Решение систем дифференциальных. Как решить систему дифференциальных уравнений операционным методом

Этот раздел мы решили посвятить решению систем дифференциальных уравнений простейшего вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2 , в которых a 1 , b 1 , c 1 , a 2 , b 2 , c 2 - некоторые действительные числа. Наиболее эффективным для решения таких систем уравнений является метод интегрирования. Также рассмотрим решение примера по теме.

Решением системы дифференциальных уравнений будет являться пара функций x (t) и y (t) , которая способна обратить в тождество оба уравнения системы.

Рассмотрим метод интегрирования системы ДУ d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2 . Выразим х из 2 -го уравнения системы для того, чтобы исключить неизвестную функцию x (t) из 1 -го уравнения:

d y d t = a 2 x + b 2 y + c 2 ⇒ x = 1 a 2 d y d t - b 2 y - c 2

Выполним дифференцирование 2 -го уравнения по t и разрешим его уравнение относительно d x d t:

d 2 y d t 2 = a 2 d x d t + b 2 d y d t ⇒ d x d t = 1 a 2 d 2 y d t 2 - b 2 d y d t

Теперь подставим результат предыдущих вычислений в 1 -е уравнение системы:

d x d t = a 1 x + b 1 y + c 1 ⇒ 1 a 2 d 2 y d t 2 - b 2 d y d t = a 1 a 2 d y d t - b 2 y - c 2 + b 1 y + c 1 ⇔ d 2 y d t 2 - (a 1 + b 2) · d y d t + (a 1 · b 2 - a 2 · b 1) · y = a 2 · c 1 - a 1 · c 2

Так мы исключили неизвестную функцию x (t) и получили линейное неоднородное ДУ 2 -го порядка с постоянными коэффициентами. Найдем решение этого уравнения y (t) и подставим его во 2 -е уравнение системы. Найдем x (t) . Будем считать, что на этом решение системы уравнений будет закончено.

Пример 1

Найдите решение системы дифференциальных уравнений d x d t = x - 1 d y d t = x + 2 y - 3

Решение

Начнем с первого уравнения системы. Разрешим его относительно x:

x = d y d t - 2 y + 3

Теперь выполним дифференцирование 2 -го уравнения системы, после чего разрешим его относительно d x d t: d 2 y d t 2 = d x d t + 2 d y d t ⇒ d x d t = d 2 y d t 2 - 2 d y d t

Полученный в ходе вычислений результат мы можем подставить в 1 -е уравнение системы ДУ:

d x d t = x - 1 d 2 y d t 2 - 2 d y d t = d y d t - 2 y + 3 - 1 d 2 y d t 2 - 3 d y d t + 2 y = 2

В результате преобразований мы получили линейное неоднородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами d 2 y d t 2 - 3 d y d t + 2 y = 2 . Если мы найдем его общее решение, то получим функцию y (t) .

Общее решение соответствующего ЛОДУ y 0 мы можем найти путем вычислений корней характеристического уравнения k 2 - 3 k + 2 = 0:

D = 3 2 - 4 · 2 = 1 k 1 = 3 - 1 2 = 1 k 2 = 3 + 1 2 = 2

Корни, которые мы получили, являются действительными и различными. В связи с этим общее решение ЛОДУ будет иметь вид y 0 = C 1 · e t + C 2 · e 2 t .

Теперь найдем частное решение линейного неоднородного ДУ y ~ :

d 2 y d t 2 - 3 d y d t + 2 y = 2

Правая часть записи уравнения представляет собой многочлен нулевой степени. Это значит, что частное решение будем искать в виде y ~ = A , где А – это неопределенный коэффициент.

Определить неопределенный коэффициент мы можем из равенства d 2 y ~ d t 2 - 3 d y ~ d t + 2 y ~ = 2:
d 2 (A) d t 2 - 3 d (A) d t + 2 A = 2 ⇒ 2 A = 2 ⇒ A = 1

Таким образом, y ~ = 1 и y (t) = y 0 + y ~ = C 1 · e t + C 2 · e 2 t + 1 . Одну неизвестную функцию мы нашли.

