения количества битума за счет лучшего уплотнения смеси с битумом и коэффициента расширения битума, который принят равным 0,0017.

Следует отметить, что расчеты объемного содержания компонент в уплотненном асфальтобетоне, включая объем воздушных пор или остаточной пористости, выполняются в любом методе проектирования в форме нормировки объема фаз. В качестве примера на рис. 3 приведен объемный состав асфальтобетона типа А в виде круговой диаграммы.

Рис. 3. - Нормировка объема фаз в асфальтобетоне:

В соответствии с этой диаграммой содержание битума (% по объему) равно разности между пористостью минерального остова и остаточной пористостью уплотненного асфальтобетона. Так, М. Дюрье рекомендовал методику расчета содержания битума в горячей асфальтобетонной смеси по модулю насыщения. Модуль насыщения асфальтобетона вяжущим веществом был установлен по экспериментальным и производственным данным и характеризует процентное содержание вяжущего в минеральной смеси, имеющей удельную поверхность 1 м. кв/кг.

Эта методика принята для определения минимального содержания битумного вяжущего в зависимости от зернового состава минеральной части в методе проектирования асфальтобетонной смеси LCPC. разработанном Центральной лабораторией мостов и дорог Франции. Весовое содержание битума по этому методу определяется по формуле:

к - модуль насыщения асфальтобетона вяжущим.

  • S - частный остаток на сите с отверстиями размером 0,315 мм., %;
  • s - частный остаток на сите с отверстиями размером 0,08 мм., %;

Методику расчета содержания битума по толщине битумной пленки существенно усовершенствовал И.В. Королев. На основании экспериментальных данных им произведено дифференцирование удельной поверхности зерен стандартных фракций в зависимости от природы горной породы. Было показано влияние природы каменного материала, крупности зерен и вязкости битума на оптимальную толщину битумной пленки в асфальтобетонной смеси.

Следующим шагом является дифференцированная оценка битумоемкости минеральных частиц мельче 0,071 мм. В результате статистического прогноза зерновых составов минерального порошка и битумоемкости фракций размером от 1 до 71 мкм в МАДИ (ГТУ) была разработана методика, позволяющая получать расчетные данные, удовлетворительно совпадающие с экспериментальным содержанием битума в асфальтобетонной смеси.

Другой подход к назначению содержания битума в асфальтобетоне основан на зависимости между пористостью минерального остова и зерновым составом минеральной части. На основании изучения экспериментальных смесей из частиц различной крупности японскими специалистами была предложена математическая модель пористости минерального остова (VMA). Значения коэффициентов установленной корреляционной зависимости были определены для щебеночно-мастичного асфальтобетона, который уплотнялся во вращательном уплотнителе (гираторе) при 300 оборотах формы. Алгоритм расчета содержания битума, основанный на корреляции поровых характеристик асфальтобетона с зерновым составом смеси, был предложен в работе. По результатам обработки массива данных, полученных при испытании плотных асфальтобетонов различных типов, установлены следующие корреляционные зависимости для расчета оптимального содержания битума:

К - параметр гранулометрии.

Dкр - минимальный размер зерен крупной фракции, мельче которого содержится 69,1% по массе смеси, мм.;

D0 - размер зерен средней фракции, мельче которого содержится 38,1% по массе смеси, мм.;

Dмелк- максимальный размер зерен мелкой фракции, мельче которого содержится 19,1% по массе смеси, мм.

Однако в любом случае расчетные дозировки битума следует корректировать при приготовлении контрольных замесов в зависимости от результатов испытаний сформованных образцов асфальтобетона.

При подборе составов асфальтобетонных смесей остается актуальным следующее высказывание проф. Н.Н. Иванова: «Битума следует брать не больше, чем это обусловливается получением достаточно прочной и устойчивой смеси, но битума надо брать возможно больше, а ни в коем случае не возможно меньше». Экспериментальные методы подбора асфальтобетонных смесей обычно предполагают приготовление стандартных образцов заданными способами уплотнения и испытание их в лабораторных условиях. Для каждого метода разработаны соответствующие критерии, устанавливающие в той или иной степени связь между результатами лабораторных испытаний уплотненных образцов и эксплуатационными характеристиками асфальтобетона в условиях эксплуатации.

В большинстве случаев зги критерии определены и стандартизованы национальными стандартами на асфальтобетон.

Распространены следующие схемы механических испытаний образцов асфальтобетона, представленные на рис. 4.

Рис. 4. - Схемы испытания цилиндрических образцов при проектировании состава асфальтобетона:


а - по Дюрьезу;

б - по Маршаллу;

в - по Хвиму;

г - по Хаббарду-Филду.

