Симметрия и асимметрия. Симметрия и асимметрия в их различных физических проявлениях

Прошли тысячелетия, прежде чем человечество в ходе своей
общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде
всего в природе две тенденции: наличие строгой упорядоченности,
соразмерности, равновесия и их нарушения.

Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на
деревьях, лепестков, цветов, семян растений и отобразили эту
упорядоченность в своей практической деятельности, мышлении
и искусстве.

Понятие «симметрия» употреблялось в двух значениях. В одном
смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с
помощью которого они объединяются в целое. Второй смысл этого
слова - равновесие.

Греческое слово snmmetra означает однородность, соразмерность,
пропорциональность, гармонию.

Познавая качественное многообразие проявлений порядка и
гармонии в природе, мыслители древности, особенно греческие
философы, пришли к выводу о необходимости выразить симметрию
и в количественных отношениях, при помощи геометрических
построений и чисел.

Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека
своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства
всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства.

Следует обратить внимание и на учение Пифагора о гармонии.
Известно, что если уменьшить длину струны или флейты вдвое,
тон повысится на одну октаву. Уменьшению в отношении 3:2 и
4:3 будут соответствовать интервалы квинта и кварта. То, что важнейшие гармонические интервалы получаются при помощи отношений чисел 1, 2 и 3, 4, пифагорейцы использовали для своих мистических выводов о том, что «все есть число» или «все упорядочивается в соответствии с числами». Сами эти числа 1, 2, 3, 4 составляли
знаменитую «тетраду». Очень древнее изречение гласит: «Что есть
оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма
сирен». Геометрическим образом тетрады является треугольник из
десяти точек, основание которого составляют 4 точки плюс 3,
плюс 2, а одна находится в центре.

В геометрии, механике - всюду, где мы имеем дело с отрезками
прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений
между предметами в объективном мире. Чтобы пояснить это положение, можно выбрать на данной прямой АВ любую третью точку С.
Таким образом, совершается переход от единства к двойственности,
и мысль этим самым приводит к понятию пропорции. Следует
подчеркнуть, что соотношение есть количественное сравнение двух
однородных величин, или число, выражающее это сравнение. Про-
порция есть результат согласования или равноценности двух или нескольких соотношений. Следовательно, необходимо наличие
не менее трех величин (в рассматриваемом случае прямая и два
ее отрезка) для определения пропорции. Деление данного отрезка
прямой АВ путем выбора третьей точки С, находящейся между
А и В, дает возможность построить шесть различных возможных
соотношений:

a:b ; a:c ; b:a ; b:c ; c:a ; c:b

при условии отметки соответствующей длины отрезков прямой бук-
вами «а», «b», «с» и применения к данной длине любой системы
мер. Проанализировав возможные случаи деления отрезка АВ на
две части, мы приходим к выводу, что отрезок можно делить на:

1) две симметрические части a=b; 2) a:b = c:a

Так как c = a + b, то

a/b = (a + b)/a ;

((a + b)/a очевидно, превосходит единицу); дело обстоит так же и в отношении а/b; значит, «а» превосходит « b » и точка «С» стоит ближе к В, чем
к A.

Это соотношение a:b = c:a или AC/CB = AB/AC

может быть выражено следующим образом: длина АВ была разделе-
на на две неравные части таким образом, что большая из ее частей
относится к меньшей, как длина всего отрезка АВ относится

к его большей части:

3) a/b = b/c равноценно a/b = b/(a + b).

В этом случае «b» больше «а»; точка С ближе к А, чем к В, но отношения те же, что и во втором случае,

Рассмотрим равенство

a/b = c/a = (a + b)/a,

при котором отрезок АС длиннее отрезка СВ. Это общее простейшее
деление отрезка прямой АВ, являющееся логическим выражением
принципа наименьшего действия. Между точками А и В имеется
лишь одна точка C, поставленная таким образом, чтобы длина отрез-
ков АВ, СВ и АС соответствовала принципу простейшего деления;
следовательно, существует только одно числовое выражение, соответствующее отношению a/b. Эту же задачу можно решить путем гео-
метрического построения, известного как деление прямой на две
неравные части таким образом, чтобы соотношение меньшей и боль-
шей частей равнялось соотношению большей части и суммы длин
обеих частей, а это и соответствует формуле

a/b = (a + b)/a,

которую называют «божественная пропорция», «золотое сечение» т.д.

Изучение объективной реальности и задачи практики привели к возникновению наряду с понятием симметрия и понятия асимметрии, которое нашло одно из своих первых количественных выражений в так назыываемом золотом делении, или золотой пропорции.

Пифагор выразил «золотою пропорцию» соотношением:

где Н и R суть гармоническая и арифметическая средние между
величинами А и В.

R = (A + B)/2; H = 2AB/ (A + B).

Кеплер первый обращает вни-
мание на значение этой пропорции в ботанике и называет ее
sectio divina - «божественное сечение»; Леонардо да Винчи назы-
вает эту пропорцию «золотое сечение».

Проведем некоторые преобразования вышеприведенной формулы.
Прежде всего разделим на « b » оба элемента второго члена этого
равенства и обозначим

a/b = x; тогда a/b = (a/b + 1)/(a/b),

или x 2 = x + 1

x 2 - x – 1= 0

Корнями этого уравнения являются

х = 1± Ö5/2 = 1,61803398 .

Это число обладает характернейшими особенностями. Обозначим это число буквой Ф.

Ф = ( Ö5 + 1)/2 = 1,618…; 1/Ф = (Ö5 – 1) /2 = 0,618…;

Ф 2 = -(Ö5 + 3)/2 = 2,618…

Оказывается, что геометрическая прогрессия, в основании которой
лежит Ф, обладает следующей особенностью: любой член этого
ряда равен сумме двух предшествующих ему членов. Ряд 1, Ф, Ф 2 ,
Ф 3 , ..., Ф n является одновременно и мультипликативным, и аддитив-
ным, т. е. одновременно причастен природе геометрической прогрес-
сии и арифметического ряда. Следует обратить внимание на то, что
формула.

Ф = (Ö5 + 1)/2

выражает простейшее асимметрическое деление прямой АВ. С этой
точки зрения данное отношение является «логической» инвариан-
той, проистекающей из счислений отношений и групп. Пеано,
Бертран Рассел и Кутюра показали, что исходя из принципа тождественности можно вывести из этих отношений и групп принципы чистой математики.

Любопытно, что древние архитекторы уже пользовались приемом
асимметричного деления. Так, например, стороны пирамиды Фараона
Джосера относятся друг к другу, как 2: /5, а ее высота относится к большей стороне, как 1: 2.

Интересно, что на сохранившемся до наших дней изображении
древнеегипетского зодчего Хисеры (жил свыше 4,5 тыс. лет тому
назад) имеются две палки - очевидно, эталоны меры. Их длины
относятся, как 1: 1/5, т. е. как меньшая сторона прямоугольного
треугольника к гипотенузе.

Архитектор И. Шевелев рассматривая пропорции древнерусской
архитектуры (церковь Покрова на Нерли и храм Вознесения в
Коломенском) привел убедительные данные, свидетельствующие о том, что русские архитекторы также пользовались пропорциями,
связанными с «золотым сечением».

Пропорция «золотого сечения» дает возможность архитекторам
находить наиболее удачные, красивые, гармоничные сечения целого
и частей, единство разнообразного; в конечном счете они пользуются сочетанием принципов симметрии и асимметрии,

Если в период Возрождения внимание ученых и преподавателей
искусства было приковано к «золотому сечению», то впоследствии
оно постепенно падало, и только в 1855 г. немецкий ученый Цейзинг
вновь ввел его в обиход в своем труде
«Эстетические исследования». В нем он писал, что для того, чтобы
целое, разделенное на две неравные части, казалось прекрасным
с точки зрения формы, между меньшей и большей частями должно
быть то же отношение, что и между большей частью и целым,

Применение «золотого сечения» есть лишь частный случай общего закона периодической повторяемости одной и той же пропорции
в совокупности, в деталях целого,

Рассмотрение вопроса о «золотом сечении» приводит к выводу,
что здесь мы имеем дело с отображением средствами математики
(при помощи понятий симметрии и асимметрии) существующей
в природе пропорциональности.

Все вышеизложенное позволяет утверждать, что взгляды Пифагора и его школы содержали наряду с мистикой и идеализмом
и некоторые плодотворные математические и естественнонаучные
идеи. Впоследствии учение пифагорейцев получило развитие в философии крупнейшего представителя античного идеализма Платона.
Мир, утверждал Платон, состоит из правильных многоугольников,
обладающих идеальной симметрией. Физические тела - это идеальные математические сущности, составленные из треугольников,
упорядоченные демиургом.

Отдельные интересные суждения о симметрии и гармонии мы
встречаем в работах многих философов и естествоиспытателей
(прежде всего Леонардо да Винчи, Лейбница, Декарта, Спенсера,
Гегеля и других). В значительной
степени прав немецкий ученый Венцлав Бодо, когда пишет, что
«философия, за исключением некоторых высказываний, не пыталась
дать объяснение этой интересной стороне природы. На протяжении
веков спорили о причинности, детерминизме и других вопросах,
не видя взаимосвязи их с проблематикой симметрии или не стремясь
к этому. Симметрия, по-видимому, прибавлялась только как искусственная роскошь к довольно узкому готовому миру вещей с их
свойствами и силовыми взаимодействиями, их движениями и изменениями».

В настоящее время в науке преобладают
определения указанных категорий на основе перечисления их важнейших признаков. Например, симметрия определяется как совокупность
свойств: порядка, однородности, соразмерности, пропорциональности, гармоничности и т. д. Асимметрия же обычно определяется
как отсутствие признаков симметрии, как беспорядок, несоразмерность, неоднородность и т. д. Все признаки симметрии в такого рода
ее определениях, естественно, рассматриваются как равноправные,
одинаково существенные, и в отдельных конкретных случаях при
установлении симметрии какого-либо явления можно пользоваться
любым из них. Так, в одних случаях симметрия - это однородность,
а в других - соразмерность и т. д. Очевидно, что по мере развития
нашего познания к определению симметрии можно прибавлять все новые и новые признаки. Поэтому определения симметрии такого
рода всегда неполны.