Теперь подставим найденную функцию во 2 -е уравнение системы ДУ и разрешим новое уравнение относительно x (t) :
d (C 1 · e t + C 2 · e 2 t + 1) d t = x + 2 · (C 1 · e t + C 2 · e 2 t + 1) - 3 C 1 · e t + 2 C 2 · e 2 t = x + 2 C 1 · e t + 2 C 2 · e 2 t - 1 x = - C 1 · e t + 1

Так мы вычислили вторую неизвестную функцию x (t) = - C 1 · e t + 1 .

Ответ: x (t) = - C 1 · e t + 1 y (t) = C 1 · e t + C 2 · e 2 t + 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На дворе знойная пора, летает тополиный пух, и такая погода располагает к отдыху. За учебный год у всех накопилась усталость, но ожидание летних отпусков/каникул должно воодушевлять на успешную сдачу экзаменов и зачетов. По сезону тупят, кстати, и преподаватели, поэтому скоро тоже возьму тайм-аут для разгрузки мозга. А сейчас кофе, мерный гул системного блока, несколько дохлых комаров на подоконнике и вполне рабочее состояние… …эх, блин,… поэт хренов.

К делу. У кого как, а у меня сегодня 1 июня, и мы рассмотрим ещё одну типовую задачу комплексного анализа – нахождение частного решения системы дифференциальных уравнений методом операционного исчисления . Что необходимо знать и уметь, чтобы научиться её решать? Прежде всего, настоятельно рекомендую обратиться к уроку. Пожалуйста, прочитайте вводную часть, разберитесь с общей постановкой темы, терминологией, обозначениями и хотя бы с двумя-тремя примерами. Дело в том, что с системами диффуров всё будет почти так же и даже проще!

Само собой, вы должны понимать, что такое система дифференциальных уравнений , что значит найти общее решение системы и частное решение системы.

Напоминаю, что систему дифференциальных уравнений можно решить «традиционным» путём: методом исключения или с помощью характеристического уравнения . Способ же операционного исчисления, о котором пойдет речь, применим к системе ДУ, когда задание сформулировано следующим образом:

Найти частное решение однородной системы дифференциальных уравнений , соответствующее начальным условиям .

Как вариант, система может быть и неоднородной – с «довесками» в виде функций и в правых частях:

Но, и в том, и в другом случае нужно обратить внимание на два принципиальных момента условия:

1) Речь идёт только о частном решении .
2) В скобочках начальных условий находятся строго нули , и ничто другое.

Общий ход и алгоритм будет очень похож на решение дифференциального уравнения операционным методом . Из справочных материалов потребуется та же таблица оригиналов и изображений .

Пример 1


, ,

Решение: Начало тривиально: с помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям. В задаче с системами ДУ данный переход обычно прост:

Используя табличные формулы №№1,2, учитывая начальное условие , получаем:

Что делать с «игреками»? Мысленно меняем в таблице «иксы» на «игреки». Используя те же преобразования №№1,2, учитывая начальное условие , находим:

Подставим найденные изображения в исходное уравнение :

Теперь в левых частях уравнений нужно собрать все слагаемые, в которых присутствует или . В правые части уравнений необходимо «оформить» все остальные слагаемые:

Далее в левой части каждого уравнения проводим вынесение за скобки:

При этом на первых позициях следует разместить , а на вторых позициях :

Полученную систему уравнений с двумя неизвестными обычно решают по формулам Крамера . Вычислим главный определитель системы:

В результате расчёта определителя получен многочлен .

Важный технический приём! Данный многочлен лучше сразу же попытаться разложить на множители. В этих целях следовало бы попробовать решить квадратное уравнение , но, у многих читателей намётанный ко второму курсу глаз заметит, что .

Таким образом, наш главный определитель системы:

Дальнейшая разборка с системой, слава Крамеру, стандартна:

В итоге получаем операторное решение системы :

Преимуществом рассматриваемого задания является та особенность, что дроби обычно получаются несложными, и разбираться с ними значительно проще, нежели с дробями в задачах нахождения частного решения ДУ операционным методом . Предчувствие вас не обмануло – в дело вступает старый добрый метод неопределённых коэффициентов , с помощью которого раскладываем каждую дробь на элементарные дроби:

1) Разбираемся с первой дробью:

Таким образом:

2) Вторую дробь разваливаем по аналогичной схеме, при этом корректнее использовать другие константы (неопределенные коэффициенты):

Таким образом:


Чайникам советую записывать разложенное операторное решение в следующем виде:
– так будет понятней завершающий этап – обратное преобразование Лапласа.