Анализ различных экспериментальных методов проектирования составов асфальтобетона указывает на схожесть в подходах при назначении рецептуры и на различие как в методах испытания образцов, так и в критериях оцениваемых свойств.

Схожесть методов проектирования асфальтобетонной смеси основывается на подборе такого объемного соотношения компонентов, при котором обеспечиваются заданные величины остаточной пористости и нормируемые показатели механических свойств асфальтобетона.

В России при проектировании асфальтобетона проводят испытание стандартных цилиндрических образцов на одноосное сжатие (по схеме Дюрьеза), которые формуют в лаборатории по ГОСТ 12801-98 в зависимости от содержания щебня в смеси либо статической нагрузкой 40 МПа, либо способом вибрирования с последующим дополнительным уплотнением нагрузкой 20 МПа. В зарубежной практике наибольшее распространение получил метод проектирования асфальтобетонных смесей по Маршаллу.

В США до последнего времени применяются методы проектирования асфальтобетонных смесей по Маршаллу, Хаббарду-Фильду и Хвиму. но в последнее время в ряде штатов внедряется система проектирования «Superpave».

При разработке новых методов проектирования асфальтобетонных смесей за рубежом большое внимание уделялось совершенствованию методов уплотнения образцов. В настоящее время при проектировании смесей по Маршаллу предусмотрено три уровня уплотнения образца: 35, 50 и 75 ударов с каждой стороны соответственно для условий легкого, среднего и интенсивного движения транспортных средств. Инженерные войска Соединенных Штатов, проведя обширные исследования, усовершенствовали испытания по методу Маршалла и распространили его на проектирование составов смесей для аэродромных покрытий.

Проектирование асфальтобетонной смеси по методу Маршалла предполагает, что:

  • - предварительно установлено соответствие исходных минеральных материалов и битума требованиям технических условий;
  • - подобран гранулометрический состав смеси минеральных материалов, удовлетворяющий проектным требованиям;
  • - определены значения истинной плотности вязкого битума и минеральных материалов соответствующими методами испытаний;
  • - достаточное количество каменного материала высушено и разделено на фракции, чтобы приготавливать лабораторные замесы смесей с различным содержанием вяжущего.

Для испытаний по методу Маршалла изготавливают стандартные цилиндрические образцы высотой 6,35 см. и диаметром 10,2 см. при уплотнении ударами падающего груза. Смеси готовят с различным содержанием битума, обычно отличающимся одно от другого на 0,5%. Рекомендуется приготавливать, по крайней мере, две смеси с содержанием битума выше «оптимального» значения и две смеси с содержанием битума ниже «оптимального» значения.

Чтобы точнее назначить содержание битума для проведения лабораторных испытаний, рекомендуется вначале установить примерное «оптимальное» содержание битума.

Под «оптимальным» подразумевается содержание битума в смеси, обеспечивающее максимальную устойчивость по Маршаллу сформованных образцов. Ориентировочно для подбора необходимо иметь 22 юг каменных материалов и около 4 л. битума.

Результаты испытаний асфальтобетона по методу Маршалла приведены на рис. 5.

На основании результатов испытаний образцов асфальтобетона по методу Маршалла обычно приходят к следующим выводам:

  • - Значение устойчивости возрастает при увеличении содержания вяжущего до определенного максимума, после которого значение устойчивости снижается;
  • - Величина условной пластичности асфальтобетона возрастает при увеличении содержания вяжущего;
  • - Кривая зависимости плотности от содержания битума подобна кривой устойчивости, однако для нее максимум чаще наблюдается при несколько более высоком содержании битума;
  • - Остаточная пористость асфальтобетона снижается при увеличении содержания битума, приближаясь асимптотически к минимальному значению;
  • - Процент заполнения пор битумом увеличивается с увеличением содержания битума.

Рис. 5. - Результаты (а, б, в, г) испытаний асфальтобетона по методу Маршалла:


Оптимальное содержание битума рекомендуется определять как среднее из четырех значений, установленных по графикам для соответствующих проектных требований. Асфальтобетонная смесь с оптимальным содержанием битума должна удовлетворять всем требованиям, предъявляемым в технических спецификациях. При окончательном выборе состава асфальтобетонной смеси могут учитываться также технико-экономические показатели. Обычно рекомендуют выбирать смесь, обладающую наиболее высокой устойчивостью по Маршаллу.

Однако при этом следует иметь в виду, что смеси с чрезмерно высокими значениями устойчивости по Маршаллу и низкой пластичностью бывают нежелательными, так как покрытия из таких смесей будут чрезмерно жесткими и могут растрескаться при движении большегрузных транспортных средств, особенно при непрочных основаниях и высоких прогибах покрытия. Часто в Западной Европе и в США метод проектирования асфальтобетонной смеси по Маршаллу подвергается критике. Отмечается, что ударное уплотнение образцов по Маршаллу не моделирует уплотнение смеси в покрытии, а устойчивость по Маршаллу не позволяет удовлетворительно оценить прочность асфальтобетона при сдвиге.

