Математические модели простейших систем массового обслуживания.

  • Простейший поток и применение практических задач.
  • Нестационарные пуассоновские потоки.
  • Потоки с ограниченными последствиями (потоки Пальма).
  • Потоки восстановления.
  • 1. Введение.

    1.1. Историческая справка.

    Большинство систем, с которыми человек имеет дело, являются стохастическими. Попытка их математического описания с помощью детерминистических моделей приводит к огрублению истинного положения вещей. При решении задач анализа и проектирования таких систем приходится считаться с положением вещей, когда случайность является определяющей для процессов, протекающих в системах. При этом пренебрежение случайностью, попытка “втиснуть” решение перечисленных задач в детерминистические рамки приводит к искажению, к ошибкам в выводах и практических рекомендациях.

    Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудником Копенгагенской телефонной компании, датским ученым А.К. Эрлангом (1878- 1929г) в период между 1908 и 1922гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, морских и речных портов, магазинов, терминальных классов, электронных вычислительных комплексов, радиолокационных станций и т.д. может быть описана в рамках ТСМО.

    1.2. Примеры систем массового обслуживания. Анализ задач ТСМО.

    Пример 1. Телефонная связь времен Эрланга представляла из себя телефонную станцию, связанную с большим числом абонентов. Телефонистки станции по мере поступления вызовов соединяли телефонные номера между собой.

    Задача: Какое количество телефонисток (при условии их полной занятости) должно работать на станции для того, чтобы потери требований были минимальными.

    Пример 2. Система скорой помощи некоего городского района представляет собой пункт (который принимает требования на выполнение), некоторое количество автомашин скорой помощи и несколько врачебных бригад.

    Задача: Определить количество врачей, вспомогательного персонала, автомашин, для того чтобы время ожидания вызова было для больных оптимальным при условии минимизации затрат на эксплуатацию системы и максимизации качества обслуживания.

    Пример 3. Важной задачей является организация морских и речных перевозок грузов. При этом особое значение имеют оптимальное использование судов и портовых сооружений.

    Задача: Обеспечить определенный объем перевозок при минимальных расходах. При этом сократить простои судов при погрузочно-разгрузочных работах.

    Пример 4. Система обработки информации содержит мультиплексный канал и несколько ЭВМ. Сигналы от датчиков поступают на мультиплексный канал, где буферизуются и предварительно обрабатываются. Затем поступают в ту ЭВМ, где очередь минимальна.

    Задача: Обеспечить ускорение обработки сигналов при заданной суммарной длине очереди.

    Пример 5 . На рис 1.1. изображена структурная схема типичной системы массового обслуживания – ремонтного предприятия (например, по ремонту ПЭВМ). Порядок ее работы ясен из схемы и не требует разъяснений.

    рис 1.1.

    Нетрудно привести множество других примеров из самых различных областей деятельности.

    Характерным для таких задач является:

    1. условия “двойной” случайности –
      • случаен момент времени поступления заказа на обслуживание (на телефонную станцию, на пункт скорой помощи, на вход процессора, случаен момент времени прибытия морского судна под погрузку и т.д.);
      • случайна длительность времени обслуживания.

    2)проблема бича нашего времени – очередей: судов перед шлюзами, машин перед прилавками, задач на входе процессоров вычислительного комплекса и т.д.

    А.К. Эрланг обратил внимание на то, что СМО могут быть разделены на два типа, а именно: на системы с ожиданием и системы с потерями. В первом случае – заявка, поступившая на вход системы “ждет” очереди на выполнение, во втором – она из-за занятости канала обслуживания получает отказ и теряется для СМО.

    В дальнейшем мы увидим, что к классическим задачам Эрланга прибавляются новые задачи:

    Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания (рис 1.1.). Причем на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, подналадки и т.д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

    1.3. Понятия, определения, терминология.

    Все СМО имеют вполне определенную структуру, изображенную на рис 1.2

    рис 1.2

    Определения, термины

      • Потоком называют последовательность событий. Поток, состоящий из требований на обслуживание, называют потоком требований.
      • Поток требований, поступающих в обслуживающую систему, называют входящим потоком.
      • Поток требований, которые обслужены, называют выходящим потоком.
      • Совокупность очередей и приборов (каналов) обслуживания называются системой обслуживания.
      • Каждые требования поступают на свой канал, где подвергается операции обслуживания.
      • Каждая СМО имеет определенные правила формирования очереди и правила или дисциплину обслуживания.

    1.4. Классификация СМО.

    1.4.1. По характеру источника требований различают СМО с конечным и бесконечным количеством требований на входе.

    В первом случае в системе циркулирует конечное, обычно постоянное количество требований, которые после завершения обслуживания возвращаются в источник.

    Во втором случае источник генерирует бесконечное число требований.

    Пример 1. Цех с постоянным количеством станков или определенное количество ПЭВМ в терминальном классе, требующих постоянного профилактического осмотра и ремонта.

    Пример 2 . Сеть Internet с бесконечным требованием на входе, любой магазин, парикмахерская и т.д.

    Первый вид СМО называют замкнутой, второй – разомкнутой.

    СМО различают:

    1.4.2. По дисциплине обслуживания:

      1. обслуживание в порядке поступления;
      2. обслуживание в случайном порядке (в соответствии с заданным законом распределения);
      3. обслуживание с приоритетом.

    1.4.3. по характеру организации:

      1. с отказами;
      2. с ожиданиями;
      3. с ограничением ожидания.

    В первом случае заявка получает отказ, когда канал занят. Во втором случае – ставится в очередь и ждет освобождения канала. В третьем случае вводится ограничения на длительность ожидания.

    1.4.4. По количеству единиц обслуживания:

      1. одноканальные;
      2. двухканальные;
      3. многоканальные.

      1.4.5. По числу этапов (фаз) обслуживания - на однофазные и многофазные. (Примером многофазных СМО может служить любая поточная линия).

      1.4.6. По свойствам каналов: на однородные, когда каналы имеют одинаковую характеристику и неоднородные в противном случае.

    1. Одноканальная СМО с отказами.

    Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании.

    Интенсивность потока автомобилей = 1,0 (автомобиль в час).

    Средняя продолжительность обслуживания - 1,8 часа.

    Поток автомобилей и поток обслуживания являются простейшими.

    Требуется определить в установившемся режиме предельные значения:

    Относительной пропускной способности q ;

    Абсолютной пропускной способности А ;

    Вероятности отказа P отк .

    Необходимо сравнить фактическую пропускную способность СМО с номинальной , которая была бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали один за другим без перерыва.

    2. Одноканальная СМО с ожиданием

    Характеристика системы

    Ø СМО имеет один канал.

    Ø Входящий поток заявок на обслуживание - простейший поток с интенсивностью.

    Ø Интенсивность потока обслуживания равна m (т. е. в среднем непрерывно занятый канал будет выдавать m обслуженных заявок).

    Ø Длительность обслуживания - случайная величина, подчиненная показательному закону распределения.

    Ø Поток обслуживания является простейшим пуассоновским потоком событий.



    Ø Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

    Граф состояний

    Состояния СМО имеют следующую интерпретацию:

    S 0 - «канал свободен»;

    S 1 - «канал занят» (очереди нет);

    S 2 - «канал занят» (одна заявка стоит в очереди);

    …………………………………………………….

    Sn - «канал занят» (n -1 заявок стоит в очереди);

    SN - «канал занят» (N - 1 заявок стоит в очереди).

    Стационарный процесс в данной системе описывается следующей системой алгебраических уравнений:

    Решением системы уравнений является:

    3. Одноканальная СМО с ограниченной очередью.

    Длина очереди:(N - 1)

    Характеристики системы:

    1. Вероятность отказа в обслуживании системы:

    2. Относительная пропускная способность системы:

    3. Абсолютная пропускная способность системы:

    4. Среднее число находящихся в системе заявок:

    5. Среднее время пребывания заявки в системе:

    6. Средняя продолжительность пребывания клиента (заявки) в очереди:

    7. Среднее число заявок (клиентов) в очереди (длина очереди):

    Пример.

    Специализированный пост диагностики представляет собой одноканальную СМО.

    Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится.

    Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 0,85 (автомобиля в час).

    Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

    4. Одноканальная СМО с ожиданием

    без ограничения на длину очереди

    Условия функционирования СМО остаются без изменений с учетом того, что N .

    Стационарный режим функционирования такой СМО существует:

    для любого n = 0, 1, 2, ... и когда λ < μ .

    Система уравнений, описывающих работу СМО:

    Решение системы уравнений имеет вид:


    2. Средняя продолжительность пребывания клиента в системе:

    3. Среднее число клиентов в очереди на обслуживании:

    4. Средняя продолжительность пребывания клиента в очереди:

    Пример.

    Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, не ограниченно. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность λ = 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

    Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

    В результате решения задачи необходимо определить финальные значения следующих вероятностных характеристик:

    ü вероятности состояний системы (поста диагностики);

    ü среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

    ü среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

    ü среднее число автомобилей в очереди на обслуживании;

    ü среднюю продолжительность пребывания автомобиля в очереди.