Используя правый столбец таблицы, перейдем от изображений к соответствующим оригиналам:


Согласно правилам хорошего математического тона, результат немного причешем:

Ответ:

Проверка ответа осуществляется по стандартной схеме, которая детально разобрана на уроке Как решить систему дифференциальных уравнений? Всегда старайтесь её выполнять, чтобы забить большой плюс в задание.

Пример 2

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи и ответ в конце урока.

Решение неоднородной системы дифференциальных уравнений алгоритмически ничем не отличается, разве что технически будет чуть сложнее:

Пример 3

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразования Лапласа, учитывая начальные условия , перейдем от оригиналов к соответствующим изображениям:

Но это ещё не всё, в правых частях уравнений есть одинокие константы. Что делать в тех случаях, когда константа находится сама по себе в полном одиночестве? Об этом уже шла речь на уроке Как решить ДУ операционным методом . Повторим: одиночные константы следует мысленно домножить на единицу , и к единицам применить следующее преобразование Лапласа:

Подставим найденные изображения в исходную систему:

Налево перенесём слагаемые, в которых присутствуют , в правых частях разместим остальные слагаемые:

В левых частях проведём вынесение за скобки, кроме того, приведём к общему знаменателю правую часть второго уравнения:

Вычислим главный определитель системы, не забывая, что результат целесообразно сразу же попытаться разложить на множители:
, значит, система имеет единственное решение.

Едем дальше:



Таким образом, операторное решение системы:

Иногда одну или даже обе дроби можно сократить, причём, бывает, так удачно, что и раскладывать практически ничего не нужно! А в ряде случаев сразу получается халява, к слову, следующий пример урока будет показательным образцом.

Методом неопределенных коэффициентов получим суммы элементарных дробей.

Сокрушаем первую дробь:

И добиваем вторую:

В результате операторное решение принимает нужный нам вид:

С помощью правого столбца таблицы оригиналов и изображений осуществляем обратное преобразование Лапласа:

Подставим полученные изображения в операторное решение системы:

Ответ: частное решение:

Как видите, в неоднородной системе приходится проводить более трудоёмкие вычисления по сравнению с однородной системой. Разберём еще пару примеров с синусами, косинусами, и хватит, поскольку будут рассмотрены практически все разновидности задачи и большинство нюансов решения.

Пример 4

Методом операционного исчисления найти частное решение системы дифференциальных уравнений с заданными начальными условиями ,

Решение: Данный пример я тоже разберу сам, но комментарии будут касаться только особенных моментов. Предполагаю, вы уже хорошо ориентируетесь в алгоритме решения.

Перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходную систему ДУ:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Полученный многочлен не раскладывается на множители. Что делать в таких случаях? Ровным счётом ничего. Сойдёт и такой.

В результате операторное решение системы:

А вот и счастливый билет! Метод неопределённых коэффициентов использовать не нужно вообще! Единственное, в целях применения табличных преобразований перепишем решение в следующем виде:

Перейдем от изображений к соответствующим оригиналам:

Подставим полученные изображения в операторное решение системы:

Матричная запись системы обыкновенных дифференциальных уравнений (СОДУ) с постоянными коэффициентами

Линейную однородную СОДУ с постоянными коэффициентами $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =a_{11} \cdot y_{1} +a_{12} \cdot y_{2} +\ldots +a_{1n} \cdot y_{n} } \\ {\frac{dy_{2} }{dx} =a_{21} \cdot y_{1} +a_{22} \cdot y_{2} +\ldots +a_{2n} \cdot y_{n} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} =a_{n1} \cdot y_{1} +a_{n2} \cdot y_{2} +\ldots +a_{nn} \cdot y_{n} } \end{array}\right. $,