Также критикуется и метод Хвима, к недостаткам которого относят довольно громоздкое и дорогостоящее испытательное оборудование.

Кроме того, некоторые важные объем метрические показатели асфальтобетона, связанные с его долговечностью, в этом методе должным образом не раскрываются. По мнению американских инженеров, метод выбора содержания битума по Хвиму является субъективным и может привести к недолговечности асфальтобетона из-за назначения низкого содержания вяжущего в смеси.

Метод LCPC (Франция) основан на том, что горячая асфальтобетонная смесь должна быть спроектирована и уплотнена в процессе строительства до максимальной плотности.

Поэтому проводились специальные исследования расчетной работы уплотнения, которая была определена как 16 проходов катка с пневматическими шинами, с нагрузкой на ось 3 тс при давлении в шине 6 бар. На полномасштабном лабораторном стенде при уплотнении горячей асфальтобетонной смеси была обоснована стандартная толщина слоя, равная 5 максимальным размерам минеральных зерен. Для соответствующего уплотнения лабораторных образцов были стандартизованы угол вращения на лабораторном уплотнителе (гираторе), равный 1°, и вертикальное давление на уплотняемую смесь 600 кПа. При этом стандартное число вращений гиратора должно составлять величину, равную толщине слоя из уплотняемой смеси, выраженную в миллиметрах.

В американском методе системы проектирования «Superpave» принято уплотнять образцы из асфальт бетонной смеси также в гираторе, но при угле вращения 1,25°. Работа по уплотнению образцов асфальтобетона нормируется в зависимости от расчетной величины суммарной транспортной нагрузки на покрытие, для устройства которого проектируется смесь. Схема уплотнения образцов из асфальтобетонной смеси в приборе вращательного уплотнения представлена на рис. 6.

Рис. 6. - Схема уплотнения образцов из асфальтобетонной смеси в приборе вращательного уплотнения:

В методе проектирования асфальтобетонной смеси MTQ (Министерство транспорта Квебека, Канада) заимствован вращательный уплотнитель Superpave вместо гиратора LCPC. Расчетное число вращений при уплотнении принято для смесей с максимальным размером зерен 10 мм. равным 80, а для смесей крупностью 14 мм. - 100 оборотов вращения. Расчетное содержание воздушных нор в образце должно находиться в пределах от 4 до 7%. Номинальный объем пор обычно составляет 5%. Эффективный объем битума установлен для смесей каждого типа, как и в методе LCPC.

Примечательно, что при проектировании асфальтобетонных смесей из одних и тех же материалов по методу Маршалла, методу LCPC (Франция), методу системы проектирования «Superpave» (США) и методу MTQ (Канада) были получены примерно одинаковые результаты.

Несмотря на то, что каждый из четырех методов предусматривал различные условия уплотнения образцов:

  • - Маршалл - 75 ударов с двух сторон;
  • - «Superpave» - 100 оборотов вращения в гираторе под углом 1,25°;
  • - MTQ - 80 оборотов вращения в гираторе под углом 1,25°;
  • - LCPC - 60 оборотов вращения эффективного уплотнителя под углом 1°С были получены вполне сопоставимые результаты по оптимальному содержанию битума.

Поэтому авторы работы пришли к выводу, что важно не то, чтобы иметь «правильный» метод уплотнения лабораторных образцов, а то, чтобы иметь систему влияния уплотняющего усилия на структуру асфальтобетона в образце и на работоспособность его в покрытии.

Следует отметить, что вращательные методы уплотнения асфальтобетонных образцов также не лишены недостатков. Установлено заметное истирание каменного материала при уплотнении горячей асфальтобетонной смеси в гираторе.

Поэтому в случае использования каменных материалов, характеризующихся износом в барабане Лос-Анжелеса более 30%, нормируемое число оборотов уплотнителя смеси при получении образцов щебеночно-мастичного асфальтобетона назначают равным 75 вместо 100.

Самый используемый дорожно-строительный материал в 20 веке - асфальт - разделяется на множество видов, марок и типов. Основанием для разделения служит не только и не столько перечень входящих в асфальтобетонную смесь исходных компонентов, сколько соотношение их массовых долей в составе, а также некоторые характеристики составляющих - в частности, размер фракций песка и щебня, степень очистки минерального порошка и все того же песка.