То же можно сказать и о существующих определениях асимметрии. Очевидно, что в определениях понятий, сформулированных
по принципу перечисления свойств объектов, ими отражаемых,
отсутствует связь между перечисленными свойствами объектов.
Такие свойства симметрии, как, например, однородность и соразмерность, друг из друга не следуют. Сказанное, однако, не означает бесполезности вышеуказанных определений симметрии и асимметрии. Наоборот, они весьма полезны и необходимы. Без них
нельзя дать и более общее определение категорий симметрии
и асимметрии. На основе подобных эмпирических определений
симметрии и асимметрии развиваются определения более общего
характера, сущность которых - в соотнесении частных признаков
симметрии и асимметрии к определенным всеобщим свойствам движущейся материи. «В симметрии,- пишет А. В. Шубников,-
отражается та сторона явлений, которая соответствует покою, а в
дисимметрии (по нашей терминологии в асимметрии) та их
сторона, которая отвечает движению»

Таким образом, все свойства симметрии рассматриваются как
проявления состояний покоя, а все свойства асимметрии - как
проявления состояний движения. Если признать это правильным,
то очевидно, что соотношение симметрии и асимметрии в таком
случае таково же, как соотношение покоя и движения. Мы, следовательно, можем сказать, что симметрия относительна, а асимметрия
абсолютна. Симметрию мы должны, далее, рассматривать как частный случай асимметрии, как ее момент. Поэтому ни о каком равноправии симметрии и асимметрии и речи быть не может. Взаимоотношение симметрии и асимметрии здесь явно асимметрично. Но
вряд ли можно с таких позиций правильно понять многие свойства
симметрии и асимметрии. Почему, например,
такую симметрию пространства, как его однородность, должны
рассматривать как соответствующую покою? Почему мы должны искать симметрию только среди покоящихся
явлений? Разве нет симметрии во взаимодействии и движении явлений мира? Мысль о связи между понятиями симметрии и асимметрии и соответственно между понятиями покоя и движения точнее
можно выразить как единство покоя и движения. Понятие сим-
метрии раскрывает момент покоя, равновесия в состояниях движения, а понятие асимметрии - момент движения, изменения в со стояниях покоя, равновесия. Но и такой формулировкой не охваты­вают основные признаки симметрии и асимметрии. Например, сим­метрия частиц и античастиц и их ассиметрия в известной нам области мира не могут быть истолкованы исходя из понятий о единстве покоя и движения. Вряд ли существование частиц и анти­частиц можно рассматривать как момент покоя в каком-то движении материи, а несоответствие числа частиц числу античастиц в извест­ной нам области мира - как моменты движения в каком-то состоянии покоя. Можно сделать вывод, что в идее А. В. Шубникова о соот­несении симметрии с покоем, а асимметрии - с движением заклю­чается только момент истины.

Хорошо известно, что понятие симметрии охватывает и такие стороны существования явлений, которые ничего общего с покоем не имеют. Например, регулярная повторяемость тех или иных со­стояний движения, их определенная периодичность является одним из признаков симметрии, но к покою, она никакого отношения не имеет. Такой вид асимметрии, как анизотропность пространства, из свойств движения, конечно, выведена быть не может. Тем не менее многие свойства симметрии и асимметрии соответственно связаны с покоем и движением.

К общим определениям понятий симметрии и асимметрии можно подойти исходя из следующих положений:

во-первых, нужно признать, что эти понятия относятся ко всем известным нам атрибутам материи, что они отражают взаимные связи между ними;

во-вторых, эти понятия основываются на диалектике соотно­шения тождества и различия, существующей как между атрибутами материи, так и между их состояниями и признаками;

в-третьих, нужно иметь в виду, что единство симметрии и асим­метрии представляет собой одну из форм проявления закона един­ства и взаимоисключения противоположности. Правильность этих отправных положений может быть доказана как выводом их из многочисленных частных определений симметрии и асимметрии, так и правильностью их следствий, т. е. необходимостью и всеобщностью определений симметрии и асимметрии, полученных на их основе.

Непосредственной логической основой для определения понятий симметрии и асимметрии, на наш взгляд, является диалектика тожде­ства и различия. Здесь нужно отметить, что в диалектике тождество и различие рассматриваются лишь в определенных отношениях, во взаимодействии, во включении различия в тождество, а тождества в различие.

Тождество проявляется только в определенных отношениях и в определенных процессах; тождество всегда конкретно. К тождеству можно отнести: равновесие, равнодействие, сохранение, устойчи­вость, равенство, соразмерность, повторяемость и т. д. Тождество не существует вечно: оно возникает, становится и развивается. Если дать его общее определение, то можно сказать, что оно представляет собой процесс образования сходства в различном и противоположном.

Для того, чтобы имело место тождество, необходимо существо­вание различного и противоположного. Вне различий тождество вообще не имеет смысла, поэтому нельзя говорить о тождественном в тождественном, а только в различном и противоположном.

Характеризуя диалектическое понимание тождества, нужно выделить его следующие стороны: тождество не существует вне различия и противоположности, тождество возникает и исчезает; тождество существует только в определенных отношениях и возника­ет при определенных условиях, наиболее полным выражением тожде­ства является полное превращение противоположностей друг в друга. Проявления тождества бесконечно многообразны. Поэтому в процес­се познания явлений мира нельзя ограничиваться только установ­лением тождества между ними, но необходимо раскрывать то, как возникает это тождество, при каких условиях и в каких отношениях оно существует. Основываясь на этой характеристике диалектики тождества и различия, можно сформулировать следующие опре­деления симметрии и асимметрии.

Действительно ли является всеобщим
сформулированное нами определение понятия симметрии, охватывает
ли оно все известные нам формы проявления симметрии как в объективном мире, так и в процессе нашего познания? Очевидно, что
при ответе на этот вопрос придется ограничиться только наиболее
общими характерными примерами. Представим себе две точки, находящиеся по отношению к какой-то прямой на ее противоположных
сторонах; если эти противоположные точки равноудалены от этой
прямой, то о них говорят как о симметричных по отношению к
данной прямой. Если мы теперь совершим операцию перегиба, то
в результате наши точки полностью совпадут, сольются друг с другом,
следовательно, можно говорить об их полном тождестве. Симметрия
расположения данных точек указывает именно на то, при каком
процессе и при каких условиях они становятся тождественными.
Значит, этот вид симметрии полностью подходит под сформулирован-
ное определение симметрии. Как известно, существует определенная
симметрия между протоном и нейтроном; она выражается в том, что
в условиях сильных взаимодействий они не отличаются друг от друга,
становятся тождественными друг другу. Их симметрия и есть не что иное, как образование тождества между этими различными части-
цами в процессе сильных взаимодействий. В понятии изотопического
спина как раз и выражаются моменты тождества, имеющиеся у
протонов и нейтронов, т. е. их симметрия в условиях сильного
взаимодействия. Но подходят ли под данное определение симметрии
такие общие симметрии пространства и времени, как, например, их
однородность?

Однородность пространства означает, что по отношению к вза-
имодействиям явлений все места в пространстве тождественны и ни-
как не сказываются на характере взаимодействия. Тождествен-
ность всех мест в пространстве (точек в пространстве) по отноше-
нию к взаимодействиям явлений и есть их,строгая полная симметрия.
То же в общем виде можно сказать и об однородности времени.
Тождественность всех временных интервалов по отношению к взаимо-

Действию явлений и есть их строгая и полная,симметрия. На наш
взгляд, нельзя найти ни одного вида симметрии, который бы
противоречил данному нами определению. Но это не значит, что
данное определение симметрии является законченным и вполне
строгим - видимо, будут необходимы какие-то его уточнения.

Сформулированное определение понятия симметрии позволяет
распространить это понятие на все атрибуты материи, на все ее
состояния и структуры, а также на все типы связей и взаимодействий.
Так, группа преобразований Лоренца выражает существующую сим-
метрию во взаимосвязи пространства, времени и движения - этих
атрибутов материи". Симметрия группы изотопического спина выра-
жает тождественные моменты по отношению к сильным взаимодей-
ствиям у частиц, участвующих в этих взаимодействиях.

В первом издании этой книги (1968) мы писали: «Поскольку
существуют различные взаимодействия, и даже во многих отноше-
ниях противоположные, как, например, сильные и слабые, то есте-
ственно допустить, что в них при определенных условиях возникают
и существуют тождественные моменты, т. е. им свойственна опреде-
ленная симметричность. Открытие такой симметрии было бы значи-
тельным шагом вперед в деле создания теории элементарных
частиц. В настоящее время связь между известными видами взаимо-
действия в физике еще не установлена, но можно предвидеть эти
связи исходя из принципа симметрии». Теперь эти связи между
сильным, слабым и электромагнитным взаимодействиями установле-
ны, и это действительно явилось важным звеном в развитии теории
элеменарных частиц. Хотелось бы высказаться против жесткого
разделения многообразных видов симметрии на геометрические и
динамические. Первые отражают свойства симметрии пространства и
времени, а вторые - свойства симметрии состояния взаимодействия.
Но поскольку пространство, время, движение и входящее в него вза имодействие внутренне связаны между собой, должна быть внут-
ренняя связь также между геометрической и динамической сим-
метриями. И она на самом деле существует. Так, симметрия равно-
мерного прямолинейного движения и покоя (одна из черт сим-
метрии группы Галилея), очевидно, не может быть охарактери-
зована только как динамическая или только как геометрическая.
В ней выражены свойства симметрии как пространства и времени",
так и состояния движения. Вообще любая симметрия в своей основе
имеет единство и взаимосвязь различных атрибутов материи. Правда,
не всегда эта взаимосвязь носит непосредственный характер, что
и создает возможность разделения видов симметрии на геометри-
ческие и динамические. Оба эти вида симметрии могут быть вы-
ражены и в динамической, и в геометрической форме. Так, группу
симметрии изотопического спина, которая обычно относится к дина-
мической симметрии, можно выразить и в геометрической форме;
ядерные взаимодействия инвариантны относительно поворотов в изо-
топическом пространстве. Из этой формулировки можно получить
ряд характеристик взаимодействия нуклонов, например, положение
о том, что ядерные силы между протоном и протоном и протоном
и нейтроном одинаковы, и ряд других. При изучении различных видов
симметрии весьма важно учитывать единство атрибутов материи, а
следовательно, и внутреннюю связь между симметриями их свойств
и состояний. Значение этого положения особенно ясно выступает
при изучении вопроса о взаимоотношении группы симметрии и зако-
нов сохранения.