    1. Параметр потока обслуживания и приведенная интенсивность потока автомобилей:

    μ = 0,952; ψ = 0,893.

    2. Предельные вероятности состояния системы:

    P 0 (t ) определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В примере эта доля составляет 10,7%, так как P 0 (t ) = 0,107.

    3. Среднее число автомобилей, находящихся в системе

    (на обслуживании и в очереди):


    4. Средняя продолжительность пребывания клиента в системе

    5. Среднее число автомобилей в очереди на обслуживание:

    6. Средняя продолжительность пребывания автомобиля в очереди:

    7. Относительная пропускная способность системы:

    q = 1, т. е. каждая заявка, пришедшая в систему, будет обслужена.

    8. Абсолютная пропускная способность:

    Презентационное оформление материала представлено в файле «ТМО»

    Вопросы и задачи

    (по Афанасьеву М.Ю. )

    Вопрос 1. Одна работница обслуживает тридцать ткацких станков, обеспечивая их запуск после разрыва нити. Модель такой системы массового обслуживания можно охарактеризовать как:

    1) многоканальную однофазовую с ограниченной популяцией;

    2) одноканальную однофазовую с неограниченной популяцией;

    3) одноканальную многофазовую с ограниченной популяцией;

    4) одноканальную однофазовую с ограниченной популяцией;

    5) многоканальную однофазовую с неограниченной популяцией.

    Вопрос 2. В теории массового обслуживания для описания простейшего потока заявок, поступающих на вход системы, используется распределение вероятностей:

    1) нормальное;

    2) экспоненциальное;

    3) пуассоновское;

    4) биномиальное;

    Вопрос 3. В теории массового обслуживания предполагается, что количество заявок в популяции является:

    1) фиксированным или переменным;

    2) ограниченным или неограниченным;

    3) известным или неизвестным;

    4) случайным или детерминированным;

    5) ничто из вышеуказанного не является верным.

    Вопрос 4. Двумя основными параметрами, которые определяют конфигурацию системы массового обслуживания, являются:

    1) темп поступления и темп обслуживания;

    2) длина очереди и правило обслуживания;

    3) распределение времени между заявками и распределение времени обслуживания;

    4) число каналов и число фаз обслуживания;

    5) ничто из вышеуказанного не является верным.

    Вопрос 5. В теории массового обслуживания для описания времени, затрачиваемого на обслуживание заявок, обычно используется распределение вероятностей:

    1) нормальное;

    2)экспоненциальное;

    3) пуассоновское;

    4) биномиальное;

    5) ничто из вышеуказанного не является верным.

    Вопрос 6. Ремонт вышедших из строя компьютеров на эконо­мическом факультете осуществляют три специалиста, работающие одновременно и независимо друг от друга. Модель такой системы массового обслуживания можно охарактеризовать как:

    1) многоканальную с ограниченной популяцией;

    2) одноканальную с неограниченной популяцией;

    3) одноканальную с ограниченной популяцией;

    4) одноканальную с ограниченной очередью;

    5) многоканальную с неограниченной популяцией.

    Ответы на вопросы : 1 -4, 2 - 3, 3 -2, 4 -4, 5 -2, 6 -1.


    СЕТЕВОЕ ПЛАНИРОВАНИЕ И УПРАВЛЕНИЕ

    Системы сетевого планирования и управления (СПУ) представляют особую разновидность систем организованного управления, предназначенных для регулирования производственной деятельности коллективов. Как и в других системах этого класса, «объектом управления» в системах СПУ является коллектив исполнителей, располагающих определенными ресурсами: людскими, материальными, финансовыми. Однако, данным системам присущ ряд особенностей, так как их методологическую основу составляют методы исследования операций, теория ориентированных графов и некоторые разделы теории вероятностей и математической статистики. Необходимым свойством системы планирования и управления является также способность оценивать текущее состояние, предсказывать дальнейший ход работ и таким образом воздействовать на ход подготовки и производства, чтобы весь комплекс работ был выполнен в заданные сроки и с наименьшими затратами.

    В настоящее время модели и методы СПУ широко используются при планировании и осуществлении строительно-монтажных работ, планировании торговой деятельности, составлении бухгалтерских отчетов, разработке торгово-финансового плана и т.д.

    Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и создание крупного территориально-промышленного комплекса).

    Для того чтобы составить план работ по осуществлению больших и сложных проектов, состоящих из тысяч отдельных исследований и операций, необходимо описать его с помощью некоторой математической модели. Таким средством описания проектов (комплексов) является сетевая модель.

    Рисунок 0 - 2 Потоки событий (а) и простейший поток (б)

    10.5.2.1. Стационарность

    Поток называется стационарным, если вероятность попадания того или иного числа событий на элементарный участок времени длиной τ (

    Рисунок 0-2 , а) зависит только от длины участка и не зависит от того, где именно на оси t расположен этот участок.

    Стационарность потока означает его однородность по времени; вероятностные характеристики такого потока не меняются в зависимости от времени. В частности, так называемая интенсивность (или «плотность») потока событий среднее число событий в единицу времени для стационарного потока должна оставаться постоянной. Это, разумеется, не значит, что фактическое число событий, появляющихся в единицу времени, постоянно, поток может иметь местные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный участок времени, остается постоянным для всего рассматриваемого периода.

    На практике часто встречаются потоки событий, которые (по крайней мере, на ограниченном участке времени) могут рассматриваться как стационарные. Например, поток вызовов, поступающих на телефонную станцию, скажем, на интервале от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не будет стационарным (ночью интенсивность потока вызовов гораздо меньше, чем днем). Заметим, что так же обстоит дело и с большинством физических процессов, которые мы называем «стационарными» в действительности они стационарны только на ограниченном участке времени, а распространение этого участка до бесконечности лишь удобный прием, применяемый в целях упрощения.

    10.5.2.2. Отсутствие последействия

    Поток событий называется потоком без последействия, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой (или другие, если рассматривается больше двух участков).

    В таких потоках события, образующие поток, появляются в последовательные моменты времени независимо друг от друга. Например, поток пассажиров, входящих на станцию метро, можно считать потоком без последействия, потому что причины, обусловившие приход отдельного пассажира именно в данный момент, а не в другой, как правило, не связаны с аналогичными причинами для других пассажиров. Если такая зависимость появляется, условие отсутствия последействия оказывается нарушенным.

    Рассмотрим, например, поток грузовых поездов, идущих по железнодорожной ветке. Если по условиям безопасности они не могут следовать один за другим чаще, чем через интервал времени t 0 , то между событиями в потоке имеется зависимость, и условие отсутствия последействия нарушается. Однако, если интервал t 0 мал по сравнению со средним интервалом между поездами, то такое нарушение несущественно.

    Рисунок 0 - 3 Распределение Пуассона

    Рассмотрим на оси t простейший поток событий с интенсивностью λ. (Рисунок 0-2 б). Нас будет интересовать случайный интервал времени Т между соседними событиями в этом потоке; найдем его закон распределения. Сначала найдем функцию распределения:

    F(t) = P(T (0-2)

    т. е. вероятность того, что величина Т будет иметь значение, меньшее, чем t . Отложим от начала интервала Т (точки t 0 ) отрезок t и найдем вероятность того, что интервал Т будет меньше t . Для этого нужно, чтобы на участок длины t , примыкающий к точке t 0 , попало хотя бы одно событие потока. Вычислим вероятность этого F (t ) через вероятность противоположного события (на участок t не попадет ни одного события потока):

    F (t ) = 1 - Р0

    Вероятность Р 0 найдем по формуле (1), полагая m = 0:

    откуда функция распределения величины Т будет:

    (0-3)

    Чтобы найти плотность распределения f (t ) случайной величины Т, необходимо продифференцировать выражение (0‑1) по t :

    0-4)

    Закон распределения с плотностью (0‑4) называется показательным (или экспоненциальным). Величина λ называется параметром показательного закона.

    Рисунок 0 - 4 Экспоненциальное распределение

    Найдем числовые характеристики случайной величины Т - математическое ожидание (среднее значение) M [ t ]= m t , и дисперсию D t . Имеем

    ( 0-5)

    (интегрируя по частям) .

    Дисперсия величины Т составляет:

    (0-6)

    Извлекая корень квадратный из дисперсии, найдем среднее квадратическое отклонение случайной величины Т.

    Итак, для показательного распределения математическое ожидание и среднее квадратическое отклонение равны друг другу и обратны параметру λ, где λ. интенсивность потока.

    Т.о., появление m событий в заданный промежуток времени соответствует пуассоновскому распределению, а вероятность того, что временные интервалы между событиями будут меньше некоторого наперед заданного числа, соответствует экспоненциальному распределению. Все это лишь различные описания одного и того же стохастического процесса.


    Пример СМО- 1 .

    В качестве примера рассмотрим банковскую систему, работающую в реальном масштабе времени и обслуживающую большое число клиентов. В часы пик запросы от кассиров банка, работающих с клиентами, образуют пуассоновский поток и поступают в среднем по два в 1 с (λ = 2).Поток состоит из заявок, поступающих с интенсивностью 2 заявки в секунду.