Состав асфальта

В асфальте любого типа и марки есть песок, щебень или гравий, минеральный порошок и битум. Впрочем, что касается щебня, то при приготовлении некоторых видов дорожного покрытия он не используется - но если асфальтирование территорий производится с учетом высокого трафика и сильных кратковременных нагрузок на покрытие, то щебень (или гравий) необходим - в качестве каркасообразующего защитного элемента.

Минеральный порошок - обязательный исходный элемент для приготовления асфальта любых марок и типов. Как правило, массовая доля порошка - а он получается путем дробления пород, в которых высокое содержание соединений углерода (проще говоря - из известняков и прочих органических закаменевших отложений) - определяется исходя из задач и требований к вязкости материала. Большой процент минеральных порошков позволяет использовать его в таких работах как асфальтирование дорог и площадок: вязкий (то есть прочный) материал будет успешно гасить внутренние колебания мостовых конструкций, не трескаясь.

В большинстве типов и марок асфальта используется песок - исключение, как мы говорили, составляют типы дорожного покрытия, где велика массовая доля гравия . Качество песка определяется не только степенью его очистки, но и способом получения: добытый открытым способом песок нуждается, как правило, в тщательной очистке, а вот песок искусственный, получаемый при дроблении скальных пород, считается уже готовым «к работе».

Наконец, битум - краеугольный камень индустрии производства дорожного покрытия. Продукт переработки нефти, битум содержится в смеси любой марки в очень небольшом количестве - его массовая доля в большинстве сортов едва ли достигает 4-5 процентов. Хотя, широко использующийся при таких работах как асфальтирование территорий со сложным рельефов и ремонте дорог, литой асфальт может похвастаться содержанием битума в 10 и более процентов. Битум придает такому полотну изрядную упругость после затвердевания и текучесть, позволяющую легко распределять готовую смесь по площадке.

Марки и типы асфальта

В зависимости от процентного содержания в составе перечисленных компонентов, выделяют три марки асфальта . Технические характеристики, область применения и состав смеси различных марок описываются в ГОСТ 9128-2009, в котором, помимо всего прочего, учтена и возможность добавления дополнительных присадок, увеличивающих морозостойкость, гидрофобность, гибкость или износостойкость покрытия.

В зависимости от процентного содержания наполнителя, находящегося в составе дорожно-строительной смеси, ее подразделяют на следующие типы:

  • А - 50-60% щебня;
  • Б - 40-50% щебня или гравия;
  • В - 30-40% щебня или гравия;
  • Г - до 30% песка из отсева дробления;
  • Д - до 70% песка или смеси с отсевами дробления.

Асфальт марки 1

Под этой маркой изготавливается широкий диапазон различных типов покрытий - от плотных до высокопористых, со значительным содержанием щебня. Область их использования - дорожное строительство и благоустройство: вот только пористые материалы совсем не годятся на роль собственно покрытия, верхнего слоя дорожного полотна. Куда лучше применять их для устройства оснований, выравнивания базы под укладку более плотных типов материала.

Асфальт марки 2

Диапазон плотности примерно тот же, однако содержание и процентное соотношение песка и гравия могут варьироваться в весьма широких пределах. Этот тот самый «среднестатистический» асфальт, с весьма обширной сферой применения: и строительство автомобильных дорог, и ремонт их, и обустройство территорий под паркинги и площади не обходятся без него.

Асфальты марки 3

Покрытия марки 3 отличаются тем, что при их изготовлении не используется щебень или гравий - их заменяют минеральные порошки и особо качественный песок, получаемый путем дробления твердых горных пород.

Соотношение песка и щебня (гравия)

Соотношение содержания песка и гравия - один из важнейших показателей, который определяет область применения того или иного типа покрытия. В зависимости от превалирования того или иного материала его обозначают буквами от А до Д: А - более чем наполовину состоит из мелкофракционного щебня или гравия, а Д - примерно на 70 процентов состоит из песка (правда, песок используется по большей части из дробленых горных пород).

Соотношение битума и минеральных составляющих

Не менее важное - ведь именно оно определяет прочностные характеристики дорожного полотна. Высокое содержание минеральных порошков существенно увеличивает его хрупкость. Поэтому песчаные асфальты могут применяться лишь ограниченно: благоустройство территорий парков или тротуаров. А вот покрытия с большим содержанием битума - желанный гость на любых работах: особенно если это дорожное строительство в суровых климатических условиях, при минусовых температурах, если скорость работ такова, что уже спустя сутки по новенькому полотну пойдет дорожная техника, а после сдачи готовой дороги - ринутся большегрузные автомобили.

Расчет заключается в подборе рационального соотношения между составляющими асфальтобетонную смесь материалами.

Широкое распространение получил метод расчета по кривым плотных смесей. Наибольшая прочность асфальтобетона достигается при максимальной плотности минерального остова, оптимального количества битума и минерального порошка.