По этому вопросу существуют две точки зрения.

Часть физиков (Берестецкий, Вигнер, Штейнман и др.) утверж-
дает, что фундаментом законов сохранения являются формы геомет-
рической симметрии, в то время как другие, наоборот, считают,
что законы сохранения определяют формы геометрической сим-
метрии.. Согласно первой точке зрения, например, однородность
времени определяет закон сохранения энергии, а согласно второй-
закон сохранения энергии определяет однородность времени. Мы
думаем, что обе точки зрения являются некоторой абсолютизацией
возможных подходов к проблеме. Наличие обеих точек зрения про-
явилось в том, что возникло мнение о разделении законов сохранения
на две группы: наиболее общие из них связаны с геометрическими
симметриями, а менее общие - с динамическими.

Так, законы сохранения оказались разделенными на две группы:
кинематические (основанные на геометрических симметриях) и
динамические (основанные на динамических симметриях). К первой
группе относятся законы сохранения энергии, импульса, момента
импульса, ко второй - закон сохранения электрического заряда,
барионного числа, лептонного числа, изотопического спина и ряд
других.

Такое разделение законов сохранения в итоге основано на игно-
рировании единства атрибутов материи и на таком следствии этого игнорирования, как противопоставление динамических и геоме-
трических симметрий друг другу. Непосредственной же предпосылкой
деления законов сохранения на две группы является убеждение,
что законы сохранения зависят от определенных симметрий.
Бесспорно, что между формами симметрии и законами сохранения
существует глубокая связь, но эту связь нельзя преувеличивать.
С определенными симметриями связаны не сами законы сохранения,"
а определенные формы их проявления. Так, известные нам формы
проявления закона сохранения энергии, конечно, связаны с однород-
ностью времени, но в целом этот закон может быть связан и с другими
геометрическими симметриями, пока нам не известными. Кроме того,
каждый закон сохранения связан и с,определенными формами
асимметрии, об этом подробнее будет сказано ниже.

Формы симметрии и формы закона сохранения всегда взаимосвя-
заны, но в целом как симметрия, так и законы сохранения пред-
ставляют собой две различные, отнюдь не изолированные друг от
друга стороны единой закономерности мира.

Перейдем теперь к характеристике необходимых предпосылок
для определения асимметрии.

Как и для определения симметрии, так и для определения асим-
метрии непосредственной предпосылкой, основанием является диа-
лектика тождества и различия.

Вместе с процессами становления тождества в различном и
противоположном происходят процессы становления различий и
противоположностей в едином, тождественном, целом. Если основой
симметрии можно считать возникновение единого, то основу асим-
метрии нужно полагать в раздвоении единого на противополож-
ные стороны. Понятие асимметрии, как и понятие симметрии,
применимо ко всем атрибутам материи и выражает их различие, их
особенность по отношению друг к другу. Поэтому взаимосвязь
атрибутов материи выражается не только симметрией, но и асиммет-
рией. Применимо понятие асимметрии и к различным состояниям
атрибутов материи и их взаимосвязи. Вообще говоря, где применима
симметрия, там применима и асимметрия, и наоборот.

Исходя из сказанного можно дать следующее определение асим-
метрии: асимметрией называется категория, которая обозначает
существование и становление в определенных условиях и отношениях
различий и противоположностей внутри единства, тождества, цель-
ности явлений мира.

Рассмотрим некоторые виды асимметрии.

Весьма общим видом асимметрии является однонаправленность
хода времени, полнейшая невозможность фактической замены
настоящего прошедшим или будущим, а будущего - прошедшим или
настоящим, в свою очередь прошедшего - настоящим и будущим.
Все эти три состояния времени не заменяют друг друга - в них
на первом плане находится различие. В них нет симметрии. Извест-
ная операция обращения времени, рассматриваемая только как математический прием, основана на том положении, что законы
движения обладают большей устойчивостью и в обозримых интерва-
лах не изменяются. Мы убеждены, что законы явлений мира яв-
ляются вечными и поэтому действуют во всех состояниях времени:
настоящем, прошедшем и будущем. Значит, операция обращения
времени имеет реальный смысл лишь постольку, поскольку в какой-то
мере наше убеждение в полной устойчивости, вечности законов
явлений мира отвечает действительности.

Объективная диалектика обратимых и необратимых процессов
может быть выражена единством симметрии и асимметрии времени.
Необратимость является существенной характеристикой всякого раз-
вития: исходящая и нисходящая, прогрессивная и регрессивная
ветви развития сами по себе необратимы и асимметричны. Однако
соединенные общим и единым процессом развития, они с необходи-
мостью приводят к симметричным ситуациям: повторениям на ка-
чественно новых уровнях спиралеобразного движения.

Особым вариантом понятий симметрии и асимметрии являются
понятия ритма и аритмии. Регулярная повторяемость подавляющего
большинства процессов в природе, их устойчивое чередование (в жи-
вой природе, например, упорядоченная во времени смена поколений,
в неживой природе - повторяющиеся космические процессы) позво-
ляет видеть в ритмических процессах одну из фундаментальных
симметрий природы, С другой стороны, аритмия - это одна из ха-
рактеристик объективной асимметрии, суть которой в нерегулярной
и случайной смене и чередовании процессов. Понятия ритма и арит-
мии могут быть экстраполированы на процесс развития, поскольку
асимметричное время как атрибут развития придает смысл ритму и
аритмии. Вне времени они просто лишены смысла.

Симметрия обращения времени, таким образом, является резуль-
татом абстрагирования от изменчивости, присущей законам явлений
мира. И только в рамках применимости этой абстракции обращение
времени в уравнениях, выражающих законы движения, не противо-
речит действительности. В самом деле, в каких-то очень широких
пределах мы можем считать законы явлений мира вечными, а
следовательно, и допускать операцию обращения времени. Призна-
вая, что у нас сейчас нет никаких оснований утверждать, что в
действительности время может идти и от будущего к прошедшему,
все же в связи с высказанными выше положениями о единстве
атрибутов материи и о взаимопроникновении тождества и различия
напрашивается вопрос: если состояния времени глубоко различны,
то существует ли в каждом различии и тождество?

Время необратимо, его состояния не эквивалентны друг другу,
но, может быть, все же есть и моменты тождества между ними,
может быть, в необратимости времени есть и моменты его обра-
тимости, может быть, его состояния в каких-то отношениях
взаимозаменяемы, как взаимозаменяемы измерения пространства?
Мы думаем, что в различных состояниях времени есть и моменты их тождества, а в общей его необратимости есть моменты его об-
ратимости. Не рассматривая далее этого вопроса, только отметим,
что должны же быть реальные, природные основания для возмож-
ности обратного хода времени в отражении объективных событий,
как, например, на киноленте кадры, движущиеся в обратном на-
правлении? То, что реально существует в отражении, должно иметь
моменты каких-то реальных прообразов и в том, что отражается.
Поэтому в математической модели позитрона как электрона, дви-
жущегося из будущего в прошедшее, есть, видимо, какой-то
реальный смысл. Вообще факты асимметрии так же многочисленны
и многообразны, как и факты симметрии.

Асимметрия - такой же необходимый момент в структуре, в
изменении и во взаимосвязи явлений мира, как и симметрия. Асим-
метрия необходимо имеет место и в самой симметрии. Так, в сим-
метрии состояний покоя и равномерного прямолинейного движения
по отношению к законам движения есть все же асимметричность,
которая состоит в неравноправности этих их состояний и проявляется
в ряде различий между состояниями покоя и равномерного прямо-
линейного движения. У тела, покоящегося в данной системе отсчета
по отношению ко всем другим телам, покоящимся и движущимся
в этой же системе отсчета, скорость будет равна нулю, а у тела
движущегося скорость по отношению ко всем покоящимся и дви-
жущимся телам в данной системе отсчета будет иметь определенное
значение и только в частном случае равна нулю. Отсюда далеко
не полная эквивалентность состояний В практике эта асимметрия проявляется весьма резко - ведь
далеко не безразлично, движется ли поезд из Москвы к Ленинграду
или Ленинград движется навстречу поезду. Очевидно, что энергия
передается для передвижения поезда, а не расходуется на пере-
движение Ленинграда. Операция приближения поезда к Ленинграду
и опе а ии п иближения Ленинграда к поезду не эквивалентны и не взаимозаменяемы.

Весьма общими примерами асимметрии являются асимметрия
между фермионами и бозонами, асимметрия между реакциями
порождения и поглощения нейтрино, асимметрия спинов электронов,
асимметрия в прямых и обратных превращениях энергии.

Уже из определений симметрии и асимметрии следует их не-
разрывное единство.

Это обстоятельство в какой-то мере подчеркнуто А. В. Шубни-
ковым: «Какой бы трактовки симметрии мы ни придерживались, одно
остается обязательным: нельзя рассматривать симметрию без ее
антипода - дисимметрии» (29, 162).

По нашему мнению, более точным является название не «принцип
симметрии», а принцип единства симметрии и асимметрии.