    Рассчитаем вероятность Р (m ) появления m сообщений в 1 с. Так как λ = 2, то из предыдущей формулы имеем

    Подставляя m = 0, 1, 2, 3, получим следующие величины (с точностью до четырех десятичных знаков):

    Рисунок 0 - 5 Пример простейшего потока

    Возможно поступление и более 9 сообщений в 1 с, но вероятность этого очень мала (около 0,000046).

    Полученное распределение может быть представлено в виде гистограммы (показана на рисунке).

    Пример СМО- 2 .

    Прибор (сервер), обрабатывающей три сообщения в 1с.

    Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает всреднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?

    Вероятность того, что скорость поступления будет меньше или равна 3 с, определяется выражением

    Если система может обрабатывать максимум 3 сообщения в 1 с, то вероятность того, что она не будет перегружена, равна

    Другими словами, 85,71% сообщений будут обслуживаться немедленно, а 14,29% с некоторой задержкой. Как видим, задержка в обработке одного сообщения на время, большее времени обработки 3 сообщений, будет встречаться редко. Время обработки 1сообщения составляет в среднем 1/3 с. Следовательно, задержка более 1с будет редким явлением, что вполне приемлемо для большинства систем.

    Пример СМО- 3

    · Если кассир банка занят в течение 80% своего рабочего времени, а остальное время он тратит на ожидание клиентов, то его можно рассматривать как устройство с коэффициентом использования 0,8.

    · Если канал связи используется для передачи 8-битовых символов со скоростью 2400 бит/с, т. е. передается максимум 2400/8 символов в 1 с, и мы строим систему, в которой суммарный объем данных составляет 12000 символов, посылаемых от различных устройств через канал связи в минуту наибольшей нагрузки (включая синхронизацию, символы конца сообщений, управляющие и т. д.), то коэффициент использования оборудования канала связи в течение этой минуты равен

    · Если механизм доступа к файлу в час наибольшей нагрузки осуществляет 9000 обращений к файлу, а время одного обращения равно в среднем 300 мс, то коэффициент использования оборудования механизма доступа в час наибольшей нагрузки составляет

    Понятие коэффициента использования оборудования будет использоваться довольно часто. Чем ближе коэффициент использования оборудования к 100%, тем больше задержки и длиннее очереди.

    Используя предыдущую формулу, можно составить таблицы значений функции Пуассона, по которым можно определить вероятность поступления m или более сообщений в данный отрезок времени. Например, если в среднем поступает 3,1 сообщения в секунду [т. е. λ = 3,1], то вероятность поступления 5 и более сообщений в данную секунду равна 0,2018 (для m = 5 в таблице). Или в аналитическом виде

    Используя это выражение, специалист по системному анализу может рассчитать вероятность того, что система не обеспечит заданный критерий нагрузки.

    Часто первоначальные расчеты могут быть проведены для значений загрузки оборудования

    ρ ≤ 0,9

    Эти значения можно получить с помощью таблиц Пуассона.

    Пусть снова средняя скорость поступления сообщений λ = 3,1 сообщения/с. Из таблиц следует, что вероятность поступления 6 или более сообщений в 1 с равна 0,0943. Следовательно, это число можно взять в качестве критерия нагрузки для проведения начальных расчетов.

    10.6.2. Задачи проектирования

    При случайном характере поступления сообщений в устройство последнее затрачивает часть времени на обработку или обслуживание каждого сообщения, в результате чего образуются очереди. Очередь в банке ожидает освобождения кассира и его компьютера (терминала). Очередь сообщений во входном буфере ЭВМ ожидает обработки процессором. Очередь требований к массивам данных ждет освобождения каналов и т. д. Очереди могут образовываться во всех узких местах системы.

    Чем больше коэффициент использования оборудования, тем длиннее возникающие очереди. Как будет показано ниже, можно спроектировать удовлетворительно работающую систему с коэффициентом использований ρ =0,7 но коэффициент, превышающий ρ > 0,9, может привести к ухудшению качества обслуживания. Другими словами, если канал пересылки массива данных имеет загрузку 20%, вряд ли на нем возникнет очередь. Если же загрузка; составляет 0,9, то, как правило, будут образовываться очереди, иногда очень большие.

    Коэффициент использования оборудования равен отношению нагрузки на оборудование к максимальной нагрузке, которую может выдержать это оборудование, или равен отношению времени занятости оборудования к общему времени его функционирования.

    При проектировании системы обычно делается оценка коэффициента использования для различных видов оборудования; соответствующие примеры будут приведены в последующих главах. Знание этих коэффициентов позволяет рассчитать очереди к соответствующему оборудованию.

    · Какова длина очереди?

    · Сколько времени на нее будет затрачиваться?

    На вопросы подобного типа можно ответить с помощью теории очередей.

    10.6.3. Системы массового обслуживания, их классы и основные характеристики

    Для СМО потоки событий это потоки заявок, потоки «обслуживании» заявок и т. д. Если эти потоки не являются пуассоновскими (марковский процесс), математическое описание процессов, происходящих в СМО, становится несравненно более сложным и требует более громоздкого аппарата, доведение которого до аналитических формул удается только в простейших случаях.

    Однако, аппарат «марковской» теории массового обслуживания может пригодиться и в том случае, когда процесс, протекающий в СМО, отличен от марковского с его помощью характеристики эффективности СМО могут быть оценены приближенно. Следует заметить, что чем сложнее СМО, чем больше в ней каналов обслуживания, тем точнее оказываются приближенные формулы, полученные с помощью марковской теории. Кроме того, в ряде случаев для принятия обоснованных решений по управлению работой СМО вовсе и не требуется точного знания всех ее характеристик зачастую достаточно приближенного, ориентировочного.

    СМО классифицируются на системы с:

    · отказами (с потерями). В таких системах заявка, поступившая в момент, когда все каналы заняты, получает «отказ», покидает СМО и в дальнейшем процессе обслуживания не участвует.

    · ожиданием (с очередью). В таких системах заявка, поступившая в момент, когда все каналы заняты, становится в очередь и ожидает, пока не освободится один из каналов. Когда канал освобождается, одна из заявок, стоящих в очереди, принимается к обслуживанию.

    Обслуживание (дисциплина очереди) в системе с ожиданием может быть

    · упорядоченным (заявки обслуживаются в порядке поступления),

    · неупорядоченным (заявки обслуживаются в случайном порядке) или

    · стековым (первой из очереди выбирается последняя заявка).

    · Приоритетным

    o со статическим приоритетом

    o с динамическим приоритетом

    (в последнем случае приоритет может, например, увеличиваться с длительностью ожидания заявки).

    Системы с очередью делятся на системы

    · с неограниченным ожиданием и

    · с ограниченным ожиданием.

    В системах с неограниченным ожиданием каждая заявка, поступившая в момент, когда нет свободных каналов, становится в очередь и «терпеливо» ждет освобождения канала, который примет ее к обслуживанию. Любая заявка, поступившая в СМО, рано или поздно будет обслужена.

    В системах с ограниченным ожиданием на пребывание заявки в очереди накладываются те или другие ограничения. Эти ограничения могут касаться

    · длины очереди (числа заявок, одновременно находящихся в очереди система с ограниченной длиной очереди),

    · времени пребывания заявки в очереди (после какого-то срока пребывания в очереди заявка покидает очередь и уходит система с ограниченным временем ожидания),

    · общего времени пребывания заявки в СМО

    и т. д.

    В зависимости от типа СМО при оценке ее эффективности могут применяться те или другие величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик ее продуктивности является так называемая абсолютная пропускная способность среднее число заявок, которое может обслужить система за единицу времени.

    Наряду с абсолютной часто рассматривается относительная пропускная способность СМО средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок).

    Помимо абсолютной и относительной пропускной способностей при анализе СМО с отказами нас могут, в зависимости от задачи исследования, интересовать и другие характеристики, например:

    · среднее число занятых каналов;

    · среднее относительное время простоя системы в целом и отдельного канала

    и т. д.

    СМО с ожиданием имеют несколько другие характеристики. Очевидно, для СМО с неограниченным ожиданием как абсолютная, так и относительная пропускная способность теряют смысл, так как каждая поступившая заявка рано или поздно будет обслужена. Для такой СМО важными характеристиками являются:

    · среднее число заявок в очереди;

    · среднее число заявок в системе (в очереди и под обслуживанием);

    · среднее время ожидания заявки в очереди;

    · среднее время пребывания заявки в системе (в очереди и под обслуживанием);

    а также и другие характеристики ожидания.

    Для СМО с ограниченным ожиданием интерес представляют обе группы характеристик: как абсолютная и относительная пропускная способности, так и характеристики ожидания.

    Для анализа процесса, протекающего в СМО, существенно знать основные параметры системы: число каналов п, интенсивность потока заявок λ , производительность каждого канала (среднее число заявок μ, обслуживаемое каналом в единицу времени), условия образования очереди (ограничения, если они есть).

    В зависимости от значений этих параметров выражаются характеристики эффективности работы СМО.