Между зерновым составом минерального материала и плотностью существует прямая зависимость. Оптимальными будут составы, содержащие зерна различного размера, диаметры которых уменьшаются в два раза.

где d 1 - наибольший диаметр зерна, устанавливаемый в зависимости от типа смеси;

d 2 - наименьший диаметр зерна, соответствующий пылеватой фракции, и минерального порошка (0,004...0,005 мм).

Размеры зерен, согласно предыдущему уровню

(6.6.2)

Число размеров определяют по формуле

(6.6.3)

Число фракций п на единицу меньше числа размеров т

(6.6.4)

Соотношение соседних фракций по массе

(6.6.5)

где К - коэффициент сбега.

Величина, показывающая, во сколько раз количество последующей фракции меньше предыдущей, называется коэффициентом сбега. Наиболее плотная смесь получается при коэффициенте сбега 0,8, но такую смесь трудно подобрать, поэтому, по предложению Н.Н. Иванова, коэффициент сбега К принят от 0,7 до 0,9.

Зная размеры фракций, их количество и принятый коэффициент сбега (например 0,7), составляют уравнения такого вида:

Сумма всех фракций (по массе) равна 100 %, то есть:

у 1 + у 1 к + у 1 к 2 + у 1 к 3 +...+ у 1 к n -1 = 100 (6.6.6)

у 1 (1 + к + к 2 + к 3 +... + к n -1) = 100 (6.6.7)

В скобках указана сумма геометрической прогрессии и, следовательно, количество первой фракции в смеси

(6.6.8)

Аналогично определяем процентное содержание первой фракции у 1 , для коэффициента сбега к = 0,9. Зная количество первой фракции у 1 , легко определитьу 2 , у 3 и так далее.

На основании полученных данных строят предельные кривые, соответствующие принятым коэффициентам сбега. Составы, рассчитанные по коэффициенту сбега 0,9, содержат повышенное количество минерального порошка, а при к < 0,7 - уменьшенное количество минерального порошка.

Кривая зернового состава рассчитываемой смеси должна располагаться между предельными кривыми (рис. 6.6.1).

Рис. 6.6.1 . Зерновые составы:
А - мелкозернистой асфальтобетонной смеси с непрерывной гранулометрией типов А, Б, В; Б - минеральной части песчаных смесей типов Г и Д

Высокие эксплуатационные показатели дают смеси с повышенным содержанием щебня и уменьшенным содержанием минерального порошка. Предпочтение следует отдавать смесям с коэффициентом сбега 0,70...0,80.

В случае невозможности расчета плотной минеральной смеси по предельным кривым (отсутствие крупнозернистых песков и невозможности их замены высевными) необходимая плотность может быть подобрана по принципу прерывистой гранулометрии. Смеси с прерывистой гранулометрией более сдвигоустойчивы за счет жесткого каркаса.

Для определения расхода битума формуют пробные образцы из смеси с заведомо малым содержанием битума, затем определяют объем пустот в минеральном остове

(6.6.9)

где g - объемная масса асфальтобетонного образца;

Б пр - содержание битума в пробной смеси, %;

r м - средняя плотность минерального материала:

(6.6.10)

где у щ , у п , у мп - содержание щебня, песка, минерального порошка в % по массе;

r щ , r п , r мп - плотность щебня, песка, минерального порошка.

Расчетная формула для определения оптимального содержания битума будет иметь вид

(6.6.11)

где r б - плотность битума;

j - коэффициент заполнения пустот минеральной смеси битумом, зависящий от заданной остаточной пористости

где П о - пористость минерального остова асфальтобетона, % объема;

П - заданная остаточная пористость асфальтобетона при 20°С, % объема.

Холодный асфальтобетон

Состав холодного асфальтобетона можно рассчитать по типовым составам или по методике, применяемой для расчета горячих смесей, с обязательной проверкой физико-механических свойств в лаборатории. Количество жидкого битума снижают на 10...15 % против оптимального, чтобы уменьшить слеживаемость.

Характерной чертой холодного асфальтобетона, отличающей его от горячего, является способность оставаться длительное время после приготовления в рыхлом состоянии. Эта способность холодных асфальтобетонных смесей объясняется наличием тонкой битумной пленки на минеральных зернах, вследствие чего микроструктурные связи в смеси настолько слабы, что небольшое усилие приводит к их разрушению. Поэтому приготовленные смеси под действием собственной массы при хранении в штабелях и транспортировке не слеживаются. Смеси в течение длительного времени (до 12 месяцев) остаются в рыхлом состоянии. Их сравнительно легко можно перегружать в транспортные средства и распределять тонким слоем при устройстве дорожных покрытий.