Во всех реальных явлениях симметрия и асимметрия сочетаются
друг с другом. И надо думать, что во всех правильных, т. е. соот ветствующих действительности, научных обобщениях имеют место
не просто те или иные симметрии или асимметрии, а определенные
формы их единства.

Так, в группах преобразования Галилея и Лоренца наряду с чер-
тами симметрии существуют и черты асимметрии.

Например, в преобразованиях Галилея и Лоренца симметричны
все состояния покоя и равномерного прямолинейного движения,
но асимметричны состояния покоя и ускоренного движения.

Задача нахождения единства симметрии и асимметрии каких-
либо явлений сводится к нахождению таких групп операций,
в которых раскрывается как тождественное в различном, так и
различное в тождественном. Поэтому прежде чем поставить задачу
нахождения симметрии в данном явлении или совокупности явле-
ний по отношению к каким-то группам операций, необходимо
установить различия между сторонами данного явления или между
явлениями в их совокупности, так как симметрия представляет собой
наличие тождества не вообще, а только в различном. Если же мы
имеем совокупность абсолютно тождественных явлений, то никакой
симметрии в этой совокупности по отношению к любой группе
операции быть не может.

Значит, прежде чем искать симметрию, нужно найти асимметрию.
Прежде чем была установлена симметрия протонов и нейтронов по
отношению к сильным взаимодействиям, было установлено разли-
чие между ними, их определенная асимметричность по отношению
к электромагнитным взаимодействиям. Частицы и античастицы асим-
метричны потому, что в противоположности между ними имеются
тождественные моменты, в силу чего они и являются зеркальными
отражениями друг друга. Единство симметрии и асимметрии заклю-
чается и в том, что они предшествуют одна другой.

Диалектическое единство, присущее объективным процессам сим-
метрии и асимметрии, позволяет выдвинуть в качестве одного из
принципов познания принцип диалектического единства симметрии
и асимметрии,
согласно которому всякому объекту присуща та или
иная форма единства симметрии и асимметрии. Причем рассмотрение
данного объекта в генезисе выражается в переходе от симметрии к
асимметрии (или наоборот). Заметим, что данный процесс тождест-
вен смене конкретных форм единства симметрии и асимметрии.

Как известно, в объективной действительности не может иметь
места абсолютное единство противоположностей. Именно поэтому
отношение конкретного тождества, т. е. тождества, ограниченного
различиями, и является объективным аналогом гносеологическо-
го единства симметрии и асимметрии.

Всякий принцип познания воплощается в конкретный метод, ору-
дие и средство познающей деятельности. Таким методом может быть
метод перехода от симметрии к асимметрии (или наоборот). Он
позволяет осуществлять объясняющую и предсказывающую функ-
ции в развивающемся знании, а также в определенной мере опти мизировать поисковую деятельность. Этот метод оказывается тесно
связанным с методами сходства и различия, предвидения и гипотезы,
аналогии, экстраполяции.

Если принять за симметрию теоретической системы ее непроти-
воречивость, себетождественность и инвариантность по отношению
к описываемым объектам и явлениям, то развитие научного знания
можно определить как переход к симметрии (т. е. асимметрия- сим-
метрия). В этом случае симметрия выступает как идеализированная
цель познания. Поиск симметрии - это поиск единого и тождествен-
ного в том, что первоначально виделось различныМ, разобщенным.
Всякая более высокая симметрия реализует возможность переноса
научной теории для решения новых познавательных задач.

Упрощая в некоторых случаях теоретические системы, симмет-
рия совсем не обязательно выступает аналогом простоты научного
знания. Поиск новых форм симметрии интуитивно связан со стрем-
лением к порядку, гармонии. Однако нет достаточных оснований
для возведения антропоморфных понятий простоты и красоты тео-
рии в ранг методологических закономерностей (31. 1979. 12, 49 - 60).

Простота и красота - особые варианты симметрии, связанные
с рациональным и эмоциональным (образным) способами постиже-
ния человеком объективного мира. Абсолютизация роли этих понятий
в развивающемся знании представляется нам необоснованной,
поскольку связана с отрывом симметрии от своей диалектической
противоположности - асимметрии.

Асимметрия в познании проявляется как несоответствие тео-
рии и эксперимента, как взаимная противоречивость нескольких
независимых теорий, либо как их внутренняя противоречивость.
Асимметрия служит исходным пунктом в познании, на каждом из
этапов его развития; именно с ней связан процесс научного поиска
истины.

Асимметрия неоднократно играла эвристическую роль в познании.
Примерами являются; эпикурейское представление об отклонении
атомов от прямолинейного движения, несогласие Кеплера с симмет-
рией движения планет по Копернику и др. История науки свиде-
тельствует о том, что именно асимметрия обусловливает появление
в познании новой формы симметрии, которая и выступает в качестве
относительной истины.

Во взаимосвязи с принципом единства симметрии и асимметрии
находится принцип симметрии, согласно которому всякая научная
теория должна быть непротиворечивой и инвариантной отно-
сительно группы описываемых объектов и явлений. Симметрия
теории выражает также адекватность научного познания объектив-
ной действительности. Многие видные ученые (П. Дирак, П. Кюри,
Л. Пастер, А. Пуанкаре, А. Салам) интуитивно использовали прин-
цип симметрии при получении важных теоретических результатов.

Однако принцип симметрии не учитывает того обстоятельства, что всякой научной теории присущи внутренние (не логические, а диалектические) противоречия, а также недостатки, не говоря уже
о действительном или возможном существовании объектов, которые
"она описать не в состоянии. Отрицая, по сути дела, роль асимметрии
(признается только нарушение симметрии), данный принцип не
учитывает особенностей научного познания как процесса развития и
становления.

К ограниченности принципа симметрии следует отнести и то,
что он связан только с выявлением тождественных отношений среди
различных объектов. Между тем в познании не менее широко исполь-
зуется и противоположная процедура - нахождение различного и
противоположного среди тождественных объектов и явлений.

Несомненный интерес представляет статья немецкого философа
Герберта Герца, в которой он рассматривает роль симметрии и
асимметрии в теории элементарных частиц. Он справедливо утвер-
ждает, что «ни одна будущая теория (элементарных частиц.- В. Г.)
не может обойти проблему асимметрии. Из философских сообра-
жений все процессы в мире следует рассматривать как единство
симметрии и асимметрии» (183. 1963. 10; 227; 289). Автор считает, что
применение категорий симметрии и асимметрии, очевидно, приведет
к возникновению новых воззрений в диалектике природы.

Симметрия ассоциируется с гармонией и порядком. И не зря. Потому что на вопрос, что такое симметрия, есть ответ в виде дословного перевода с древнегреческого. И получается, что она означает соразмерность и неизменность. А что может быть упорядоченней, чем строгое определение местоположения? И что можно назвать более гармоничным, чем то, что строго соответствует размерам?

Что означает симметрия в разных науках?

Биология. В ней важной составляющей симметрии является то, что животные и растения имеют закономерно расположенные части. Причем в этой науке не существует строгой симметрии. Всегда наблюдается некоторая асимметрия. Она допускает то, что части целого не совпадают с абсолютной точностью.

Химия. Молекулы вещества имеют определенную закономерность в расположении. Именно их симметрией объясняются многие свойства материалов в кристаллографии и других разделах химии.

Физика. Система тел и изменения в ней описываются с помощью уравнений. В них оказываются симметричные составляющие, что позволяет упростить все решение. Это выполняется благодаря поиску сохраняющихся величин.

Математика. Именно в ней в основном и дается разъяснение, что такое симметрия. Причем большее значение ей уделяется в геометрии. Здесь симметрия — это способность к отображению у фигур и тел. В узком смысле она сводится просто к зеркальному отображению.

Как определяют симметрию разные словари?

В какой бы из них мы ни заглянули, везде встретится слово «соразмерность». У Даля можно увидеть еще и такое толкование, как равномерие и равнообразие. Другими словами, симметричное - значит одинаковое. Здесь же говорится о том, что она скучна, интереснее смотрится то, в чем ее нет.

На вопрос, что такое симметрия, словарь Ожегова уже говорит об одинаковости в положении частей относительно точки, прямой или плоскости.

В словаре Ушакова упоминается еще и пропорциональность, а также полное соответствие двух частей целого друг другу.

Когда говорят об асимметрии?

Приставка «а» отрицает смысл основного существительного. Поэтому асимметрия означает то, что расположение элементов не поддается определенной закономерности. В ней отсутствует всякая неизменность.

Этот термин используется в ситуациях, когда две половины предмета не являются полностью совпадающими. Чаще всего они совсем не похожи.

В живой природе асимметрия играет важную роль. Причем она может быть как полезной, так и вредной. К примеру, сердце помещается в левую половину груди. За счет этого левое легкое существенно меньшего размера. Но это необходимо.

О центральной и осевой симметрии

В математике выделяют такие ее виды:

  • центральная, то есть выполненная относительно одной точки;
  • осевая, которая наблюдается около прямой;
  • зеркальная, она основывается на отражениях;
  • симметрия переноса.

Что такое ось и центр симметрии? Это точка или прямая, относительно которой любой точке тела найдется другая. Причем такая, чтобы расстояние от исходной до получившейся делилось пополам осью или центром симметрии. Во время движения этих точек они описывают одинаковые траектории.


Понять, что такое симметрия относительно оси, проще всего на примере. Тетрадный лист нужно сложить пополам. Линия сгиба и будет осью симметрии. Если провести к ней перпендикулярную прямую, то все точки на ней будут иметь лежащие на таком же расстоянии по другую сторону оси точки.

В ситуациях, когда необходимо найти центр симметрии, нужно поступать следующим образом. Если фигур две, то найти у них одинаковые точки и соединить их отрезком. Потом разделить пополам. Когда фигура одна, то помочь может знание ее свойств. Часто этот центр совпадает с точкой пересечения диагоналей или высот.