    10.6.4. Формулы расчета характеристик СМО для случая обслуживания с одним прибором

    Рисунок 0 - 6 Модель системы массового обслуживания с очередью

    Такие очереди могут создаваться сообщениями на входе процессора, ожидающими начала обработки. Они могут возникать при работе абонентских пунктов, подключенных к многопунктовому каналу связи. Аналогично образуются очереди из автомобилей на заправочных станциях. Однако при наличии более одного входа на обслуживание мы имеем очередь со многими приборами и анализ усложняется.

    Рассмотрим случай простейшего потока заявок на обслуживание.

    Назначение излагаемой теории очередей состоит в приближенном определении среднего размера очереди, а также среднего времени, затрачиваемого сообщениями на ожидание в очередях. Желательно также оценить, насколько часто очередь превышает определенную длину. Эти сведения позволят нам вычислить, например, необходимый объем буферной памяти для хранения очередей сообщений и соответствующих программ, необходимое количество линий связи, необходимые размеры буферов для концентраторов и т. д. Появится возможность оценивать времена ответа.

    Каждая из характеристик меняется в зависимости от используемых средств.

    Рассмотрим очередь с одним прибором обслуживания. При проектировании вычислительной системы большинство очередей подобного типа рассчитывается по приведенным формулам. коэффициент вариации времени обслуживания

    Формула Хинчина-Полачека используется для вычисления длин очередей при проектировании информационных систем. Она применяется в случае экспоненциального распределения времени поступления при любом распределении времени обслуживания и любой дисциплине управления, лишь бы выбор очередного сообщения для обслуживания не зависел от времени обслуживания.

    При проектировании систем встречаются такие ситуации возникновения очередей, когда дисциплина управления несомненно зависит от времени обслуживания. Например, в некоторых случаях мы можем выбрать для первоочередного обслуживания более короткие сообщения, чтобы получить меньшее среднее время обслуживания. При управлении линией связи можно присвоить входным сообщениям более высокий приоритет, чем выходным, ибо первые короче. В таких случаях уже необходимо использовать не уравнение Хинчина

    Большинство значений времени обслуживания в информационных системах лежит где-то между этими двумя случаями. Времена обслуживания, равные постоянной величине, встречаются редко. Даже время доступа к твердому диску непостоянно из-за различного положения массивов с данными на поверхности. Одним из примеров, иллюстрирующих случай постоянного времени обслуживания может служить занятие линии связи для передачи сообщений фиксированной длины.

    С другой стороны, разброс времени обслуживания не так велик, как в случае произвольного или экспоненциального его распределения, т.е., σ s редко достигает значений t s . Этот случай иногда считают "наихудшим и потому пользуются формулами, относящимися к экспоненциальному распределению времен обслуживания. Такой расчет может дать несколько завышенные размеры очередей и времен ожидания в них, но эта ошибка, по крайней мере, не опасна.

    Экспоненциальное распределение времен обслуживания, конечно, не наихудший случай, с которым приходится иметь дело в действительности. Однако, если времена обслуживания, полученные при расчете очередей, оказываются распределенными хуже, чем времена с экспоненциальным распределением, это часто является предостерегающим сигналом для разработчика. Если стандартное отклонение больше среднего значения, то обычно возникает необходимость в коррекции расчетов.

    Рассмотрим следующий пример. Имеется шесть типов сообщений с временами обслуживания 15, 20, 25, 30, 35 и 300. Число сообщений каждого типа одинаково. Стандартное отклонение указанных времен несколько выше их среднего. Значение последнего времени обслуживания намного больше других. Это приведет к тому, что сообщения будут находиться в очереди значительно дольше, чем, если бы времена обслуживания были одного порядка. В таком случае при проектировании целесообразно принять меры для уменьшения длины очереди. Например, если указанные цифры связаны с длинами сообщений, то, возможно, очень длинные сообщения стоит разделить на части.

    10.6.6. Пример расчета

    При проектировании банковской системы желательно знать число клиентов, которым придется ожидать в очереди к одному кассиру в часы пик.

    Время ответа системы и его стандартное отклонение рассчитаны с учетом времени ввода данных с АРМа, печатания и оформления документа.

    Действия кассира были прохронометрированы. Время обслуживания ts равно общему времени, затрачиваемому кассиром на клиента. Коэффициент использования кассира ρ пропорционален времени его занятости. Если λ число клиентов в часы пик, то ρ для кассира равно

    Предположим, что в часы пик приходит 30 клиентов в час. В среднем кассир тратит 1,5 мин на клиента. Тогда

    ρ =(1,5 * 30) / 60 = 0,75

    т. е. кассир используется на 75%.

    Число людей в очереди можно быстро оценить с помощью графиков. Из них следует, что если ρ = 0,75, то среднее число nq людей в очереди у кассы лежит между 1,88 и 3,0 в зависимости от стандартного отклонения для t s .

    Предположим, что измерение стандартного отклонения для t s дало величину 0,5 мин. Тогда

    σ s = 0,33 t s

    Из графика на первом рисунке находим, что nq = 2,0, т. е. в среднем у кассы буду ожидать два клиента.

    Общее время, в течение которого клиент стоит у кассы, может быть найдено как

    t ∑ = t q + t s = 2,5 мин + 1,5 мин=4мин

    где t s вычисляется с помощью формулы Хинчина-Полачека.

    10.6.7. Фактор усиления

    Анализируя кривые, изображенные на рисунках, мы видим, что, когда оборудование, обслуживающее очередь, используется более чем на 80%, кривые начинают расти с угрожающей быстротой. Этот факт очень важен при проектировании систем передачи данных. Если мы проектируем систему, в которой оборудование используется более чем на 80%, то незначительное увеличение трафика может привести к резкому спаду производительности системы или даже заставить ее работать в аварийном режиме.

    Увеличение входного трафика на небольшое число х%. приводит к увеличению размеров очереди приблизительно на

    Если коэффициент использования оборудования равен 50%, то это увеличение равно 4ts % для экспоненциального закона распределения времени обслуживания. Но если коэффициент использования оборудования равен 90%, то увеличение размера очереди равно 100ts %, что в 25 раз больше. Незначительное увеличение нагрузки при 90%-ном использовании оборудования приводит к 25-кратному увеличению размеров очереди по сравнению со случаем 50%-ного использования оборудования.

    Аналогично время пребывания в очереди увеличивается на

    При экспоненциально распределенном времени обслуживания эта величина имеет значение 4 t s 2 для коэффициента использования оборудования, равного 50%, и 100 t s 2 для коэффициента 90%, т. е. снова в 25 раз хуже.

    Кроме того, для малых коэффициентов использования оборудования влияние изменений σs на размер очереди незначительно. Однако для больших коэффициентов изменение σ s сильно сказывается на размере очереди. Поэтому при проектировании систем с высоким коэффициентом использования оборудования желательно получить точные сведения о параметре σ s . Неточность предположения относительно экспоненциальности распределения t s наиболее ощутима при больших значениях ρ. Более того, если вдруг время обслуживания возрастет, что возможно в каналах связи при передаче длинных сообщений, то в случае большого ρ образуется значительная очередь.

    Большой класс систем, которые сложно изучить аналитическими способами, но которые хорошо изучаются методами статистического моделирования, сводится к системам массового обслуживания (СМО).

    В СМО подразумевается, что есть типовые пути (каналы обслуживания), через которые в процессе обработки проходят заявки . Принято говорить, что заявки обслуживаются каналами. Каналы могут быть разными по назначению, характеристикам, они могут сочетаться в разных комбинациях; заявки могут находиться в очередях и ожидать обслуживания. Часть заявок может быть обслужена каналами, а части могут отказать в этом. Важно, что заявки, с точки зрения системы, абстрактны: это то, что желает обслужиться, то есть пройти определенный путь в системе. Каналы являются также абстракцией: это то, что обслуживает заявки.

    Заявки могут приходить неравномерно, каналы могут обслуживать разные заявки за разное время и так далее, количество заявок всегда весьма велико. Все это делает такие системы сложными для изучения и управления, и проследить все причинно-следственные связи в них не представляется возможным. Поэтому принято представление о том, что обслуживание в сложных системах носит случайный характер.

    Примерами СМО (см. табл. 30.1) могут служить: автобусный маршрут и перевозка пассажиров; производственный конвейер по обработке деталей; влетающая на чужую территорию эскадрилья самолетов, которая «обслуживается» зенитками ПВО; ствол и рожок автомата, которые «обслуживают» патроны; электрические заряды, перемещающиеся в некотором устройстве и т. д.

    Таблица 30.1.
    Примеры систем массового обслуживания
    СМО Заявки Каналы
    Автобусный маршрут и перевозка пассажиров Пассажиры Автобусы
    Производственный конвейер по обработке деталей Детали, узлы Станки, склады
    Влетающая на чужую территорию эскадрилья самолетов,
    которая «обслуживается» зенитками ПВО
    Самолеты Зенитные орудия, радары,
    стрелки, снаряды
    Ствол и рожок автомата, которые «обслуживают» патроны Патроны Ствол, рожок
    Электрические заряды, перемещающиеся в некотором устройстве Заряды Каскады технического
    устройства

    Но все эти системы объединены в один класс СМО, поскольку подход к их изучению един. Он состоит в том, что, во-первых , с помощью генератора случайных чисел разыгрываются случайные числа, которые имитируют СЛУЧАЙНЫЕ моменты появления заявок и время их обслуживания в каналах. Но в совокупности эти случайные числа, конечно, подчинены статистическим закономерностям.