Зерновые составы холодных асфальтобетонных смесей отличаются от составов горячих смесей в сторону повышенного содержания минерального порошка (до 20 %) - частиц мельче 0,071 мм и пониженного содержания щебня (до 50 %). Повышенное количество минерального порошка вызвано применением жидкого битума, требующего для структурообразования большего количества порошка, а при содержании щебня более 50 % ухудшаются условия формирования покрытия. Наибольший размер зерен в холодном асфальтобетоне составляет 20 мм. Более крупный щебень ухудшает условия формирования покрытия.

В качестве крупной составляющей для холодного асфальтобетона используют щебень, получаемый дроблением скальных горных пород и металлургических шлаков. Эти материалы должны обладать прочностью при сжатии не менее 80 МПа, а для II марки асфальтобетона - не ниже 60 МПа.

Для приготовления холодного асфальтобетона применяют такой же минеральный порошок и песок, что и для горячих смесей.

Жидкие битумы должны иметь вязкость в пределах что соответствует маркам СГ 70/130, МГ 70/130. Вязкость и класс битума выбирают с учетом предполагаемого срока хранения смеси на складах, температуры воздуха при хранении и применении, а также качества минеральных материалов. Холодные асфальтобетонные смеси используют для устройства дорожных покрытий при интенсивности движения до 2000 автомобилей в сутки.

Литой асфальтобетон

Литой асфальтобетон представляет собой специально запроектированную смесь щебня, песка, минерального порошка и вязкого битума, приготовленную и уложенную в горячем состоянии без дополнительного уплотнения. От горячего асфальтобетона литой отличается большим содержанием минерального порошка и битума, технологией приготовления и методом укладки. Литой асфальтобетон применяют в качестве дорожного покрытия на автомобильных дорогах, на проезжей части мостов, а также для устройства полов в производственных зданиях. Ремонтные работы с использованием литых смесей можно выполнять при температуре воздуха до -10°С. Особенностью производства работ является необходимость непрерывного перемешивания литой смеси при ее транспортировке к месту укладки.

Для приготовления литого асфальтобетона применяют щебень (крупностью до 40 мм), природный или дробленый песок. Щебень, высевки и песок должны быть высокосортными, как и для обычного горячего асфальтобетона. В качестве вяжущего применяют битумы БНД 40/60. В соответствии с ТУ 400-24-158-89 литые смеси подразделяют на пять типов (табл. 6.6.11).

Таблица 6.6.11

Классификация литых асфальтобетонных смесей

К положительным свойствам литого асфальтобетона относят долговечность, небольшие затраты работы на уплотнение, водонепроницаемость. При реконструкции дороги существующее покрытие из литого асфальтобетона может быть снова использовано в полном объеме и почти без добавления новых материалов.

Дегтебетон

Дегтебетон в зависимости от вязкости дегтя и температуры смесей при укладке подразделяют на горячий и холодный. По физико-механическим свойствам дегтебетон уступает асфальтобетону, так как обладает меньшей прочностью и теплоустойчивостью.

Дегтебетон в зависимости от вида каменного материала подразделяют на щебеночный, гравийный и песчаный. Для приготовления дегтебетона применяют те же минеральные материалы, что и для асфальтобетона, требования к ним аналогичные. В качестве вяжущего применяют дорожный каменноугольный деготь: для горячего дегтебетона - Д-6, для холодного - Д-4 и Д-5. Дегти применяют как промышленного изготовления, так и приготовленные непосредственно на асфальтобетонном заводе путем окисления или смешения песка с разжижителем (антраценовым маслом, каменноугольной смолой и др.).

Расчет состава дегтебетона может быть выполнен так же, как и асфальтобетона, при этом основное внимание должно быть обращено на тщательный подбор количества дегтя, так как небольшое отклонение содержания его в смеси заметно влияет на свойства дегтебетона.

Для приготовления горячего дегтебетона применяют дегти с вязкостью, значительно меньшей, чем вязкость битума для соответствующего вида асфальтобетона. Пониженная вязкость дегтя обуславливает ослабление внутренних структурных связей, что может быть компенсировано повышением внутреннего трения минеральной части. Для этого необходимо применять каменные материалы с зернами угловатой формы и шероховатой поверхностью, а также заменять часть или весь природный песок с окатанными зернами на высевки. Для приготовления дегтебетонных смесей можно применять щебень из более кислых пород (кварцевые песчаники, богатые кварцем граниты и др.).

Плотный дегтебетон применяют для устройства покрытий на дорогах II... IV категорий. По санитарно-гигиеническим условиям устройство верхних слоев покрытий из дегтебетона разрешено только вне населенных пунктов. При приготовлении дегтебетонных смесей необходимо соблюдать специальные правила техники безопасности.