где $y_{1} \left(x\right),\; y_{2} \left(x\right),\; \ldots ,\; y_{n} \left(x\right)$ -- искомые функции независимой переменной $x$, коэффициенты $a_{jk} ,\; 1\le j,k\le n$ -- заданные действительные числа представим в матричной записи:

  1. матрица искомых функций $Y=\left(\begin{array}{c} {y_{1} \left(x\right)} \\ {y_{2} \left(x\right)} \\ {\ldots } \\ {y_{n} \left(x\right)} \end{array}\right)$;
  2. матрица производных решений $\frac{dY}{dx} =\left(\begin{array}{c} {\frac{dy_{1} }{dx} } \\ {\frac{dy_{2} }{dx} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} } \end{array}\right)$;
  3. матрица коэффициентов СОДУ $A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} } & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} } \end{array}\right)$.

Теперь на основе правила умножения матриц данную СОДУ можно записать в виде матричного уравнения $\frac{dY}{dx} =A\cdot Y$.

Общий метод решения СОДУ с постоянными коэффициентами

Пусть имеется матрица некоторых чисел $\alpha =\left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

Решение СОДУ отыскивается в следующем виде: $y_{1} =\alpha _{1} \cdot e^{k\cdot x} $, $y_{2} =\alpha _{2} \cdot e^{k\cdot x} $, \dots , $y_{n} =\alpha _{n} \cdot e^{k\cdot x} $. В матричной форме: $Y=\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=e^{k\cdot x} \cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

Отсюда получаем:

Теперь матричному уравнению данной СОДУ можно придать вид:

Полученное уравнение можно представить так:

Последнее равенство показывает, что вектор $\alpha $ с помощью матрицы $A$ преобразуется в параллельный ему вектор $k\cdot \alpha $. Это значит, что вектор $\alpha $ является собственным вектором матрицы $A$, соответствующий собственному значению $k$.

Число $k$ можно определить из уравнения$\left|\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right|=0$.

Это уравнение называется характеристическим.

Пусть все корни $k_{1} ,k_{2} ,\ldots ,k_{n} $ характеристического уравнения различны. Для каждого значения $k_{i} $ из системы $\left(\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)=0$ может быть определена матрица значений $\left(\begin{array}{c} {\alpha _{1}^{\left(i\right)} } \\ {\alpha _{2}^{\left(i\right)} } \\ {\ldots } \\ {\alpha _{n}^{\left(i\right)} } \end{array}\right)$.

Одно из значений в этой матрице выбирают произвольно.

Окончательно, решение данной системы в матричной форме записывается следующим образом:

$\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=\left(\begin{array}{cccc} {\alpha _{1}^{\left(1\right)} } & {\alpha _{1}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\alpha _{2}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {\alpha _{n}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{k_{1} \cdot x} } \\ {C_{2} \cdot e^{k_{2} \cdot x} } \\ {\ldots } \\ {C_{n} \cdot e^{k_{n} \cdot x} } \end{array}\right)$,

где $C_{i} $ -- произвольные постоянные.

Задача

Решить систему ДУ $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =5\cdot y_{1} +4y_{2} } \\ {\frac{dy_{2} }{dx} =4\cdot y_{1} +5\cdot y_{2} } \end{array}\right. $.

Записываем матрицу системы: $A=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)$.

В матричной форме данная СОДУ записывается так: $\left(\begin{array}{c} {\frac{dy_{1} }{dt} } \\ {\frac{dy_{2} }{dt} } \end{array}\right)=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)\cdot \left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)$.

Получаем характеристическое уравнение:

$\left|\begin{array}{cc} {5-k} & {4} \\ {4} & {5-k} \end{array}\right|=0$, то есть $k^{2} -10\cdot k+9=0$.

Корни характеристического уравнения: $k_{1} =1$, $k_{2} =9$.

Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)$ при $k_{1} =1$:

\[\left(\begin{array}{cc} {5-k_{1} } & {4} \\ {4} & {5-k_{1} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)=0,\]

то есть $\left(5-1\right)\cdot \alpha _{1}^{\left(1\right)} +4\cdot \alpha _{2}^{\left(1\right)} =0$, $4\cdot \alpha _{1}^{\left(1\right)} +\left(5-1\right)\cdot \alpha _{2}^{\left(1\right)} =0$.