Какие фигуры являются симметричными?

Геометрические фигуры могут обладать осевой или центральной симметрией. Но это не обязательное условие, существует множество объектов, которые не обладают ею вовсе. К примеру, параллелограмм обладает центральной, но у него нет осевой. А неравнобедренные трапеции и треугольники не имеют симметрии совсем.

Если рассматривается центральная симметрия, фигур, обладающих ею, оказывается довольно много. Это отрезок и круг, параллелограмм и все правильные многоугольники с числом сторон, которое делится на два.

Центром симметрии отрезка (также круга) является его центр, а у параллелограмма он совпадает с пересечением диагоналей. В то время как у правильных многоугольников эта точка тоже совпадает с центром фигуры.

Если в фигуре можно провести прямую, вдоль которой ее можно сложить, и две половинки совпадут, то она (прямая) будет являться осью симметрии. Интересно то, сколько осей симметрии имеют разные фигуры.

К примеру, острый или тупой угол имеет только одну ось, которой является его биссектриса.

Если нужно найти ось в равнобедренном треугольнике, то нужно провести высоту к его основанию. Линия и будет осью симметрии. И всего одной. А в равностороннем их будет сразу три. К тому же, треугольник обладает еще и центральной симметрией относительно точки пересечения высот.

У круга может быть бесконечное число осей симметрии. Любая прямая, которая проходит через его центр, может исполнить эту роль.

Прямоугольник и ромб обладают двумя осями симметрии. У первого они проходят через середины сторон, а у второго совпадают с диагоналями.

Квадрат же объединяет предыдущие две фигуры и имеет сразу 4 оси симметрии. Они у него такие же, как у ромба и прямоугольника.

Как уже указывалось ранее, негласный лозунг физиков-теоретиков «правильная теория должна быть красивой» находит свое место в построении новых теоретических моделей и связан зачастую с симметрийными представлениями, а эстетический фактор играет при этом не последнее значение.

Интуитивно симметрия в своих простых формах понятна любому человеку и часто мы выделяем ее как элемент прекрасного и совершенного. В известной мере симметрия отражает степень упорядоченности системы. Например, окружность, ограничивающая каплю на плоскости, более упорядочена, чем размытое пятно на этой же площади, и следовательно, более симметрична. Поэтому можно связать изменение энтропии как характеристики упорядочения с симметрией: чем более организовано вещество, тем выше симметрия и тем меньше энтропия.

Одно из определений понятий симметрии и асимметрии дал В. Готт : симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. если хотите, некий элемент гармонии. Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы. Таким образом и из соображений симметрии-асимметрии мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида.

Однако в общем смысле понятие симметрии гораздо шире и ее можно понимать как неизменность (инвариантность) каких-либо свойств объекта по отношению к преобразованиям, операциям, выполняемым над этим объектом. Причем это может быть не только материальный объект, но и закон, математическая формула или уравнения, в том числе и нелинейные, которые, как мы уже знаем из разд. 1.7, играют большую роль в самоорганизующихся процессах.

Дать более конкретное определение симметрии, чем у Готта, в общем случае затруднительно еще и потому, что она принимает свою форму в каждой сфере человеческой деятельности. Как мы обсуждали только что в предыдущем разделе, в искусстве симметрия может проявиться в соразмерности и взаимосвязанности, гармонизации отдельных частей в целом произведении. Что касается математических построений, то там также имеют место симметричные многочлены, которые можно использовать для существенного упрощения решения алгебраических и дифференциальных уравнений . Особенно полезным оказалось использование симметрийных представлений в теории групп с введением инварианта, т.е. такого преобразования, когда соотношения между переменными не изменяются. Отражением связи пространства, симметрии и законов сохранения может служить мысль великого французского математика А. Пуанкаре: «Пространство - это группа».

Наиболее наглядное и непосредственное применение идей симметрии имеет место в кристаллографии и физике твердого тела, изучающих физические свойства кристаллов в зависимости от их строения. Даже непосвященному человеку хорошо видна здесь ассоциация с неким совершенством, порядком и гармонией. Симметрия является для мира кристаллов естественной базой их физической сущности. Один из создателей современной физики твердого тела Дж. Займен вообще считал, что вся теория твердых тел основана на трансляционной симметрии. Здесь симметрия проявляется при совмещении геометрических тел, например правильных многогранников при повороте их в пространстве на определенные углы, а также при перемещениях в атомной решетке на определенные величины векторов трансляции, кратных периоду решетки:

(1.8.1)
где - вектор обратной решетки реального кристалла, = 1/a (a - период решетки), - волновой вектор.

Более глубокое понимание и применение симметрии связано, как мы уже рассматривали в главе 1.2, с изучением и обоснованием законов сохранения, отражающих фундаментальные свойства пространства-времени. Напомним, что симметрия относительно произвольного сдвига во времени приводит к закону сохранения энергии для консервативных (замкнутых) систем

E = const. (1.8.2)
Неизменность характеристик физической системы при произвольном перемещении ее как целого в пространстве на произвольный вектор приводит к закону сохранения импульса

P = mv = const, (1.8.3)
И, наконец, симметрия относительно произвольных пространственных поворотов (изотропность пространства) связана с законом сохранения момента импульса

(1.8.4)
Так как категория симметрии относится к любому объекту или понятию, то она в полной мере применяется, например, к физическому закону. А поскольку суть физического закона - нахождение и вычисление идентичного в явлениях, то для инерциальных систем, согласно принципу относительности Галилея, эти физические законы будут во всех системах одинаковы. Следовательно, они инвариантны относительно описания явлений как в одной инерциальной системе, так и другой и тем самым сохраняют симметрию, В 1918 г. были доказаны теоремы Нетер, смысл одной из которых состоит в том, что различным симметриям физических законов соответствуют определенные законы сохранения. Эта связь является настолько всеобщей, что ее можно считать наиболее полным отображением понятия сохранения субстанций и законов, их описывающих, в природе. Как сказал Р. Фейнман: «Среди мудрейших и удивительных вещей в физике эта связь - одна из самых красивых и удивительных».

Различие видов симметрии связано с разными способами пространственно-временного преобразования одной инерциальной системы в другую инерциальную систему. Остановимся на этом несколько подробнее. Каждому такому пространственно-временному преобразованию соответствует определенный вид симметрии. Так, перенос начала координат в произвольную точку пространства при неизменности физических свойств связан с симметрий таких преобразований (это как раз и есть трансляционная симметрия) и означает физическую эквивалентность всех точек пространства, т.е. его однородность.

Поворот координатных осей в пространстве связан с физической эквивалентностью разных направлений в пространстве и означает изотропность пространства. Симметрия относительно переноса во времени связана с физической эквивалентностью различных моментов времени, что должно также отражать идею независимости хода времени от его начала (время протекает одинаково). Откуда, кстати, следует, что однородность времени проявляется в его равномерном течении. Такое заключение позволяет полагать, что относительная скорость всех процессов, протекающих в природе, одинакова. Этот факт равномерности течения времени был установлен экспериментально с точностью до 10-14 с за период ~10 миллионов лет. В качестве примера можно привести тот факт, что спектральный состав излучения атомов звезд, испущенного миллионы лет тому назад и воспринимаемого нами только сейчас, такой же, как спектральный состав таких же атомов на Земле.

В классической релятивистской механике симметрия выражается в принципе относительности. Равномерное и прямолинейное движение системы отсчета, в принципе любого тела, с произвольной скоростью, но меньшей, чем скорость света, связано с симметрией и физической эквивалентностью такого движения и покоя. Это подтверждается уже рассмотренным экспериментальным примером неразличимости параметров движения объекта в движущемся равномерно и прямолинейно поезде и поезде, стоящем неподвижно на путях. Как мы знаем, при скоростях используются упомянутые ранее принцип относительности и преобразования Галилея, при v ~ c (релятивистские скорости) - принцип относительности Эйнштейна и преобразования Лоренца. Такого рода симметрию (неразличимость покоя и равномерно-прямолинейного движения) можно условно определить как изотропию пространства-времени. Эти виды симметрии объединяются в СТО в единую симметрию четырехмерного пространства-времени.

Заметим также, что проблемы симметрии-асимметрии оказываются связанными между собой глубже, чем это кажется исходя из бинарной структуры этих понятий (да-нет). В качестве примера можно привести состояние человека во вращающейся центрифуге. Есть симметрия вращения (поворота), но относительность покоя и вращательного движения нарушается и человек в такой центрифуге по своему состоянию (вестибулярные ощущения) может определить, что его вращающаяся закрытая (герметизированная) камера на центрифуге вращается. Таким образом, возникает ситуация, при которой физические законы не инвариантны относительно вращения, т.е. налицо асимметрия.

То же можно сказать и о так называемых преобразованиях подобия, связанных с изменением масштабов физических систем. Асимметрия относительно масштабных преобразований связана с тем, что порядок размеров атомов имеет одинаковое для всей Вселенной значение (~10-10 м). И если мы будем уменьшать размеры, например изделий микроэлектроники, в том числе и пленочных, то характер поведения электронов в них изменится (возникают размерные эффекты), т.е. опять-таки может возникнуть асимметричность процессов при таких размерах. Другой пример несимметрии относительно масштабов в биологии приводит Б. Свистунов : несмотря на похожесть окраски, нельзя, например, раскормить осу до размеров тигра, так как при массе 10-100 кг она потеряет способность летать - возникает другое качество.

В связи с этими примерами имеет смысл рассмотреть другие виды симметрии. Упомянутые выше пространственно-временные симметрии условно объединяет одно общее свойство - они являются как бы «внешними» симметриями в том смысле, что отражают глубокие свойства структуры пространства-времени, представляющей собой форму существования любого вида материи, и поэтому справедливой для любых мыслимых взаимодействий и физических процессов. Весь физический опыт познания мира показывает отсутствие нарушений инвариантности законов природы относительно указанных пространственно-временных преобразований. В этом уже не только физический, но и философский смысл познания и установления объективности законов природы.