Дегтебетонную смесь приготавливают в асфальтобетонных установках с мешалками принудительного действия. Вследствие пониженной вязкости дегтя обволакивание им зерен минерального материала протекает лучше, чем при применении битумов, в результате чего сокращается время для смешения материалов. По этой же причине облегчается уплотнение смесей при устройстве покрытий. Коэффициент уплотнения, представляющий собой отношение толщины слоя уложенной смеси до уплотнения к толщине уплотненного покрытия, может быть равным 1,3...1,4.

При производстве дегтебетонной смеси необходимо строго соблюдать установленный температурный режим, так как деготь более чувствителен к изменению температуры, чем битум (табл. 6.6.12).

Таблица 6.6.12

Температурный режим при приготовлении и укладке дегтебетона

По физико-механическим свойствам дегтебетон уступает асфальтобетону: он обладает меньшей прочностью, теплостойкостью. Но при этом отличается повышенной износостойкостью. Дегтебетонное покрытие имеет повышенную шероховатость, более высокий коэффициент сцепления колеса с дорогой, повышенную безопасность движения. Это связано с меньшей вязкостью дегтей, более слабыми когезионными силами межмолекулярного взаимодействия, наличием летучих составляющих. Летучие вещества в составе дегтя ускоряют срок формирования структуры дегтебетона в покрытии, а также способствуют более интенсивному изменению его свойств. Дегтебетон менее пластичен в сравнении с асфальтобетоном, что также связано с составом и структурой дегтей, которые состоят преимущественно из ароматических углеводородов, которые образуют более жесткие структурные связи в вяжущих материалах и при пониженных температурах плохо деформируются, вследствие чего в покрытиях образуются трещины.

Контроль за изготовлением дегтебетонной смеси на заводе и при устройстве дегтебетонного покрытия, а также методы испытания дегтебетона такие же, как и асфальтобетона.

Асфальтобетонная смесь представляет собой строительный материал, полученный искусственным путем. Согласно технологии получения, осуществляется рациональный подбор основных компонентов, а затем производится уплотнение материала вибраторами. Требования к характеристикам асфальтобетонного состава включены в ГОСТ 9128.

Какие ингредиенты используются в смеси?

В асфальтобетонном растворе присутствуют такие ингредиенты:

  • компоненты минерального происхождения, такие как натуральный либо измельченный песок, щебенка (гравий), примеси тонкодисперсного порошка (по необходимости);
  • вяжущие ингредиенты органического происхождения, например, битум.

Изначально вместо битума применялся деготь. Однако от него отказались по причине вредного влияния на здоровье человека и окружающую среду. Для смешения компонентов асфальтобетонную смесь нагревают. Назначение асфальтобетона - укладка дороги аэродромов и автодорог, обустройство промышленных полов. По принципу кладки асфальтобетон бывает:

  • уплотненный;
  • литой, отличается высокой текучестью и большим содержанием вяжущего материала, поэтому позволяет вести кладку без уплотнения.

По составу асфальтобетон бывает:

  • щебеночный;
  • гравийный;
  • песчаный.

Вязкость битума и максимальная температура кладки определяют такие разновидности смесей:

  • горячие, укладываемые при 120 °С со связующими в виде вязко-жидких дорожных битумов;
  • холодные, укладываемые до 5 °С, где в качестве вяжущего выступают жидкие битумные материалы нефтяного происхождения;
  • теплые для кладки до 70 °С на основе вязко-жидких битумов.

Однако последний тип, как отдельный вид, не встречается с 1999 года. Виды горячего асфальтобетона по величине остаточной процентной пористости:

  • высокоплотные - 1-2,5%;
  • высокопористые - 10-18%;
  • плотные - 2,5-5%;
  • пористые - 5-10%.

В холодных растворах эта величина составляет 6-10%. По максимальной величине частиц используемого минерального компонента асфальтобетонное полотно может быть:

  • крупнозернистым с величиной частиц до 4 см;
  • мелкозернистым с частицами до 2 см;
  • песчаным с величиной до 5 см.
  • тип А, в котором состав минерального камня 50-60%;
  • тип Б с содержанием камня 40-50%;
  • тип В, включающего 30-40% заполнителя.

Какие существуют алгоритмы проектирования компонентного состава асфальтобетонов?

Для подбора состава асфальтобетонного раствора выбирают рациональное соотношение компонентов. Полученные составы имеют заданную плотность и технические свойства. Существует четыре алгоритма проектирования:

  1. Метод профессора Сахарова П. В.
  2. Способ по модулю насыщения, предоставленный профессором Дюрье М.
  3. Алгоритм проектирования по требуемым условиям эксплуатации покрытия, полученный изысканиями профессора Рыбьева И. А.
  4. Подбор по кривым плотности, разработанный профессором Иванов Н. И. при содействии СоюзДорНИИ.