    К примеру, пусть сказано: «заявки в среднем приходят в количестве 5 штук в час». Это означает, что времена между приходом двух соседних заявок случайны, например: 0.1; 0.3; 0.1; 0.4; 0.2, как это показано на рис. 30.1 , но в сумме они дают в среднем 1 (обратите внимание, что в примере это не точно 1, а 1.1 — но зато в другой час эта сумма, например, может быть равной 0.9); и только за достаточно большое время среднее этих чисел станет близким к одному часу.

    Результат (например, пропускная способность системы), конечно, тоже будет случайной величиной на отдельных промежутках времени. Но измеренная на большом промежутке времени, эта величина будет уже, в среднем, соответствовать точному решению. То есть для характеристики СМО интересуются ответами в статистическом смысле.

    Итак, систему испытывают случайными входными сигналами, подчиненными заданному статистическому закону, а в качестве результата принимают статистические показатели, усредненные по времени рассмотрения или по количеству опытов. Ранее, в лекции 21 (см. рис. 21.1), мы уже разработали схему для такого статистического эксперимента (см. рис. 30.2 ).

    Рис. 30.2. Схема статистического эксперимента для изучения систем массового обслуживания

    Во-вторых , все модели СМО собираются типовым образом из небольшого набора элементов (канал, источник заявок, очередь, заявка, дисциплина обслуживания, стек, кольцо и так далее), что позволяет имитировать эти задачи типовым образом. Для этого модель системы собирают из конструктора таких элементов. Неважно, какая конкретно система изучается, важно, что схема системы собирается из одних и тех же элементов. Разумеется, структура схемы будет всегда различной.

    Перечислим некоторые основные понятия СМО.

    Каналы — то, что обслуживает; бывают горячие (начинают обслуживать заявку в момент ее поступления в канал) и холодные (каналу для начала обслуживания требуется время на подготовку). Источники заявок — порождают заявки в случайные моменты времени, согласно заданному пользователем статистическому закону. Заявки , они же клиенты , входят в систему (порождаются источниками заявок), проходят через ее элементы (обслуживаются), покидают ее обслуженными или неудовлетворенными. Бывают нетерпеливые заявки — такие, которым надоело ожидать или находиться в системе и которые покидают по собственной воле СМО. Заявки образуют потоки — поток заявок на входе системы , поток обслуженных заявок, поток отказанных заявок. Поток характеризуется количеством заявок определенного сорта, наблюдаемым в некотором месте СМО за единицу времени (час, сутки, месяц), то есть поток есть величина статистическая.

    Очереди характеризуются правилами стояния в очереди (дисциплиной обслуживания), количеством мест в очереди (сколько клиентов максимум может находиться в очереди), структурой очереди (связь между местами в очереди). Бывают ограниченные и неограниченные очереди. Перечислим важнейшие дисциплины обслуживания. FIFO (First In, First Out — первым пришел, первым ушел): если заявка первой пришла в очередь, то она первой уйдет на обслуживание. LIFO (Last In, First Out — последним пришел, первым ушел): если заявка последней пришла в очередь, то она первой уйдет на обслуживание (пример — патроны в рожке автомата). SF (Short Forward — короткие вперед): в первую очередь обслуживаются те заявки из очереди, которые имеют меньшее время обслуживания.

    Дадим яркий пример, показывающий, как правильный выбор той или иной дисциплины обслуживания позволяет получить ощутимую экономию по времени.

    Пусть имеется два магазина. В магазине № 1 обслуживание осуществляется в порядке очереди, то есть здесь реализована дисциплина обслуживания FIFO (см. рис. 30.3 ).

    Рис. 30.3. Организация очереди по дисциплине FIFO

    Время обслуживания t обслуж. на рис. 30.3 показывает, сколько времени продавец затратит на обслуживание одного покупателя. Понятно, что при покупке штучного товара продавец затратит меньше времени на обслуживание, чем при покупке, скажем, сыпучих продуктов, требующих дополнительных манипуляций (набрать, взвесить, высчитать цену и т. п). Время ожидания t ожид. показывает, через какое время очередной покупатель будет обслужен продавцом.

    В магазине № 2 реализована дисциплина SF (см. рис. 30.4 ), означающая, что штучный товар можно купить вне очереди, так как время обслуживания t обслуж. такой покупки невелико.

    Рис. 30.4. Организация очереди по дисциплине SF

    Как видно из обоих рисунков, последний (пятый) покупатель собирается приобрести штучный товар, поэтому время его обслуживания невелико — 0.5 минут. Если этот покупатель придет в магазин № 1, он будет вынужден выстоять в очереди целых 8 минут, в то время как в магазине № 2 его обслужат сразу же, вне очереди. Таким образом, среднее время обслуживания каждого из покупателей в магазине с дисциплиной обслуживания FIFO составит 4 минуты, а в магазине с дисциплиной обслуживания КВ — лишь 2.8 минуты. А общественная польза, экономия времени составит: (1 – 2.8/4) · 100% = 30 процентов! Итак, 30% сэкономленного для общества времени — и это лишь за счет правильного выбора дисциплины обслуживания.

    Специалист по системам должен хорошо понимать ресурсы производительности и эффективности проектируемых им систем, скрытые в оптимизации параметров, структур и дисциплинах обслуживания. Моделирование помогает выявить эти скрытые резервы .

    При анализе результатов моделирования важно также указать интересы и степень их выполнения. Различают интересы клиента и интересы владельца системы. Заметим, что эти интересы совпадают не всегда.

    Судить о результатах работы СМО можно по показателям . Наиболее популярные из них:

    • вероятность обслуживания клиента системой;
    • пропускная способность системы;
    • вероятность отказа клиенту в обслуживании;
    • вероятность занятости каждого из канала и всех вместе;
    • среднее время занятости каждого канала;
    • вероятность занятости всех каналов;
    • среднее количество занятых каналов;
    • вероятность простоя каждого канала;
    • вероятность простоя всей системы;
    • среднее количество заявок, стоящих в очереди;
    • среднее время ожидания заявки в очереди;
    • среднее время обслуживания заявки;
    • среднее время нахождения заявки в системе.

    Судить о качестве полученной системы нужно по совокупности значений показателей. При анализе результатов моделирования (показателей) важно также обращать внимание на интересы клиента и интересы владельца системы , то есть минимизировать или максимизировать надо тот или иной показатель, а также на степень их выполнения. Заметим, что чаще всего интересы клиента и владельца между собой не совпадают или совпадают не всегда. Показатели будем обозначать далее H = {h 1 , h 2 , …} .

    Параметрами СМО могут быть: интенсивность потока заявок, интенсивность потока обслуживания, среднее время, в течение которого заявка готова ожидать обслуживания в очереди, количество каналов обслуживания, дисциплина обслуживания и так далее. Параметры — это то, что влияет на показатели системы. Параметры будем обозначать далее как R = {r 1 , r 2 , …} .

    Пример. Автозаправочная станция (АЗС) .

    1. Постановка задачи . На рис. 30.5 приведен план АЗС. Рассмотрим метод моделирования СМО на ее примере и план ее исследования. Водители, проезжая по дороге мимо АЗС по дороге, могут захотеть заправить свой автомобиль. Хотят обслужиться (заправить машину бензином) не все автомобилисты подряд; допустим, что из всего потока машин на заправку в среднем заезжает 5 машин в час.

    Рис. 30.5. План моделируемой АЗС

    На АЗС две одинаковые колонки, статистическая производительность каждой из которых известна. Первая колонка в среднем обслуживает 1 машину в час, вторая в среднем — 3 машины в час. Владелец АЗС заасфальтировал для машин место, где они могут ожидать обслуживания. Если колонки заняты, то на этом месте могут ожидать обслуживания другие машины, но не более двух одновременно. Очередь будем считать общей. Как только одна из колонок освободится, то первая машина из очереди может занять ее место на колонке (при этом вторая машина продвигается на первое место в очереди). Если появляется третья машина, а все места (их два) в очереди заняты, то ей отказывают в обслуживании, так как стоять на дороге запрещено (см. дорожные знаки около АЗС). Такая машина уезжает прочь из системы навсегда и как потенциальный клиент является потерянной для владельца АЗС. Можно усложнить задачу, рассмотрев кассу (еще один канал обслуживания, куда надо попасть после обслуживания в одной из колонок) и очередь к ней и так далее. Но в простейшем варианте очевидно, что пути движения потоков заявок по СМО можно изобразить в виде эквивалентной схемы, а добавив значения и обозначения характеристик каждого элемента СМО, получаем окончательно схему, изображенную на рис. 30.6 .