Положив $\alpha _{1}^{\left(1\right)} =1$, получаем $\alpha _{2}^{\left(1\right)} =-1$.

Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)$ при $k_{2} =9$:

\[\left(\begin{array}{cc} {5-k_{2} } & {4} \\ {4} & {5-k_{2} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)=0, \]

то есть $\left(5-9\right)\cdot \alpha _{1}^{\left(2\right)} +4\cdot \alpha _{2}^{\left(2\right)} =0$, $4\cdot \alpha _{1}^{\left(2\right)} +\left(5-9\right)\cdot \alpha _{2}^{\left(2\right)} =0$.

Положив $\alpha _{1}^{\left(2\right)} =1$, получаем $\alpha _{2}^{\left(2\right)} =1$.

Получаем решение СОДУ в матричной форме:

\[\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)=\left(\begin{array}{cc} {1} & {1} \\ {-1} & {1} \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{1\cdot x} } \\ {C_{2} \cdot e^{9\cdot x} } \end{array}\right).\]

В обычной форме решение СОДУ имеет вид: $\left\{\begin{array}{c} {y_{1} =C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \\ {y_{2} =-C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \end{array}\right. $.

Практическая ценность дифференциальных уравнений обусловливается тем, что, пользуясь ими, можно установить связь основным физическим или химическим законом и часто целой группой переменных, имеющих большое значение при исследовании технических вопросов.

Применение даже наиболее простого физического закона к процессу, протекающему при переменных условиях, может привести к весьма сложному соотношению между переменными величинами.

При решении физико-химических задач, приводящих к дифференциальным уравнениям, важно бывает найти общий интеграл уравнения, а также определить значения постоянных, входящих в этот интеграл, так, чтобы решение соответствовало данной задаче.

К обыкновенным дифференциальным уравнениям приводит изучение процессов, в которых все искомые величины являются функциями лишь одной независимой переменной.

К дифференциальным уравнениям с частными производными могут приводить установившиеся процессы.

В большинстве случаев решение дифференциальных уравнений не приводит к нахождению интегралов, для решения таких уравнений приходится применять приближенные методы.

Системы дифференциальных уравнений используются при решении задачи кинетики.

Наиболее распространенным и универсальным численным методом решения обыкновенных дифференциальных уравнений является метод конечных разностей.

К обыкновенным дифференциальным уравнениям приводятся задачи, в которых требуется найти соотношение между зависимой и независимой переменными в условиях, когда последние изменяются непрерывно. Решение задачи приводит к так называемым уравнениям в конечных разностях.



Область непрерывного изменения аргумента х заменяется множеством точек, называемых узлами. Эти узлы составляют разностную сетку. Искомая функция непрерывного аргумента приближенно заменяется функцией аргумента на заданной сетке. Эта функция называется сеточной функцией. Замена дифференциального уравнения разностным уравнением называется его аппроксимацией на сетке. Совокупность разностных уравнений, аппроксимирующих исходное дифференциальное уравнение и дополнительные начальные условия, называется разностной схемой. Разностная схема называется устойчивой, если малому изменению входных данных соответствует малое изменение решения. Разностная схема называется корректной, если ее решение существует и единственно при любых входных данных, а так же если эта схема устойчива.

При решении задачи Коши требуется найти функцию у=у(х), удовлетворяющую уравнению:

и начальному условию: у = у 0 при х = х 0 .

Введем последовательность точек х 0 , х 1 , … х n и шаги h i =x i +1 –x i (i = 0, 1, …). В каждой точке x i вводятся числа y i , аппроксимирующие точное решение у. После замены в исходном уравнении производной отношением конечных разностей осуществляют переход от дифференциальной задачи к разностной:

y i+1 = F(x i , h i , y i+1 , y i , … y i-k+1),

где i = 0, 1, 2 …

При этом получается k – шаговый метод конечных разностей. В одношаговых методах для вычисления y i +1 используется лишь одно ранее найденное значение на предыдущем шаге y i , в многошаговых – несколько.