Пример оптимального подбора ингредиентов асфальтобетонной смеси

В качестве примера компонентов асфальтобетона предлагается рассмотреть задачу: нужна мелкозернистая горячая смесь типа Б второго сорта для создания плотного верхнего шара дороги в третьей климатической зоне. Доступны такие ингредиенты:

  • гранитная и известняковая щебенка зернистостью 0,5-2 см;
  • речной песок;
  • отсев после измельчения гранитной крошки;
  • отсев после измельчения известняка;
  • неактивированный минпорошок;
  • битум материал БНД 90/130.

На первом этапе проводится тестирование и сравнение характеристик, представленных выше ингредиентов. По результатам проверки образцов с различным соотношением компонентов сделаны выводы, что для получения асфальтобетонных смесей Б типа и второго сорта подходят , речной песок, гранитная пыль, минпорошок, битумный материал.

Известняк и пыль измельченного известнякового компонента не ответили нормативам ГОСТа по прочностным параметрам. На втором этапе рассчитывается щебень. Его содержание при крупности более 0,5 см равно 35-50%. Оптимальным в смесях является содержание 48%. В материале присутствует 95% частиц, указанной крупности, поэтому формула имеет вид:

Таким способом рассчитывают количество щебенки в смеси для фракционного состава.

На третьем этапе определяется состав минерального порошка. Вычисления начинаются с выведения массовых пропорций щебенки, песка и минпорошка с фракционным составом, согласно ГОСТу. Следовательно, содержание зерен размером менее 0,0071 см в минматериале асфальтобетона должно лежать в диапазоне 6-12%. Для вычислений берется 7%. При содержании элементов крупностью 0,0071 см 74% в порошковом минерале, формула расчета выглядит так:

Ввиду присутствия в смеси частиц менее 0,0071 см из гранитных отсевов, фракцию минпорошка принимают, равную 8%. На четвертом этапе рассчитывается количество песка. Общее его содержание составляет:

Песок =100 — (Щебенка минпорошок) = 100 — (50 8) = 42%.

В примере используется речной и гранитный отсев песка. Поэтому пропорции каждого определяются по отдельности. Процентное отношение речного компонента и гранитного отсева устанавливается по их фракции крупностью менее 0,125 см. Для асфальтобетонной смеси зерна должны находиться в количестве 28-39%. Берутся средние 34%, 8% из которых рассчитаны как доля минпорошка. Следовательно, песка нужно 34-8=26% для частиц крупностью менее 0,125 см. Так как массовая часть этих зерен в речном песчаном материале составляет 73%, гранитной пыли - 49%, пропорция для асфальтобетонных смесей Б типа имеет вид:

Округляем полученную величину до 22%, следовательно, содержание отсева из гранитной крошки составляет 42 — 22 = 20%. Подобный расчет проводится для каждой фракции песка и отсева. Данные сводятся в таблице и суммируются величины с размерами меньше заданных для каждого отдельного ингредиента, затем сравниваются с требованиями ГОСТа.

На пятой стадии рассчитывается содержание битумного компонента. Согласно условиям, щебенка, песок, отсев измельченного гранита, минпорошок смешиваются с 6% вяжущего ингредиента, что соответствует средней величине, требуемой в нормативном документе. Готовятся три образца смеси с высотой 7,14 см и соответствующего диаметра. Далее, производится уплотнение комбинированным методом:

  • три минуты на виброплощадке при давлении 0,03 МПа;
  • трехминутным уплотнением на вибропрессе при давлении 20 МПа.

Спустя двое суток определяется средняя плотность, то есть масса в величинах объема асфальтобетона, реальная плотность минеральной составляющей смеси r°. По полученным данным, помимо плотности, рассчитывается пористость минеральной составляющей тестируемых образцов.

Приблизительное количество битумного вяжущего определяется по действительной плотности всех ингредиентов с учетом остаточной пористости асфальтобетона V пор = 4%. При этом средняя плотность проб асфальтобетона с содержанием битума 6% на 100% минералов составляет 2,35 г/см3. Следовательно, формулы расчета имеют вид:

Далее готовится еще три образца асфальтобетона с содержанием битума 6,2% для определения остаточной пористости. Если ее величина составит 4,0 ± 0,5%, готовятся дополнительные 15 образцов такой смеси и тестируют их, согласно ГОСТ 9128-84.

При обнаружении несоответствия с требованиями нормативного документа, производится корректировка смеси и последующие ее испытания, как указано выше.