    Рис. 30.6. Эквивалентная схема объекта моделирования

    2. Метод исследования СМО . Применим в нашем примере принцип последовательной проводки заявок (подробно о принципах моделирования см. лекцию 32). Его идея заключается в том, что заявку проводят через всю систему от входа до выхода, и только после этого берутся за моделирование следующей заявки.

    Для наглядности построим временную диаграмму работы СМО, отражая на каждой линейке (ось времени t ) состояние отдельного элемента системы. Временных линеек проводится столько, сколько имеется различных мест в СМО, потоков. В нашем примере их 7 (поток заявок, поток ожидания на первом месте в очереди, поток ожидания на втором месте в очереди, поток обслуживания в канале 1, поток обслуживания в канале 2, поток обслуженных системой заявок, поток отказанных заявок).

    Для генерации времени прихода заявок используем формулу вычисления интервала между моментами прихода двух случайных событий (см. лекцию 28):

    В этой формуле величина потока λ должна быть задана (до этого она должна быть определена экспериментально на объекте как статистическое среднее), r — случайное равномерно распределенное число от 0 до 1 из ГСЧ или таблицы , в которой случайные числа нужно брать подряд (не выбирая специально).

    Задача . Сгенерируйте поток из 10 случайных событий с интенсивностью появления событий 5 шт/час.

    Решение задачи . Возьмем случайные числа, равномерно распределенные в интервале от 0 до 1 (см. таблицу), и вычислим их натуральные логарифмы (см. табл. 30.2).

    Формула пуассоновского потока определяет расстояние между двумя случайными событиями следующим образом: t = –Ln(r рр)/λ . Тогда, учитывая, что λ = 5 , имеем расстояния между двумя случайными соседними событиями: 0.68, 0.21, 0.31, 0.12 часа. То есть события наступают: первое — в момент времени t = 0 , второе — в момент времени t = 0.68 , третье — в момент времени t = 0.89 , четвертое — в момент времени t = 1.20 , пятое — в момент времени t = 1.32 и так далее. События — приход заявок отразим на первой линейке (см. рис. 30.7 ).


    Рис. 30.7. Временная диаграмма работы СМО

    Берется первая заявка и, так как в этот момент каналы свободны, устанавливается на обслуживание в первый канал. Заявка 1 переносится на линейку «1 канал».

    Время обслуживания в канале тоже случайное и вычисляется по аналогичной формуле:

    где роль интенсивности играет величина потока обслуживания μ 1 или μ 2 , в зависимости от того, какой канал обслуживает заявку. Находим на диаграмме момент окончания обслуживания, откладывая сгенерированное время обслуживания от момента начала обслуживания, и опускаем заявку на линейку «Обслуженные».

    Заявка прошла в СМО весь путь. Теперь можно, согласно принципу последовательной проводки заявок, также проимитировать путь второй заявки.

    Если в некоторый момент окажется, что оба канала заняты, то следует установить заявку в очередь. На рис. 30.7 это заявка с номером 3. Заметим, что по условиям задачи в очереди в отличие от каналов заявки находятся не случайное время, а ожидают, когда освободится какой-то из каналов. После освобождения канала заявка поднимается на линейку соответствующего канала и там организуется ее обслуживание.

    Если все места в очереди в момент, когда придет очередная заявка, будут заняты, то заявку следует отправить на линейку «Отказанные». На рис. 30.7 это заявка с номером 6.

    Процедуру имитации обслуживания заявок продолжают некоторое время наблюдения T н . Чем больше это время, тем точнее в дальнейшем будут результаты моделирования. Реально для простых систем выбирают T н , равное 50—100 и более часов, хотя иногда лучше мерить эту величину количеством рассмотренных заявок.

    Анализ временной диаграммы

    Анализ проведем на уже рассмотренном примере.

    Сначала нужно дождаться установившегося режима. Откидываем первые четыре заявки как нехарактерные, протекающие во время процесса установления работы системы. Измеряем время наблюдения, допустим, что в нашем примере оно составит T н = 5 часов. Подсчитываем из диаграммы количество обслуженных заявок N обс. , времена простоя и другие величины. В результате можем вычислить показатели, характеризующие качество работы СМО.

    1. Вероятность обслуживания: P обс. = N обс. /N = 5/7 = 0.714 . Для расчета вероятности обслуживания заявки в системе достаточно разделить число заявок, которым удалось обслужиться за время T н (см. линейку «Обслуженные») N обс. , на число заявок N , которые хотели обслужиться за это же время. Как и раньше вероятность экспериментально определяем отношением свершившихся событий к общему числу событий, которые могли совершиться!
    2. Пропускная способность системы: A = N обс. /T н = 7/5 = 1.4 [шт/час] . Для расчета пропускной способности системы достаточно разделить число обслуженных заявок N обс. на время T н , за которое произошло это обслуживание (см. линейку «Обслуженные»).
    3. Вероятность отказа: P отк. = N отк. /N = 3/7 = 0.43 . Для расчета вероятности отказа заявке в обслуживании достаточно разделить число заявок N отк. , которым отказали за время T н (см. линейку «Отказанные»), на число заявок N , которые хотели обслужиться за это же время, то есть поступили в систему. Обратите внимание . P отк. + P обс. в теории должно быть равно 1. На самом деле экспериментально получилось, что P отк. + P обс. = 0.714 + 0.43 = 1.144 . Эта неточность объясняется тем, что время наблюдения T н мало и статистика накоплена недостаточная для получения точного ответа. Погрешность это показателя сейчас составляет 14%!
    4. Вероятность занятости одного канала: P 1 = T зан. /T н = 0.05/5 = 0.01 , где T зан. — время занятости только одного канала (первого или второго). Измерениям подлежат временные отрезки, на которых происходят определенные события. Например, на диаграмме ищутся такие отрезки, во время которых заняты или первый или второй канал. В данном примере есть один такой отрезок в конце диаграммы длиной 0.05 часа. Доля этого отрезка в общем времени рассмотрения (T н = 5 часов) определяется делением и составляет искомую вероятность занятости.
    5. Вероятность занятости двух каналов: P 2 = T зан. /T н = 4.95/5 = 0.99 . На диаграмме ищутся такие отрезки, во время которых одновременно заняты и первый, и второй канал. В данном примере таких отрезков четыре, их сумма равна 4.95 часа. Доля продолжительности этих события в общем времени рассмотрения (T н = 5 часов) определяется делением и составляет искомую вероятность занятости.
    6. Среднее количество занятых каналов: N ск = 0 · P 0 + 1 · P 1 + 2 · P 2 = 0.01 + 2 · 0.99 = 1.99 . Чтобы подсчитать, сколько каналов занято в системе в среднем, достаточно знать долю (вероятность занятости одного канала) и умножить на вес этой доли (один канал), знать долю (вероятность занятости двух каналов) и умножить на вес этой доли (два канала) и так далее. Полученная цифра 1.99 говорит о том, что из возможных двух каналов в среднем загружено 1.99 канала. Это высокий показатель загрузки, 99.5%, система хорошо использует ресурс.
    7. Вероятность простоя хотя бы одного канала: P * 1 = T простоя1 /T н = 0.05/5 = 0.01 .
    8. Вероятность простоя двух каналов одновременно: P * 2 = T простоя2 /T н = 0 .
    9. Вероятность простоя всей системы: P * c = T простоя сист. /T н = 0 .
    10. Среднее количество заявок в очереди: N сз = 0 · P 0з + 1 · P 1з + 2 · P 2з = 0.34 + 2 · 0.64 = 1.62 [шт] . Чтобы определить среднее количество заявок в очереди, надо определить отдельно вероятность того, что в очереди будет одна заявка P 1з , вероятность того, в очереди будет стоять две заявки P 2з и т. д. и снова с соответствующими весами их сложить.
    11. Вероятность того, что в очереди будет одна заявка: P 1з = T 1з /T н = 1.7/5 = 0.34 (всего на диаграмме четырех таких отрезка, в сумме дающих 1.7 часа).
    12. Вероятность того, в очереди будет стоять одновременно две заявки: P 2з = T 2з /T н = 3.2/5 = 0.64 (всего на диаграмме три таких отрезка, в сумме дающих 3.25 часа).
    13. Среднее время ожидания заявки в очереди:

      (Сложить все временные интервалы, в течение которых какая-либо заявка находилась в очереди, и разделить на количество заявок). На временной диаграмме таких заявок 4.

    14. Среднее время обслуживания заявки:

      (Сложить все временные интервалы, в течение которых какая-либо заявка находилась на обслуживании в каком-либо канале, и разделить на количество заявок).

    15. Среднее время нахождения заявки в системе: T ср. сист. = T ср. ож. + T ср. обсл. .
    16. Среднее количество заявок в системе:

      Разобьем интервал наблюдения, например, на десятиминутки. Получится на пяти часах K подынтервалов (в нашем случае K = 30 ). В каждом подынтервале определим по временной диаграмме, сколько заявок в этот момент находится в системе. Смотреть надо на 2, 3, 4 и 5-ю линейки — какие из них заняты в данный момент. Затем сумму K слагаемых усреднить.