Однако во «внешних» симметриях не затрагивается «внутренний мир» физического объекта и он никак не связан с внешними свойствами. В природе кроме рассмотренных законов сохранения энергии, импульса и момента импульса существуют и другие законы сохранения, которые выполняются с той или иной степенью общности, в частности закон сохранения электрического заряда. В физике элементарных частиц, как мы видели, имеются и другие сохраняющиеся (или по крайней мере введенные так) величины, подобные электрическому заряду, - барионное число, четность, изоспин, ароматы (странность, очарование, красота и т.д.). Эти по сути квантовые числа обусловлены фазовыми преобразованиями волновой функции ψ и в целом не связаны со свойствами пространства-времени. Симметрия играет важную роль в исследовании физики микромира. Наш физик-теоретик А. Мигдал считал, что главными направлениями физики XX века были поиски симметрии и единства картины мира .

Сохранение подобных величин, непосредственно не связанных со свойствами пространства-времени, относится к понятию «внутренней» симметрии. Остановимся на законе сохранения электрического заряда. Смысл его в том, что сохраняется во времени алгебраическая сумма зарядов любой электрической изолированной системы. Математическом смыслом закона сохранения заряда является уравнение непрерывности

(1.8.5)
где j - плотность тока, ρ - объемная плотность заряда. Физический смысл этого уравнения состоит в том, что div j - расходимость тока (его движение) - связана с изменением во времени, т.е. перемещением электрического заряда. Электрический ток - направленное движение свободных электрических частиц. Физический смысл (1.8.5) отражает факт несотворимости и неуничтожимости электрического заряда.

Нужно подчеркнуть, что сохранение электрического заряда в изолированных (замкнутых) системах не сводится к сохранению числа заряженных частиц. Так при β-распаде нейтрона, не имеющего заряда, возникают ρ (с зарядом e+), электрон (заряд e-) и антинейтрино, также не имеющее заряда. В этой реакции появились две электрически заряженные частицы, но их суммарный заряд равен нулю, как и у породившего их нейтрона. Отметим, что важным следствием закона сохранения заряда является устойчивость электрона. Электрон является самой легкой электрически заряженной частицей. Поэтому ему просто не на что распадаться так как в этом случае нарушился бы закон сохранения электрического заряда. По современным представлениям время жизни электрона не менее 1019 лет, что говорит в пользу этого закона.

Прежде чем перейти к другим «внутренним» симметриям, остановимся еще на двух видах дискретной симметрии, которые отличаются от рассмотренных «непрерывных» симметрий сдвига и поворота. Это хорошо известная всем нам уже давно зеркальная симметрия, которая описывается пространственной инверсией, т.е. отражением системы координатных осей. Инверсия пространства осуществляется «сразу» (в зеркале), а ее повторное применение возвращает систему в исходное состояние. Это отражение называется операцией изменения «четности» (пример с теннисистом в зеркале). Другой дискретной симметрией является симметрия относительного обращения времени, приводящая к тому, что в симметричной Вселенной законы природы не изменяются при замене направления течения времени на обратное (t = -t и наоборот). Применение данной симметрии показывает, что направление возрастания времени (движение в одну сторону) не играет существенной роли. С равной вероятностью возможен и обратный процесс. Другими словами, установить путем наблюдения направление развития событий, в будущее или в прошлое, для равновесной симметричной системы невозможно. Если вы помните, мы приходили к такому же результату для детерминированной механики Галилея - Ньютона в замкнутых системах. Но одновременно мы уже знаем и о существовании «стрелы времени» для открытых неравновесных систем. И это еще раз показывает неумолимо, что время все-таки «течет» от прошлого к будущему и наша Вселенная неравновесна и асимметрична. Заметим однако, что понятие энтропии не однозначно применимо к микромиру, и, следовательно, изучая его, нельзя установить направление времени.

Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые, как мы знаем из главы 1.5, движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции |ψ|2. Перестановочная симметрия и заключается в том, что при «перестановке» квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная |ψ|2 = const.

Исследование реакций с участием элементарных частиц и античастиц, а также процессов их распада привело к открытию некоторых новых свойств симметрии, а именно зарядовой симметрии, или, более точно, зарядовой симметрии частиц и античастиц. При изучении ядерных взаимодействий нуклонов (сильные взаимодействия) было обнаружено, что эти ядерные силы почти не зависят от типа нуклонов, т.е. при этих взаимодействиях нет различия между нейтроном и протоном, оба они есть два состояния одной частицы - нуклона. Аналогично, μ-мезон может находиться в трех состояниях, соответствующих трем различным частицам. Такие состояния называются изотопическими и они характеризуются изотопическим спином или изоспином. Симметрия, связанная с этими процессами, и получила название изотопической симметрии.

С теорией элементарных частиц, типами взаимодействия полей и попыткой введения единого поля связаны еще два вида симметрии: кварк-лептонной и калибровочной. Кварк-лептонная симметрия проявляется в единой теории поля. Считается, что по существу кварки и лептоны не различимы в области очень больших энергий. Но в случае спонтанного нарушения симметрии и в области низких энергий они приобретают совершенно различные свойства. Тем самым установлено, что между кварками и лептонами возможны переходы. Этот факт может служить еще одним убедительным доказательством единства природы.

Калибровочная симметрия связана с масштабными преобразованиями, представляющими сдвиги нулевых уровней скалярного и векторного потенциалов полей. Сам термин «калибровочное поле» (преобразование, инвариантность) выдвинул немецкий математик Г. Вейль. Смысл идеи состоит в том, что физические законы не должны зависеть от масштаба длины, выбранного в пространстве, и не должны изменять свой вид при замене этого масштаба на любой другой. С обычной логикой это вроде бы самоочевидно: почему действительно законы Ньютона будут другими, если мы будем измерять путь в метрах, сантиметрах или в мегапарсеках. Однако значение изменения масштаба состоит в том, что оно имеет принципиально не физический характер, так как не вызвано какими-либо физическими воздействиями, а геометрический, в частности, изменение длины обусловлено лишь особенностями структуры пространства-времени. Тем самым пространство-время перестает быть лишь пассивным резервуаром вещества и поля, где происходят физические процессы, оно само начинает активно влиять на эти процессы. Геометрия приобретает динамический характер.

Особое значение приобретает принцип калибровочной инвариантности, если преобразования приходят локально в каждой точке пространства-времени и неоднородно, т.е. с изменяющимся соотношением от точки к точке. Вот это преобразование Г. Вейль и назвал масштабным или калибровочным. Его формулировка звучит так: все физические законы инвариантны относительно произвольных (однородных и неоднородных) локальных калибровочных преобразований. В таком виде принцип Вейля является по существу развитием общего принципа относительности Эйнштейна, что все физические законы в любой системе отсчета (инерциальной и неинерциальной) должны иметь одинаковый вид. Уместно в связи с этим заметить, что теория Эйнштейна была первой теорией, в которой геометрический фактор (искривление пространства-времени) напрямую связывался с физической характеристикой (гравитационной массой), что послужило в настоящее время дальнейшему развитию идей геометродинамики . Эти преобразования масштаба оставляют силовые характеристики поля (например Е и В для электромагнитного поля) неизменными. На основе калибровочной симметрии построены теории электрослабого и электросильного взаимодействий. Из этой симметрии следует, что частицы, обладающие определенными свойствами, которые объединяются понятиями «заряда» (электрический, барионный, лептонный), «цвета» кварков, являются источниками полей, если хотите, материальными носителями этих полей.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрий имеют, естественно, определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии в физике можно ввести некую структуру, учитывающую четыре фактора.

1. Объект или явление, которое исследуется.
2. Преобразование, по отношению к которому рассматривается симметрия.

3. Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения.

4. Границы применимости различных видов симметрии.
Заметим также, что изучение симметричных свойств физических систем или законов требует привлечения специального математического анализа, в первую очередь, представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.

В целом же из законов сохранения, которые, как мы уже поняли, являются следствием пространственно-временной симметрии законов самой природы, следует условность разделения физики на механику, термодинамику, электродинамику и т.д. и, следовательно, налицо неразрывность единства всей природы.

Не останавливаясь здесь более подробно на понятиях физики живого, чему будет посвящена специально вторая часть данного курса, рассмотрим идеи симметрии-асимметрии применительно к проблемам объектов живой и неживой природы. По существу это философский, если хотите, но с естественнонаучной точки зрения вопрос о возникновении, развитии и сущности жизни. Чем отличаются молекулы живых веществ от неживых? В какой-то мере это связано с симметрией, точнее зеркальной симметрией. Если рассмотреть пример зеркального изображения двух молекул неорганического вещества воды и органического, но «неживого» вещества - бутилового спирта (рис.), то принципиальное различие проявляется в том, что молекула Н2О зеркально симметрична, а молекула спирта зеркально асимметрична.

«Левая» и «правая» молекулы, не совпадают как левая и правая рука человека. Асимметричные молекулы в химии называют стереоизомерами, а само свойство зеркальной асимметрии носит название киральности или хиральности (от греческого слова «кир» - рука). Так вот, выяснилось, что в природе хиральностью обладают и «живые», и «неживые» молекулы, но «живые» всегда только хиральны, причем «неживые» хиральные молекулы равновероятно встречаем и в левом, и в правом варианте, а «живые» - только или в левом, или в правом. В этом смысле молекулы живых организмов хирально чисты. Так, ориентация ДНК-спирали всегда правая. В свое время Л. Пастер, а затем и В.И. Вернадский предлагали на этом принципиальном различии провести раздел между живой и неживой природой. Предполагают, что основополагающим признаком возникновения и развития жизни и является способность живых организмов извлекать и конструировать из симметричных и хирально нечистых молекул окружающей среды хирально чистые молекулы, необходимые для живого организма. Примером может служить извлечение растениями из симметричных молекул воды и углекислого газа в процессе фотосинтеза асимметричных молекул крахмала и сахара. Наряду с другими питательными веществами эти молекулы поступают в пище живых организмов и из них образуются уже хирально чистые молекулы. Если хиральность молекул веществ пищи изменится на противоположную, то эти вещества окажутся для живого организма биологическим ядом, они отторгаются организмом, ведут его к гибели. Это достаточно характерный пример того, как исходя из симметрийных представлений физики мы можем объяснить, если хотите, происхождение живой материи и даже дать рекомендации практической медицине.