Простейшим одношаговым численным методом решения задачи Коши является метод Эйлера.

y i+1 = y i + h · f(x i , y i).

Эта схема является разностной схемой первого порядка точности.

Если в уравнении у " =f(х,у) правую часть заменить на среднеарифметическое значение между f(x i ,y i) и f(x i+1 ,y i+1), т.е. , то получится неявная разностная схема метода Эйлера:


,

имеющая второй порядок точности.

Путем замены в данном уравнении y i+1 на y i +h · f(x i , y i) схема переходит в метод Эйлера с пересчетом, имеющий также второй порядок:

Среди разностных схем более высокого порядка точности распространенной является схема метода Рунге-Кутта четвертого порядка:

y i +1 = yi + (к 1 + 2к 2 + 2к 3 + к 4), i = 0, 1, …

к 1 = f(x i , y i)

к 2 = f(x i + , y i + )

к 3 = f(x i + , y i + )

к 4 = f(x i +h, y i +к 3).

Для повышения точности численного решения без существенного увеличения машинного времени используется метод Рунге. Суть его в проведении повторных расчетов по одной разностной схеме с различными шагами.

Уточненное решение строится с помощью проведенной серии расчетов. Если проведены две серии расчетов по схеме порядка к соответственно с шагами h и h/2 и получены значения сеточной функции y h и y h /2 , то уточненное значение сеточной функции в узлах сетки с шагом h вычисляется по формуле:

.


Приближенные вычисления

В физико-химических расчетах редко приходится пользоваться приемами и формулами, дающими точные решения. В большинстве случаев методы решения уравнений, приводящие к точным результатам, либо очень сложны, либо отсутствуют вообще. Обычно пользуются методами приближенного решения задач.

При решении физико-химических задач, связанных с химической кинетикой, с обработкой экспериментальных данных часто возникает необходимость решения различных уравнений. Точное решение некоторых уравнений представляет в ряде случаев большие трудности. В этих случаях можно воспользоваться способами приближенных решений, получая результаты с точностью, удовлетворяющей поставленной задаче. Существует несколько способов: метод касательных (метод Ньютона), метод линейной интерполяции, метод повторения (итерации) и др.

Пусть имеется уравнение f(x)=0, причем f(x) – непрерывная функция. Предположим, что можно подобрать такие значения a и b, при которых f(a) и f(b) имеют разные знаки, например f(a)>0, f(b)<0. В таком случае существует по крайней мере один корень уравнения f(x)=0, находящийся между a и b. Суживая интервал значений a и b, можно найти корень уравнения с требуемой точностью.

Графическое нахождение корней уравнения. Для решения уравнения высших степеней удобно пользоваться графическим методом. Пусть дано уравнение:

x n +ax n-1 +bx n-2 +…+px+q=0,

где a, b, … , p, q – заданные числа.

С геометрической точки зрения уравнение

Y=x n +ax n -1 +bx n -2 +…+px+q

представляет собой некоторую кривую. Можно найти любое число ее точек, вычисляя значения y, соответствующие произвольным значениям х. Каждая точка пересечения кривой с осью ОХ дает значение одного из корней данного уравнения. Поэтому нахождение корней уравнения сводится к определению точек пересечения соответствующей кривой с осью ОХ.

Способ итерации. Этот способ заключается в том, что подлежащее решению уравнение f(x)=0 преобразуют в новое уравнение x=j(x) и, задаваясь первым приближением х 1 , последовательно находят более точные приближения х 2 =j(x 1), х 3 =j(x 2) и.т.д. Решение может быть получено с любой степенью точности, при условии, что в интервале между первым приближением и корнем уравнения |j"(х)|<1.

Для решения одного нелинейного уравнения используются следующие методы:

а) метод половинного деления:

Интервал изоляции действительного корня всегда можно уменьшить путем деления его, например, пополам, определяя, на границах какой из частей первоначального интервала функция f(x) меняет знак. Затем полученный интервал снова делят на две части и т.д. Такой процесс проводится до тех пор, пока не перестанут изменяться сохраняемые в ответе десятичные знаки.