    Далее следует оценить точность каждого из полученных результатов. То есть ответить на вопрос: насколько мы можем доверять этим значениям? Оценка точности проводится по методике, описанной в лекции 34 .

    Если точность не является удовлетворительной, то следует увеличить время эксперимента и тем самым улучшить статистику. Можно сделать и по-другому. Снова несколько раз запустить эксперимент на время T н . А в последствии усреднить значения этих экспериментов. И снова проверить результаты на критерий точности. Эту процедуру следует повторять до тех пор, пока не будет достигнута требуемая точность.

    Далее следует составить таблицу результатов и оценить значения каждого из них с точки зрения клиента и владельца СМО (см. табл. 30.3).. В конце, учитывая сказанное в каждом пункте, следует сделать общий вывод. Таблица должна иметь примерно такой вид, какой показан в табл. 30.3.

    Таблица 30.3.
    Показатели СМО
    Показатель Формула Значение Интересы владельца СМО Интересы клиента СМО
    Вероятность обслуживания P обс. = N обс. /N 0.714 Вероятность обслуживания мала, много клиентов уходят из системы неудовлетворенными, их деньги для владельца потеряны. Это «минус». Вероятность обслуживания мала, каждый третий клиент хочет, но не может обслужиться. Это «минус».
    … … … … …
    Среднее количество заявок в очереди N сз = 0 · P 0з + 1 · P 1з + 2 · P 1.62 Очередь практически все время вся забита. Все места в очереди используются достаточно эффективно. Вложения на организацию очереди окупают затраты на нее. Это «плюс».
    Клиенты, которые долго стоят в очереди, могут уйти, не дождавшись обслуживания. Клиенты, простаивая, могут нанести ущерб системе, ломать оборудование. Много отказов, потерянных клиентов. Это «минусы».
    Очередь практически все время вся забита. Клиенту приходится стоять в очереди, прежде чем он попадет на обслуживание. Клиент может не попасть даже в очередь. Это «минус».
    Общий итог: В интересах владельца: а) увеличить пропускную способность каналов, чтобы не терять клиентов (правда, модернизация каналов стоит денег); б) увеличить число мест в очереди (это тоже стоит денег), чтобы задержать потенциальных клиентов. Клиенты заинтересованы в значительном увеличении пропускной способности для уменьшения времени ожидания и уменьшения отказов.

    Синтез СМО

    Мы проделали анализ существующей системы. Это дало возможность увидеть ее недостатки и определить направления улучшения ее качества. Но остаются непонятными ответы на конкретные вопросы, что именно надо сделать — увеличивать количество каналов или увеличивать их пропускную способность, или увеличивать количество мест в очереди, и, если увеличивать, то насколько? Есть и такие вопросы, что лучше — создать 3 канала с производительностью 5 шт/час или один с производительностью 15 шт/час?

    Чтобы оценить чувствительность каждого показателя к изменению значения определенного параметра, поступают следующим образом. Фиксируют все параметры кроме одного, выбранного. Затем снимают значение всех показателей при нескольких значениях этого выбранного параметра. Конечно, приходится повторять снова и снова процедуру имитации и усреднять показатели при каждом значении параметра, оценивать точность. Но в результате получаются надежные статистические зависимости характеристик (показателей) от параметра.

    Например, для 12 показателей нашего примера можно получить 12 зависимостей от одного параметра: зависимость вероятности отказов P отк. от количества мест в очереди (КМО), зависимость пропускной способности A от количества мест в очереди, и так далее (см. рис. 30.8 ).

    Рис. 30.8. Примерный вид зависимостей показателей от параметров СМО

    Затем так же можно снять еще 12 зависимостей показателей P от другого параметра R , зафиксировав остальные параметры. И так далее. Образуется своеобразная матрица зависимостей показателей P от параметров R , по которой можно провести дополнительный анализ о перспективах движения (улучшения показателей) в ту или иную сторону. Наклон кривых хорошо показывает чувствительность, эффект от движения по определенному показателю. В математике эту матрицу называют якобианом J , в которой роль наклона кривых играют значения производных ΔP i R j , см. рис. 30.9 . (Напомним, что производная связана геометрически с углом наклона касательной к зависимости.)

    Рис. 30.9. Якобиан — матрица чувствительностей показателей
    в зависимости от изменения параметров СМО

    Если показателей 12, а параметров, например, 5, то матрица имеет размерность 12 x 5. Каждый элемент матрицы — кривая, зависимость i -го показателя от j -го параметра. Каждая точка кривой — среднее значение показателя на достаточно представительном отрезке T н или усреднено по нескольким экспериментам.

    Следует понимать, что кривые снимались в предположении того, что все параметры кроме одного в процессе их снятия были неизменны. (Если бы все параметры меняли значения, то кривые были бы другими. Но так не делают, так как получится полная неразбериха и зависимостей не будет видно.)

    Поэтому, если на основании рассмотрения снятых кривых принимается решение о том, что некоторый параметр будет в СМО изменен, то все кривые для новой точки, в которой опять будет исследоваться вопрос о том, какой параметр следует изменить, чтобы улучшить показатели, следует снимать заново .

    Так шаг за шагом можно попытаться улучшить качество системы. Но пока эта методика не может ответить на ряд вопросов. Дело в том, что, во-первых, если кривые монотонно растут, то возникает вопрос, где же все-таки следует остановиться. Во-вторых, могут возникать противоречия, один показатель может улучшаться при изменении выбранного параметра, в то время как другой будет одновременно ухудшаться. В-третьих, ряд параметров сложно выразить численно, например, изменение дисциплины обслуживания, изменение направлений потоков, изменение топологии СМО. Поиск решения в двух последних случаях проводится с применением методов экспертизы (см. лекцию 36. Экспертиза) и методами искусственного интеллекта (см. .

    Поэтому сейчас обсудим только первый вопрос. Как принять решение, каким должно быть все-таки значение параметра, если с его ростом показатель все время монотонно улучшается? Вряд ли значение бесконечности устроит инженера.

    Параметр R — управление, это то, что находится в распоряжении владельца СМО (например, возможность заасфальтировать площадку и тем самым увеличить количество мест в очереди, поставить дополнительные каналы, увеличить поток заявок за счет увеличения затрат на рекламу и так далее). Меняя управление, можно влиять на значение показателя P , цель, критерий (вероятность отказов, пропускную способность, среднее время обслуживания и так далее). Из рис. 30.10 видно, что если увеличивать управление R , то можно добиться всегда улучшение показателя P . Но очевидно, что любое управление связано с затратами Z . И чем больше прилагают усилия для управления, чем больше значение управляющего параметра, тем больше затраты. Обычно затраты на управление растут линейно: Z = C 1 · R . Хотя встречаются случаи, когда, например, в иерархических системах, они растут экспоненциально, иногда — обратно экспоненциально (скидки за опт) и так далее.

    Рис. 30.10. Зависимость показателя Р
    от управляемого параметра R (пример)

    В любом случае ясно, что когда-то вложение все новых затрат просто перестанет себя окупать. Например, эффект от заасфальтированной площадки размером в 1 км 2 вряд ли окупит затраты владельца бензоколонки в Урюпинске, там просто не будет столько желающих заправиться бензином. Иными словами показатель P в сложных системах не может расти бесконечно. Рано или поздно его рост замедляется. А затраты Z растут (см. рис. 30.11 ).

    Рис. 30.11. Зависимости эффекта от применения показателя Р

    Из рис. 30.11 видно, что при назначении цены C 1 за единицу затрат R и цены C 2 за единицу показателя P , эти кривые можно сложить. Кривые складывают, если их требуется одновременно минимизировать или максимизировать. Если одна кривая подлежит максимизации, а другая минимизации, то следует найти их разность, например по точкам. Тогда результирующая кривая (см. рис. 30.12 ), учитывающая и эффект от управления и затраты на это, будет иметь экстремум. Значение параметра R , доставляющего экстремум функции, и есть решение задачи синтеза .

    Рис. 30.12. Суммарная зависимость эффекта от применения показателя Р
    и затрат Z на его получение как функции управляемого параметра R

    Кроме управления R и показателя P в системах действует возмущение. Возмущения обозначим как D = {d 1 , d 2 , …} , см. рис. 30.13 . Возмущение — это входное воздействие, которое, в отличие от управляющего параметра, не зависит от воли владельца системы. Например, низкие температуры на улице, конкуренция снижают, к сожалению, поток клиентов, поломки оборудования досадно снижают производительность системы. И управлять этими величинами непосредственно владелец системы не может. Обычно возмущение действует «назло» владельцу, снижая эффект P от управляющих усилий R . Это происходит потому, что, в общем случае, система создается для достижения целей, недостижимых самих по себе в природе. Человек, организуя систему, всегда надеется посредством ее достичь некоторой цели P . На это он затрачивает усилия R , идя наперекор природе. Система — организация доступных человеку, изученных им природных компонент для достижения некоторой новой цели, недостижимой ранее другими способами .