В общем смысле мы можем считать, что и возникновение жизни в целом связано со спонтанным нарушением имевшейся до того в природе зеркальной симметрии. Предполагается, что асимметрия возникла скачком в результате Большого Биологического взрыва, по аналогии с БВ, в результате которого образовалась Вселенная, под действием радиации, температуры, полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс по существу также является процессом самоорганизации, который мы рассматривали в подразд. 1.7. В какой-то точке бифуркации произошел и самоорганизующий акт возникновения уже живой материи.

Уместно теперь связать симметрию с энтропией живых организмов. Переход вещества на более высокую степень организации, упорядоченности, как мы уже отмечали, снижает энтропию как меру хаотичности. Но наибольшей симметрией обладает как раз равновесное хаотическое состояние. Значит, уменьшение энтропии неизбежно приводит к уменьшению симметрии, т.е. увеличению асимметрии живых организмов. Чем выше уровень организации материи, тем меньше энтропия и симметрия. Но для снижения энтропии живых организмов как открытых систем, обменивающихся энергией и материей (пища и отправления) с окружающей средой, необходима энергия, причем значительная, которая, как мы увидим далее, вырабатывается в соответствующих частях клеток (митохондриях) живых организмов за счет пищи, т.е. поглощения энергии внешней среды (Солнца и биосферы).

Можно образно сказать, что мы забираем от природы более организованную структурированную материю, обладающую меньшей энтропией, т.е. подпитываем себя негэнтропией (отрицательной энтропией), а отдаем ей неструктурированную материю, обладающую большей энтропией. «Питаемся» так сказать, с энергетической физической точки зрения, отрицательной энтропией, а отдаем положительную энтропию. И когда в естественных условиях этот баланс нарушается, то наступает некоторое динамическое равновесие - обмен энтропией между человеком и окружающей средой стабилизируется, энтропия системы человек - окружающая среда возрастает, и живой организм гибнет (энтропия его возросла). Поэтому биологическая смерть организма - это рост энтропии до ее уровня в окружающей среде. Повышение же энергетического потенциала в живом организме при «нормальном» обмене энтропией его с окружающей средой увеличивает химическую активность клеток и дает возможность самовоспроизведения и развития.

Можно сказать, что по мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует на симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия - разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Можно задаться вопросом, есть ли другие виды симметрии и связанные с ними законы сохранения. В чем состоит глубокое значение законов сохранения электрического заряда, лептонного и барионного чисел, странностей, изотопического спина и т.д.? Как это связано со свойствами абстрактного пространства? В чем смысл наличия «черных дыр» как неких «пропускных пунктов» из нашего пространства, мира, в другой антимир? К сожалению, пока на эти вопросы мы ответа не имеем, хотя и хорошо, что современная наука дает возможность их задавать.

Правда, по поводу задаваемых вопросов существует следующий физический анекдот. Паули очень любил задавать вопросы, на которые не всегда можно найти правильные ответы (их вообще могло и не быть!). Когда он умер, то продолжал свое любимое занятие на том свете. И там никто не мог ответить на его вопросы. Тогда он решил обратиться к Богу. Господь терпеливо и внимательно выслушал его и ответил: «Вся трудность, Паули, в том, что Вы задаете не те вопросы».

Прошли тысячелетия, прежде чем человечество в ходе своей
общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде
всего в природе две тенденции: наличие строгой упорядоченности,
соразмерности, равновесия и их нарушения.

Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на
деревьях, лепестков, цветов, семян растений и отобразили эту
упорядоченность в своей практической деятельности, мышлении
и искусстве.

Понятие «симметрия» употреблялось в двух значениях. В одном
смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с
помощью которого они объединяются в целое. Второй смысл этого
слова - равновесие.

Греческое слово snmmetra означает однородность, соразмерность,
пропорциональность, гармонию.

Познавая качественное многообразие проявлений порядка и
гармонии в природе, мыслители древности, особенно греческие
философы, пришли к выводу о необходимости выразить симметрию
и в количественных отношениях, при помощи геометрических
построений и чисел.

Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека
своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства
всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства.

Следует обратить внимание и на учение Пифагора о гармонии.
Известно, что если уменьшить длину струны или флейты вдвое,
тон повысится на одну октаву. Уменьшению в отношении 3:2 и
4:3 будут соответствовать интервалы квинта и кварта. То, что важнейшие гармонические интервалы получаются при помощи отношений чисел 1, 2 и 3, 4, пифагорейцы использовали для своих мистических выводов о том, что «все есть число» или «все упорядочивается в соответствии с числами». Сами эти числа 1, 2, 3, 4 составляли
знаменитую «тетраду». Очень древнее изречение гласит: «Что есть
оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма
сирен». Геометрическим образом тетрады является треугольник из
десяти точек, основание которого составляют 4 точки плюс 3,
плюс 2, а одна находится в центре.

В геометрии, механике - всюду, где мы имеем дело с отрезками
прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений
между предметами в объективном мире. Чтобы пояснить это положение, можно выбрать на данной прямой АВ любую третью точку С.
Таким образом, совершается переход от единства к двойственности,
и мысль этим самым приводит к понятию пропорции. Следует
подчеркнуть, что соотношение есть количественное сравнение двух
однородных величин, или число, выражающее это сравнение. Про-
порция есть результат согласования или равноценности двух или нескольких соотношений. Следовательно, необходимо наличие
не менее трех величин (в рассматриваемом случае прямая и два
ее отрезка) для определения пропорции. Деление данного отрезка
прямой АВ путем выбора третьей точки С, находящейся между
А и В, дает возможность построить шесть различных возможных
соотношений:

a:b ; a:c ; b:a ; b:c ; c:a ; c:b

при условии отметки соответствующей длины отрезков прямой бук-
вами «а», «b», «с» и применения к данной длине любой системы
мер. Проанализировав возможные случаи деления отрезка АВ на
две части, мы приходим к выводу, что отрезок можно делить на:

1) две симметрические части a=b; 2) a:b = c:a

Так как c = a + b, то

a/b = (a + b)/a ;

((a + b)/a очевидно, превосходит единицу); дело обстоит так же и в отношении а/b; значит, «а» превосходит « b » и точка «С» стоит ближе к В, чем
к A.

Это соотношение a:b = c:a или AC/CB = AB/AC

может быть выражено следующим образом: длина АВ была разделе-
на на две неравные части таким образом, что большая из ее частей
относится к меньшей, как длина всего отрезка АВ относится

к его большей части:

3) a/b = b/c равноценно a/b = b/(a + b).

В этом случае «b» больше «а»; точка С ближе к А, чем к В, но отношения те же, что и во втором случае,

Рассмотрим равенство

a/b = c/a = (a + b)/a,

при котором отрезок АС длиннее отрезка СВ. Это общее простейшее
деление отрезка прямой АВ, являющееся логическим выражением
принципа наименьшего действия. Между точками А и В имеется
лишь одна точка C, поставленная таким образом, чтобы длина отрез-
ков АВ, СВ и АС соответствовала принципу простейшего деления;
следовательно, существует только одно числовое выражение, соответствующее отношению a/b. Эту же задачу можно решить путем гео-
метрического построения, известного как деление прямой на две
неравные части таким образом, чтобы соотношение меньшей и боль-
шей частей равнялось соотношению большей части и суммы длин
обеих частей, а это и соответствует формуле

a/b = (a + b)/a,

которую называют «божественная пропорция», «золотое сечение» т.д.

Изучение объективной реальности и задачи практики привели к возникновению наряду с понятием симметрия и понятия асимметрии, которое нашло одно из своих первых количественных выражений в так назыываемом золотом делении, или золотой пропорции.

Пифагор выразил «золотою пропорцию» соотношением:

где Н и R суть гармоническая и арифметическая средние между
величинами А и В.

R = (A + B)/2; H = 2AB/ (A + B).

Кеплер первый обращает вни-
мание на значение этой пропорции в ботанике и называет ее
sectio divina - «божественное сечение»; Леонардо да Винчи назы-
вает эту пропорцию «золотое сечение».

Проведем некоторые преобразования вышеприведенной формулы.
Прежде всего разделим на « b » оба элемента второго члена этого
равенства и обозначим

a/b = x; тогда a/b = (a/b + 1)/(a/b),

или x 2 = x + 1

x 2 - x – 1= 0

Корнями этого уравнения являются

х = 1± Ö5/2 = 1,61803398 .

Это число обладает характернейшими особенностями. Обозначим это число буквой Ф.

Ф = ( Ö5 + 1)/2 = 1,618…; 1/Ф = (Ö5 – 1) /2 = 0,618…;

Ф 2 = -(Ö5 + 3)/2 = 2,618…

Оказывается, что геометрическая прогрессия, в основании которой
лежит Ф, обладает следующей особенностью: любой член этого
ряда равен сумме двух предшествующих ему членов. Ряд 1, Ф, Ф 2 ,
Ф 3 , ..., Ф n является одновременно и мультипликативным, и аддитив-
ным, т. е. одновременно причастен природе геометрической прогрес-
сии и арифметического ряда. Следует обратить внимание на то, что
формула.

Ф = (Ö5 + 1)/2

выражает простейшее асимметрическое деление прямой АВ. С этой
точки зрения данное отношение является «логической» инвариан-
той, проистекающей из счислений отношений и групп. Пеано,
Бертран Рассел и Кутюра показали, что исходя из принципа тождественности можно вывести из этих отношений и групп принципы чистой математики.