Выбираем интервал , в котором заключено решение. Рассчитываем f(a) и f(b), если f(a) > 0 и f(b) < 0, то находим и рассчитываем f(c). Далее, если f(a) < 0 и f(c) < 0 или f(a) > 0 и f(с) > 0, то a = c и b = b. Иначе, если f(a) < 0 и f(c) > 0 или f(a) > 0 и f(с) < 0, то a = a и b = c.

Б) метод касательных (метод Ньютона):

Пусть действительный корень уравнения f(x) = 0 изолирован на отрезке . Возьмем на отрезке такое число х 0 , при котором f(x 0) имеет тот же знак, что и f ’ (x 0). Проведем в точке М 0 касательную к кривой y = f(x). За приближенное значение корня примем абсциссу точки пересечения этой касательной с осью Ox. Это приближенное значение корня найдется по формуле

Применив этот прием вторично в точке М 1 , получим

и т.д. Полученная таким образом последовательность х 0 , х 1 , х 2 , … имеет своим пределом искомый корень. В общем виде можно записать так:

.

Для решения линейных систем алгебраических уравнений используется итерационный метод Гаусса-Зайделя. К решению систем линейных уравнений сводятся такие задачи химической технологии, как расчет материальных и тепловых балансов.

Суть метода заключается в том, что путем несложных преобразований выражают неизвестные х 1 , х 2 , … , x n соответственно из уравнений 1,2, … , n. Задают начальные приближения неизвестных х 1 =х 1 (0) , x 2 =x 2 (0) , … , x n =x n (0) , подставляют эти значения в правую часть выражения х 1 и вычисляют х 1 (1) . Затем в правую часть выражения х 2 подставляют х 1 (1) , х 3 (0) , … , x n (0) и находят х 2 (1) и т.д. После расчета х 1 (1) , х 2 (1) , … , x n (1) проводят вторую итерацию. Итерационный процесс продолжают до тех пор, пока значения х 1 (к) , х 2 (к) , … не станут близкими с заданной погрешностью к значениям х 1 (к-1) , х 2 (к-2) , … .

Такие задачи химической технологии, как расчет химического равновесия и др. сводятся к решению систем нелинейных уравнений. Для решения систем нелинейных уравнений также используют итерационные методы. Расчет сложного равновесия сводится к решению систем нелинейных алгебраических уравнений.

Алгоритм решения системы методом простой итерации напоминает метод Гаусса – Зайделя, используемый для решения линейных систем.

Более быстрой сходимостью, чем метод простой итерации, обладает метод Ньютона. В основе его лежит использование разложение функций F 1 (x 1 , x 2 , … x n) в ряд Тейлора. При этом члены, содержащие вторые производные, отбрасываются.

Пусть приближенные значения неизвестных системы, полученные на предыдущей итерации, равны а 1 , а 2 , …а n . Задача состоит в том, чтобы найти приращения к этим значениям Δх 1 , Δх 2 , … Δх n , благодаря которым будут получены новые значения неизвестных:

х 1 = а 1 + Δх 1

х 2 = а 2 + Δх 2

х n = а n + Δх n .

Разложим левые части уравнений в ряд Тейлора, ограничиваясь линейными членами:

Так как левые части уравнений должны быть равны нулю, то приравняем нулю и правые части. Получим систему линейных алгебраических уравнений относительно приращений Δх.

Значения F 1 , F 2 , … F n и их частные производные вычисляются при x 1 = a 1 , x 2 = a 2 , … x n = a n .

Запишем эту систему в виде матрицы:

Определитель матрицы G такого вида называется якобианом. Определитель такой матрицы называется Якобианом. Для существования единственного решения системы он должен быть отличным от нуля на каждой итерации.

Таким образом, решение системы уравнений методом Ньютона заключается в определении на каждой итерации матрицы Якоби (частных производных) и определении приращений Δх 1 , Δх 2 , … Δх n к значениям неизвестных на каждой итерации путем решения системы линейных алгебраических уравнений.

Для исключения необходимости нахождения матрицы Якоби на каждой итерации предложен усовершенствованный метод Ньютона. Этот метод позволяет проводить коррекцию матрицы Якоби, используя значения F 1 , F 2 , … , F n , полученные на предыдущих итерациях.