    Рис. 30.13. Условное обозначение изучаемой системы,
    на которую воздействуют управляющие воздействия R и возмущения D

    Итак, если мы снимем зависимость показателя P от управления R еще раз (как показано на рис. 30.10 ), но в условиях появившегося возмущения D , то, возможно, характер кривой изменится. Скорее всего, показатель будет при одинаковых значениях управлений находиться ниже, так как возмущение носит «противный» характер, снижая показатели системы (см. рис. 30.14 ). Система, предоставленная сама себе, без усилий управляющего характера, перестает обеспечивать цель, для достижения которой она была создана . Если, как и ранее, построить зависимость затрат, соотнести ее с зависимостью показателя от параметра управления, то найденная точка экстремума сместится (см. рис. 30.15 ) по сравнению со случаем «возмущение = 0» (см. рис. 30.12 ).

    Рис. 30.14. Зависимость показателя P от управляющего параметра R
    при различных значениях действующих на систему возмущений D

    Если снова увеличить возмущение, то кривые изменятся (см. рис. 30.14 ) и, как следствие, снова изменится положение точки экстремума (см. рис. 30.15 ).

    Рис. 30.15. Нахождение точки экстремума на суммарной зависимости
    при различных значениях действующего возмущающего фактора D

    В конечном итоге, все найденные положения точек экстремума переносятся на новый график, где образуют зависимость Показателя P от Управляющего параметра R при изменении Возмущений D (см. рис. 30.16 ).

    Рис. 30.16. Зависимость показателя P от управляющего
    параметра R при изменении значений возмущений D
    (кривая состоит только из точек экстремумов)

    Обратите внимание, что на самом деле на этом графике могут быть и другие рабочие точки (график пронизан как бы семействами кривых), но нанесенные нами точки задают такие координаты управляющего параметра, при которых при заданных возмущениях (!) достигается наибольшее из возможных значение показателя P .

    Этот график (см. рис. 30.16 ) связывает Показатель P , Управление (ресурс) R и Возмущение D в сложных системах, указывая, как действовать наилучшим образом ЛПР (лицу, принимающему решение) в условиях возникших возмущений. Теперь пользователь может, зная реальную обстановку на объекте (значение возмущения), быстро по графику определить, какое управляющее воздействие на объект необходимо, чтобы обеспечить наилучшее значение интересующего его показателя.

    Заметьте, если управляющее воздействие будет меньше оптимального, то суммарный эффект снизится, возникнет ситуация недополученной прибыли. Если управляющее воздействие будет больше оптимального, то эффект также снизится, так как заплатить за очередное увеличение управляющих усилий надо будет по величине больше, чем та, которую вы получите в результате ее использования (ситуация банкротства).

    Примечание . В тексте лекции мы использовали слова «управление» и «ресурс», то есть считали, что R = U . Следует пояснить, что управление действительно играет роль некоторой ограниченной ценности для владельца системы. То есть всегда является ценным для него ресурсом, за который всегда приходится платить, и которого всегда не хватает. Действительно, если бы эта величина не была ограничена, то мы бы могли достигать за счет бесконечной величины управлений бесконечно больших значений целей, а вот бесконечно больших результатов в природе явно не наблюдается.

    Иногда различают собственно управление U и ресурс R , называя ресурсом некоторый запас, то есть границу возможного значения управляющего воздействия. В этом случае понятия ресурс и управление не совпадают: U < R . Иногда различают предельное значение управления U R и интегральный ресурс U d t R .

    Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

    1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
    2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

    Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

    Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

    Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

    Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

    Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

    Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

    Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

    В качестве характеристик СМО рассматриваются:

    • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
    • среднее время «простоя» отдельных каналов и системы в целом;
    • среднее время ожидания в очереди;
    • вероятность того, что поступившая заявка будет немедленно обслужена;
    • закон распределения длины очереди и другие.

    Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

    3.1 Модели систем массового обслуживания.

    Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

    a - распределение входного потока заявок;

    b - распределение выходного потока заявок;

    c – конфигурация обслуживающего механизма;

    d – дисциплина очереди;

    e – блок ожидания;

    f – емкость источника.

    Теперь рассмотрим подробнее каждую характеристику.

    Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

    Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

    Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

    1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
    2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
    3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

    Таким образом, можно выделить одно- и многоканальные СМО.

    С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

    Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

    Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

    1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
    2. ПОСППО (последним пришел – первым обслуживаешься);
    3. СОЗ (случайный отбор заявок) – из банка данных.
    4. ПР – обслуживание с приоритетом.

    Длина очереди может быть

    • неограничена – тогда говорят о системе с чистым ожиданием;
    • равна нулю – тогда говорят о системе с отказами;
    • ограничена по длине (система смешанного типа).

    Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

    Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

    Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

    3.2 Входной поток требований.

    С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

    Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

    Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

    Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

    Поток называется простейшим , если он стационарный, без последействия и ординарный.

    Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

    Следствие 1 . Простейший поток также называется пуассоновским.

    Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

    Рассмотрим ПРИМЕР.

    В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

    Решение.

    По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

    ^

    3.3 Состояние системы. Матрица и граф переходов.

    В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

    Е 0 – все каналы свободны;

    Е 1 – занят один канал;

    Е n – заняты все каналы;

    Е n +1 – заняты все каналы и одна заявка в очереди;

    Е n + m – заняты все каналы и все места в очереди.

    Аналогичная система с отказами может находиться в состояниях E 0 E n .

    Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

    С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

    Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

    Рисунок 3.1 – граф переходов

    Сост. Е 0 Е 1 Е 2
    Е 0 Р 0,0 Р 0,1 Р 0,2
    Е 1 Р 1,0 Р 1,1 Р 1,2
    Е 2 Р 2,0 Р 2,2 Р 2,2

    Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

    Так как система обязательно перейдет из одного

    состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

    3.4 Одноканальные СМО.

    3.4.1 Одноканальные СМО с отказами.

    Будем рассматривать системы, удовлетворяющие требованиям:

    (Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

    Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

    А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

    А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

    А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

    Таким образом, получим матрицу переходов:

    Сост. Е 0 Е 1
    Е 0 1-l* Dt l* Dt
    Е 1 m* Dt 1-m* Dt

    Вероятность простоя и отказа системы.

    Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
    изображен на рисунке 3.2.

    Асимптотой графика является прямая
    .

    Очевидно, начиная с некоторого момента t ,


    1

    Рисунок 3.2

    Окончательно получим, что
    и
    , где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

    Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

    Стационарный режим работы и коэффициент загрузки системы.

    Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
    называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
    ,
    . Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

    На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

    Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
    .

    3.4.2 Одноканальные СМО с неограниченной длиной очереди.

    Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

    решая которую найдем, что . Таким образом, при условии, что y <1, получим
    Окончательно,
    и
    – вероятность нахождения СМО в состоянии Е k в случайный момент времени.

    Средние характеристики системы.

    За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

    • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
    • v – длину очереди;
    • w – время ожидания начала обслуживания;
    • w 0 – общее время нахождения в системе.

    Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

    – среднее число заявок в системе.

    – средняя длина очереди.

    – среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

    – среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

    На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

    Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
    , средняя длина очереди
    , среднее время ожидания начала обслуживания
    часа = 50 мин, и, наконец, среднее время нахождения в системе
    час.

    3.4.3 Одноканальные СМО смешанного типа.

    Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
    , т.е. одна заявка обслуживается и еще s заявок – в очереди.

    Вероятность простоя системы равна
    ,

    а вероятность отказа системы -
    .

    Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

    Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
    . Для системы с чистым ожиданием
    . Для системы с ограниченной длиной очереди
    . Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

    3.5 Многоканальные СМО.

    3.5.1 Многоканальные СМО с отказами.

    Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
    , где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

    , k=0, 1, …

    Функция стоимости.

    Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
    . Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

    Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

    Рисунок 3.3

    Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

    ПРИМЕР.

    Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

    Решение. y = 2/1=2. с 1 =7, с 2 =2.

    Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
    . Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

    Предположим, что s =3. Тогда
    , С(3) = с 1 *l* p 3 2 *
    =5.79.

    Предположим, что имеется четыре канала, т.е. s =4. Тогда
    ,
    , С(4) = с 1 *l* p 4 2 *
    =5.71.

    Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
    , С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

    3.5.2 Многоканальные СМО с очередью.

    Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

    P(w>0) – вероятность ожидания начала обслуживания,
    .

    Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

    ПРИМЕР.

    СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

    Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
    ,
    .

    Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

    Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

    3.6 Вопросы для самоконтроля

    1. Предмет и задачи теории массового обслуживания.
    2. СМО, их модели и обозначения.
    3. Входной поток требований. Интенсивность входного потока.
    4. Состояние системы. Матрица и граф переходов.
    5. Одноканальные СМО с отказами.
    6. Одноканальные СМО с очередью. Характеристики.
    7. Стационарный режим работы. Коэффициент загрузки системы.
    8. Многоканальные СМО с отказами.
    9. Оптимизация функции стоимости.
    10. Многоканальные СМО с очередью. Характеристики.

    3.7 Упражнения для самостоятельной работы

    1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
    2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
    3. Время обслуживания в СМО подчиняется экспоненциальному закону,
      m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
    4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
    5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
    6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
    7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
    8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
    9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
    10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
    11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
    12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
    13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?