Любопытно, что древние архитекторы уже пользовались приемом
асимметричного деления. Так, например, стороны пирамиды Фараона
Джосера относятся друг к другу, как 2: /5, а ее высота относится к большей стороне, как 1: 2.

Интересно, что на сохранившемся до наших дней изображении
древнеегипетского зодчего Хисеры (жил свыше 4,5 тыс. лет тому
назад) имеются две палки - очевидно, эталоны меры. Их длины
относятся, как 1: 1/5, т. е. как меньшая сторона прямоугольного
треугольника к гипотенузе.

Архитектор И. Шевелев рассматривая пропорции древнерусской
архитектуры (церковь Покрова на Нерли и храм Вознесения в
Коломенском) привел убедительные данные, свидетельствующие о том, что русские архитекторы также пользовались пропорциями,
связанными с «золотым сечением».

Пропорция «золотого сечения» дает возможность архитекторам
находить наиболее удачные, красивые, гармоничные сечения целого
и частей, единство разнообразного; в конечном счете они пользуются сочетанием принципов симметрии и асимметрии,

Если в период Возрождения внимание ученых и преподавателей
искусства было приковано к «золотому сечению», то впоследствии
оно постепенно падало, и только в 1855 г. немецкий ученый Цейзинг
вновь ввел его в обиход в своем труде
«Эстетические исследования». В нем он писал, что для того, чтобы
целое, разделенное на две неравные части, казалось прекрасным
с точки зрения формы, между меньшей и большей частями должно
быть то же отношение, что и между большей частью и целым,

Применение «золотого сечения» есть лишь частный случай общего закона периодической повторяемости одной и той же пропорции
в совокупности, в деталях целого,

Рассмотрение вопроса о «золотом сечении» приводит к выводу,
что здесь мы имеем дело с отображением средствами математики
(при помощи понятий симметрии и асимметрии) существующей
в природе пропорциональности.

Все вышеизложенное позволяет утверждать, что взгляды Пифагора и его школы содержали наряду с мистикой и идеализмом
и некоторые плодотворные математические и естественнонаучные
идеи. Впоследствии учение пифагорейцев получило развитие в философии крупнейшего представителя античного идеализма Платона.
Мир, утверждал Платон, состоит из правильных многоугольников,
обладающих идеальной симметрией. Физические тела - это идеальные математические сущности, составленные из треугольников,
упорядоченные демиургом.

Отдельные интересные суждения о симметрии и гармонии мы
встречаем в работах многих философов и естествоиспытателей
(прежде всего Леонардо да Винчи, Лейбница, Декарта, Спенсера,
Гегеля и других). В значительной
степени прав немецкий ученый Венцлав Бодо, когда пишет, что
«философия, за исключением некоторых высказываний, не пыталась
дать объяснение этой интересной стороне природы. На протяжении
веков спорили о причинности, детерминизме и других вопросах,
не видя взаимосвязи их с проблематикой симметрии или не стремясь
к этому. Симметрия, по-видимому, прибавлялась только как искусственная роскошь к довольно узкому готовому миру вещей с их
свойствами и силовыми взаимодействиями, их движениями и изменениями».

Симметрия

Асимметрия

Ритм – это чередование каких-либо элементов в определенной последовательности.

Ритм – одно из средств, наиболее часто употребляемых для создания гармоничной композиции. Это средство отражает связь человеческой природы и деятельности, в том числе и творческой, с мирозданием...

Действительно, разве можно отрицать, что многие процессы жизнедеятельности человека протекают циклично? Человек ощущает ритмы сердца, дыхания, ритмично двигается при ходьбе, беге, танце. Любая трудовая деятельность связана с ритмичными движениями, то есть с повторами. Важнейшие признаки ритма – это повторяемость явлений, элементов или форм, закономерность их чередования. «Ритм» буквально означает «такт, мерность» (от греческого «рафмос»).

Ритмы можно разделить на:

- метрический или монотонный (повторение без изменения);

- направленный (к чередованию добавляются закономерные изменения);

- повторение ;

- ритм с группированием .

По характеру линий ритм можно разделить на прямолинейный и криволинейный .

Ритм бывает простым , когда меняется какая-то одна закономерность (меняться форма, цвет, фактура или расстояние между элементами), и сложным , когда в ритме изменения происходят сразу по нескольким параметрам. Например, меняется конфигурация формы и происходит насыщение по цвету, или изменяется расстояние между элементами и одновременно уменьшается форма, которая также изменяет свою фактурную характеристику.

Для метрических композиций характерна статика. Статика – это состояние покоя, равновесия. Ярким примером метрического ряда служит орнамент.

Хотя метрический повтор сам по себе уже закономерность, но это еще не гармония. Если бесконечно повторять одну и ту же ноту в музыке или строить архитектурную композицию на повторении только одного элемента, гармония не возникает. По-видимому, мы начинаем воспринимать повтор как некий порядок с момента, когда перестаем мгновенно улавливать количество элементов. С этой точки зрения и пять повторов еще не ряд, поскольку мы подсознательно считаем его элементы. Когда же количество повторов переходит за шесть, семь, мы перестаем считать их, воспринимая элементы не в отдельности, а как группу.


Однако природа не терпит однообразия и монотонности. Нельзя найти двух одинаковых деревьев или двух одинаковых камушков - при всем своем сходстве и общих признаках они все-таки различаются определенными параметрами. Наше восприятие окружающей действительности устроено точно так же - нас раздражает монотонный стук падающих капель из крана, навевает скуку ровный, без изъянов и характерных деталей забор, выводит из себя бесконечно длинный и монотонный бразильский сериал со своими повторами сюжетной схемы помногу раз...

Поэтому любой ритм в дизайне следует изменять перед самой той границей, когда он начинает становиться монотонным. Все хорошо в меру, и эту меру хорошо бы знать или чувствовать. Самый простой способ постичь это - поставить себя на место зрителя.

Вполне возможно использования в композициях сочетания метра и ритма. Метрическое повторение ритмических рядов помогает создавать весьма оригинальные произведения. Казалось бы, используя одно и то же средство, нельзя добиться такого большого разнообразия решений. Но, например, художник В. Вазарели всем своим творчеством доказывает обратное. Каждая его работа своеобразна и неповторима.

Любой сбой в ритме привлекает внимание, нарушая ритм можно расставить нужные акценты.

Ритм является одной из «волшебных палочек», с помощью которых можно передать движение на плоскости.

Почему же ритм передает движение? Это связано с особенностью нашего зрения. Взгляд, переходя от одного изобразительного элемента к другому, ему подобному, сам как бы участвует в движении.

Симметрия (от греч. тождество, подобие, соответствие) – это соответствие фигуры относительно оси симметрии, точки или плоскости.

Асимметрия – нарушение равновесия, баланса

Симметрия отвечает одному из самых глубоких законов природы – стремлению к устойчивости. Основная черта симметричной композиции – равновесие. Симметрия гармонична, но если всякое изображение делать симметричным, то через некоторое время мы будем окружены благополучными, но однообразными произведениями. Во многих случаях надо сознательно нарушать симметрию в композиции, иначе трудно передать движение, изменение, противоречие.

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Отметим, например, симметрию, свойственную бабочке и кленовому листу, симметрию форм автомобиля и самолета, симметрию в ритмическом построении стихотворения и музыкальной фразы, симметрию атомной структуры молекул и кристаллов.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания, его широко используют все без исключения направления современной науки. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Простейший вид симметрии - зеркальная . Предмет или фигура, которые можно разделить плоскостью на две половины так, чтобы эти половины при наложении друг на друга совпали между собой, имеет зеркальную симметрию. Такая симметрия присуща, например, человеческому телу, телам животных и многому другому. Зеркальная симметрия способствует созданию впечатления уравновешенности и покоя, так как она делает обе половины изображения равноценными для нашего взгляда.

Иной вид симметрии присутствует в фигурах, которые совмещаются сами с собой без помощи зеркального отражения, а посредством поворота вокруг некоторой оси, перпендикулярной к плоскости изображения. Это - осевая симметрия , а число таких совмещений на протяжении полного кругового оборота фигуры называется порядком оси. Осевая симметрия может обладать порядком от второго и до бесконечности. Фигур с осевой симметрией бесконечно много, но все они четко организованы и равномерно распределены вокруг единого для них центра. Все углы поворотов должны быть равны. Осевая симметрия нередко встречается в природе и широко распространена в орнаментах. В первую очередь, к фигурам с осевой симметрией относятся розетки. Изображение, обладающее осевой симметрией производит впечатление движения, вращения вокруг своего центра.

Часто можно видеть розетки не только с осевой симметрией, но и с зеркальной. Подобные формы гораздо уравновешеннее и спокойнее предыдущих. Такая форма представляется более законченной, так как она не выражает вращения, а от ее центра расходятся равные элементы. Возможно поэтому розетки с двумя этими видами симметрии приобрели наибольшее распространение.

Вдоль некой линии могут быть равномерно расположены одинаковые мотивы. Так образуется линейный орнамент, или бордюр, при помощи параллельного переноса, который можно продолжить до бесконечности в обе стороны по направлению линии. Это - еще один вид симметрии: если мы весь орнаментальный ряд сдвинем вдоль осевой линии на один мотив, то каждая из фигур наложится на место соседней, то есть бордюр совместится сам с собой.

В искусстве орнамента нередко используется заполнение плоскости одинаковыми прямолинейными фигурами. В математике такое замощение называется паркетом (в дизайне - сетчатые орнаменты ). Известно, что только два рода фигур - различные параллелограммы (включая прямоугольники, квадраты и ромбы) и шестиугольники с попарно параллельными сторонами заполняют плоскость сплошь, без пропусков и наложений, с помощью одних лишь переносов, сохраняя ориентацию.

Виды симметрии – (зеркальная, поворотная, трансляционная, паркетная, комбинированная)